Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Eye
  • View all journals
  • Search
  • Log in
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. eye
  3. laboratory study
  4. article
Blue light induced apoptosis in rat retina
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Tracing the retina to analyze the integrity and phagocytic capacity of the retinal pigment epithelium

29 April 2020

Francisco J. Valiente-Soriano, Manuel Salinas-Navarro, … Marta Agudo-Barriuso

Revival of light signalling in the postmortem mouse and human retina

11 May 2022

Fatima Abbas, Silke Becker, … Frans Vinberg

Pathogenic mechanisms contributing to the vulnerability of aging human photoreceptor cells

02 June 2021

Tapas C. Nag

Up-regulation of pro-angiogenic pathways and induction of neovascularization by an acute retinal light damage

14 April 2020

A. Tisi, G. Parete, … R. Maccarone

Local photoreceptor cell death differences in the murine model of retinal detachment

22 September 2021

Daniel E. Maidana, Lucia Gonzalez-Buendia, … Demetrios G. Vavvas

UVA induces retinal photoreceptor cell death via receptor interacting protein 3 kinase mediated necroptosis

12 December 2022

Zhen Yu, Victor S. M. C. Correa, … Demetrios G. Vavvas

Oxidative stress facilitates exogenous mitochondria internalization and survival in retinal ganglion precursor-like cells

24 March 2022

Michal Aharoni-Simon, Keren Ben-Yaakov, … Ziv Rotfogel

Blue light excited retinal intercepts cellular signaling

05 July 2018

Kasun Ratnayake, John L. Payton, … Ajith Karunarathne

DNA and RNA oxidative damage in the retina is associated with ganglion cell mitochondria

24 May 2022

Lei Gu, Jacky M. Kwong, … Natik Piri

Download PDF
  • Published: 01 July 1999

Blue light induced apoptosis in rat retina

  • Jiangmei Wu1,
  • Stefan Seregard1,
  • Berit Spångberg1,
  • Margareta Oskarsson1 &
  • …
  • Enping Chen1 

Eye volume 13, pages 577–583 (1999)Cite this article

  • 3137 Accesses

  • 62 Citations

  • 3 Altmetric

  • Metrics details

Abstract

Purpose To explore cell death in blue light induced retinal damage.

Methods Sprague-Dawley rats reared under cyclic light were exposed continuously to diffuse blue light (400-480 nm) at 0.64 W/m2 for 3 or 6 h after 22 h of dark adaptation. The rats were kept in darkness and killed immediately, 8,16 and 24 h following light exposure. The retinal damage by the blue light was examined with a transmission electron microscope. The cell death was characterised by in situ terminal dUTP nick end labelling (TUNEL) and gel electrophoresis.

Results During the 24 h following light exposure, photoreceptor cell death was characterised by progressive condensation and margination of the chromatin, shrinkage or convolution and fragmentation of the nucleus, condensation of the cytoplasm, and formation of apoptotic bodies along with rapid removal of dying cells from damaged areas in the absence of inflammatory response. The TUNEL-positive nuclei were scattered individually in the outer nuclear layer just after light exposure. A wave of massive TUNEL labelling of photoreceptor nuclei peaked at 8-16 h and dropped at 24 h following light exposure. The distribution of TUNEL-positive nuclei was located predominantly at the upper temporal region of the retina, which was the most sensitive area to the damage caused by blue light. Furthermore, the multiples of internucleosomal cleavage of 180-200 base pairs were demonstrated at corresponding time points.

Conclusion Photoreceptor cell apoptosis is seen early after the retina is damaged by blue light.

References

  1. Noell WK, Walker VS, Kang BS, Berman S . Retinal damage by light in rats. Invest Ophthalmol 1966; 5: 450–73.

    CAS  PubMed  Google Scholar 

  2. Ham WT Jr, Mueller HA, Sliney DH . Retinal sensitivity to damage from short wavelength light. Nature 1976; 260: 153–5.

    Article  Google Scholar 

  3. Ham WT Jr, Mueller HA, Ruffolo JJ Jr, Clarke AM . Sensitivity of the retina to radiation damage as a function of wavelength. Photochem Photobiol 1979; 29: 735–43.

    Article  Google Scholar 

  4. Young RW . Pathophysiology of age-related macular degeneration. Surv Ophthalmol 1987; 31: 291–306.

    Article  CAS  Google Scholar 

  5. Taylor HR, Munoz B, West S, Bressler NM, Bressler SB, Rosenthal FS . Visible light and risk of age-related macular degeneration. Trans Am Ophthalmol Soc 1990; 88: 163–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang M, Lam TT, Tso MO, Naash MI . Expression of a mutant opsin gene increases the susceptibility of the retina to light damage. Vis Neurosci 1997; 14: 55–62.

    Article  Google Scholar 

  7. Naash ML, Peachey NS, Li ZY, Gryczan CC, Goto Y, Blanks J, Milam AH, Ripps H . Light-induced acceleration of photoreceptor degeneration in transgenic mice expressing mutant rhodopsin. Invest Ophthalmol Vis Sci 1996; 37: 775–82.

    CAS  PubMed  Google Scholar 

  8. Noell WK . Possible mechanisms of photoreceptor damage by light in mammalian eyes. Vision Res 1980; 20: 1163–71.

    Article  CAS  Google Scholar 

  9. Kerr JF, Wyllie AH, Currie AR . Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26: 239–57.

    Article  CAS  Google Scholar 

  10. Kerr JF, Gobe GC, Winterford CM, Harmon BV . Anatomical methods in cell death. Methods Cell Biol 1995; 46: 1–27.

    Article  CAS  Google Scholar 

  11. Wyllie AH . Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 1980; 284: 555–6.

    Article  CAS  Google Scholar 

  12. Cohen GM, Sun XM, Snowden RT, Dinsdale D, Skilleter DN . Key morphological features of apoptosis may occur in the absence of internucleosomal DNA fragmentation. Biochem J 1992; 286: 331–4.

    Article  CAS  Google Scholar 

  13. Gavrieli Y, Sherman Y, Ben-Sasson SA . Identification of programmed cell death in situ via specific labelling of nuclear DNA fragmentation. J Cell Biol 1992; 119: 493–501.

    Article  CAS  Google Scholar 

  14. Webb SJ, Harrison DJ, Wyllie AH . Apoptosis: an overview of the process and its relevance in disease. Adv Pharmacol 1997; 41: 1–34.

    Article  CAS  Google Scholar 

  15. Young RW . Cell death during differentiation of the retina in the mouse. J Comp Neurol 1984; 229: 362–73.

    Article  CAS  Google Scholar 

  16. Garcia-Valenzuela E, Gorcyzca W, Darzynkiewicz Z, Sharma SC . Apoptosis in adult retinal ganglion cells after axotomy. J Neurobiol 1994; 25: 431–8.

    Article  CAS  Google Scholar 

  17. Rosenbaum DM, Rosenbaum PS, Gupta A, Michaelson MD, Hall DH, Kessler JA . Retinal ischemia leads to apoptosis which is ameliorated by aurintricarboxylic acid. Vision Res 1997; 37: 3445–51.

    Article  CAS  Google Scholar 

  18. Chang GQ, Hao Y, Wong F . Apoptosis: final common pathway of photoreceptor death in rd, rds, and rhodopsin mutant mice. Neuron 1993; 11: 595–605.

    Article  CAS  Google Scholar 

  19. Portera-Cailliau C, Sung CH, Nathans J, Adler R . Apoptotic photoreceptor cell death in mouse models of retinitis pigmentosa. Proc Natl Acad Sci USA 1994; 91: 974–8.

    Article  CAS  Google Scholar 

  20. Lolley RN, Rong H, Craft CM . Linkage of photoreceptor degeneration by apoptosis with inherited defect in phototransduction. Invest Ophthalmol Vis Sci 1994; 35: 358–62.

    CAS  PubMed  Google Scholar 

  21. Tso MO, Zhang C, Abler AS, Chang CJ, Wong F, Chang GQ, Lam TT . Apoptosis leads to photoreceptor degeneration in inherited retinal dystrophy of RCS rats. Invest Ophthalmol Vis Sci 1994; 35: 2693–9.

    CAS  PubMed  Google Scholar 

  22. Smith SB, Bora N, McCool D, Kutty G, Wong P, Kutty RK, Wiggert B . Photoreceptor cells in the vitiligo mouse die by apoptosis. TRPM-2/clusterin expression is increased in the neural retina and in the retinal pigment epithelium. Invest Ophthalmol Vis Sci 1995; 36: 2193–201.

    CAS  PubMed  Google Scholar 

  23. Cook B, Lewis GP, Fisher SK, Adler R . Apoptotic photoreceptor degeneration in experimental retinal detachment. Invest Ophthalmol Vis Sci 1995; 36: 990–6.

    CAS  PubMed  Google Scholar 

  24. Buchi ER, Bernauer W, Daicker B . Cell death and disposal in retinoblastoma: an electron microscopic study. Graefes Arch Clin Exp Ophthalmol 1994; 232: 635–45.

    Article  CAS  Google Scholar 

  25. Xu GZ, Li WW, Tso MO . Apoptosis in human retinal degenerations. Trans Am Ophthalmol Soc 1996; 94: 411–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chang CJ, Lai WW, Edward DP, Tso MO . Apoptotic photoreceptor cell death after traumatic retinal detachment in humans [see comments]. Arch Ophthalmol 1995; 113: 880–6.

    Article  CAS  Google Scholar 

  27. Shahinfar S, Edward DP, Tso MO . A pathologic study of photoreceptor cell death in retinal photic injury. Curr Eye Res 1991; 10: 47–59.

    Article  CAS  Google Scholar 

  28. Li S, Chang CJ, Abler AS, Fu J, Tso MO, Lam TT . A comparison of continuous versus intermittent light exposure on apoptosis. Curr Eye Res 1996; 15: 914–22.

    Article  CAS  Google Scholar 

  29. Abler AS, Chang CJ, Ful J, Tso MO, Lam TT . Photic injury triggers apoptosis of photoreceptor cells. Res Commun Mol Pathol Pharmacol 1996; 92: 177–89.

    CAS  PubMed  Google Scholar 

  30. Hafezi F, Steinbach JP, Marti A, Munz K, Wang ZQ, Wagner EF, Aguzzi A, Reme CE . The absence of c-fos prevents light-induced apoptotic cell death of photoreceptors in retinal degeneration in vivo [see comments]. Nature Med 1997; 3: 346–9.

    Article  CAS  Google Scholar 

  31. Hafezi F, Marti A, Munz K, Reme CE . Light-induced apoptosis: differential timing in the retina and pigment epithelium. Exp Eye Res 1997; 64: 963–70.

    Article  CAS  Google Scholar 

  32. Ham WT Jr, Ruffolo JJ Jr, Mueller HA, Guerry D III. The nature of retinal radiation damage: dependence on wavelength, power level and exposure time. Vision Res 1980; 20: 1105–11.

    Article  CAS  Google Scholar 

  33. Gorgels TG, van Norren D . Ultraviolet and green light cause different types of damage in rat retina. Invest Ophthalmol Vis Sci 1995; 36: 851–63.

    CAS  PubMed  Google Scholar 

  34. Wu J, Chen E, Söderberg PG . Failure of ascorbate to protect broadband blue light induced retinal damage on rat. Graefes Arch Clin Exp Ophthalmol 1999; in press.

  35. Organisciak DT, Wang HM, Li ZY, Tso MO . The protective effect of ascorbate in retinal light damage of rats. Invest Ophthalmol Vis Sci 1985; 26: 1580–8.

    CAS  PubMed  Google Scholar 

  36. Chen E, Wu J . A novel device that keeps rats' eyes open during light exposure. Lasers Light Ophthalmol 1999; in press.

  37. Buchi ER . Cell death in rat retina after pressure-induced ischaemia-reperfusion insult: electron microscopic study. II. Outer nuclear layer. Jpn J Ophthalmol 1992; 36: 62–8.

    CAS  PubMed  Google Scholar 

  38. Buchi ER . Cell death in the rat retina after a pressure-induced ischaemia-reperfusion insult: an electron microscopic study. I. Ganglion cell layer and inner nuclear layer. Exp Eye Res 1992; 55: 605–13.

    Article  CAS  Google Scholar 

  39. Penfold PL, Provis JM . Cell death in the development of the human retina: phagocytosis of pyknotic and apoptotic bodies by retinal cells. Graefes Arch Clin Exp Ophthalmol 1986; 224: 549–53.

    Article  CAS  Google Scholar 

  40. Egensperger R, Maslim J, Bisti S, Hollander H, Stone J . Fate of DNA from retinal cells dying during development: uptake by microglia and macroglia (Muller cells). Brain Res Dev Brain Res 1996; 97: 1–8.

    Article  CAS  Google Scholar 

  41. Pautler EL, Morita M, Beezley D . Hemoprotein(s) mediate blue light damage in the retinal pigment epithelium. Photochem Photobiol 1990; 51: 599–605.

    Article  CAS  Google Scholar 

  42. Pautler EL, Morita M, Beezley D . Reversible and irreversible blue light damage to the isolated, mammalian pigment epithelium. Prog Clin Biol Res 1989; 314: 555–67.

    CAS  PubMed  Google Scholar 

  43. Ninnemann H, Butler WL, Epel BL . Inhibition of respiration and destruction of cytochrome A3 by light in mitochondria and cytochrome oxidase from beef heart. Biochim Biophys Acta 1970; 205: 507–12.

    Article  CAS  Google Scholar 

  44. Ninnemann H, Butler WL, Epel BL . Inhibition of respiration in yeast by light. Biochim Biophys Acta 1970; 205: 499–506.

    Article  CAS  Google Scholar 

  45. Lawwill T . Three major pathologic processes caused by light in the primate retina: a search for mechanisms. Trans Am Ophthalmol Soc 1982; 80: 517–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen E . Inhibition of enzymes by short-wave optical radiation and its effect on the retina. Acta Ophthalmol Suppl 1993; 71: 1–50.

    Google Scholar 

  47. Chen E, Pallon J, Forslind B . Distribution of calcium and sulphur in the blue-light-exposed rat retina. Graefes Arch Clin Exp Ophthalmol 1995; 233: 163–7.

    Article  CAS  Google Scholar 

  48. Zamzami N, Susin SA, Marchetti P, Hirsch T, Gomez-Monterrey I, Castedo M, Kroem G . Mitochondrial control of nuclear apoptosis [see comments]. J Exp Med 1996; 183: 1533–44.

    Article  CAS  Google Scholar 

  49. Richter C . Reactive oxygen and nitrogen species regulate mitochondrial Ca2+ homeostasis and respiration. Biosci Rep 1997; 17: 53–66.

    Article  CAS  Google Scholar 

  50. McConkey DJ, Orrenius S . Signal transduction pathways in apoptosis. Stem Cells 1996; 14: 619–31.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. St Erik's Eye Hospital, Karolinska Institute, Stockholm, Sweden

    Jiangmei Wu, Stefan Seregard, Berit Spångberg, Margareta Oskarsson & Enping Chen

Authors
  1. Jiangmei Wu
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Stefan Seregard
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Berit Spångberg
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Margareta Oskarsson
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Enping Chen
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Enping Chen.

Additional information

This study was supported by Karolinska Institutets Forskningsfonder, Edwin Jordans Stiftelse för Oftalmologisk Forskning, Einar och Anna Keys Resebidragsstiftelse, Carmen och Bertil Regners Stiftelse för Forskning inom Området Ögonsjukdomar, Stiftelsen Kronprinsessan Margaretas Arbetsnämnd för Synskadade

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wu, J., Seregard, S., Spångberg, B. et al. Blue light induced apoptosis in rat retina. Eye 13, 577–583 (1999). https://doi.org/10.1038/eye.1999.142

Download citation

  • Received: 06 November 1998

  • Revised: 14 April 1999

  • Accepted: 14 April 1999

  • Issue Date: 01 July 1999

  • DOI: https://doi.org/10.1038/eye.1999.142

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Apoptosis
  • Blue light
  • Cell death
  • Light damage
  • Retina
Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Special Issues
  • About the Partner
  • EYE Covers
  • Contact
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Eye (Eye) ISSN 1476-5454 (online) ISSN 0950-222X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • Nano
  • Protocol Exchange
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Nature Research Academies
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Career development

  • Nature Careers
  • Nature Conferences
  • Nature events

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Italy
  • Nature Japan
  • Nature Korea
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • California Privacy Statement
Springer Nature

© 2023 Springer Nature Limited