Evolution of colour vision in vertebrates


The expression of five major families of visual pigments occurred early in vertebrae evolution, probably about 350-400 million years ago, before the separation of the major vertebrate classes. Phylogenetic analysis of opsin gene sequences suggests that the ancestral pigments were cone pigments, with rod pigments evolving last. Modern teleosts, reptiles and birds have genera that possess rods and four spectral classes of cone each representing one of the five visual pigment families. The complement of four spectrally distinct cone classes endows these species with the potential for tetrachromatic colour vision. In contrast, probably because of their nocturnal ancestry, mammals have rod-dominated retinas with colour vision reduced to a basic dichromatic system subserved by only two spectral classes of cone. It is only within primates, about 35 millions years ago, that mammals ‘re-evolved’ a higher level of colour vision: trichromacy. This was achieved by a gene duplication within the longer-wave cone class to produce two spectrally distinct members of the same visual pigment family which, in conjunction with a short-wavelength pigment, provide the three spectral classes of cone necessary to subserve trichromacy.


  1. 1

    Crescitelli F . The visual cells and visual pigments of the vertebrate eye. In: Dartnall HJA. editor. Photochemistry of vision, vol VII/1. Berlin: Springer, 1972:245–363.

  2. 2

    Govardovskii VI, Lychakov DV . Visual cells and visual pigments of the lamprey, Lampetra fluviatilis. J Comp Physiol [A] 1984;154:279–86.

    Article  Google Scholar 

  3. 3

    Ishikawa M, Takao M, Washioka H, Tokunaga F, Watanabe H, Tonosaki A . Demonstration of rod and cone photoreceptors in the lamprey retina by freeze replication and immunofluorescence. Cell Tissue Res 1987;249:241–6.

    CAS  Article  Google Scholar 

  4. 4

    Negishi K, Teranishi T, Kuo C-H, Miki N . Two types of lamprey retina photoreceptors immunoreactive to rod- or cone-specific antibodies. Vision Res 1987;27:1237–41.

    CAS  Article  Google Scholar 

  5. 5

    Hisatomi O, Iwasa T, Tokunaga F . The visual pigment of lamprey. In: Hara T, editor. Molecular physiology of retinal proteins. Osaka: Yamada Science Foundation, 1988:371–2.

  6. 6

    Hisatomi O, Iwasa T, Tokunaga F, Yasui A . Isolation and characterization of lamprey rhodopsin cDNA. Biochem Biophys Res Commun 1991;174:1125–32.

    CAS  Article  Google Scholar 

  7. 7

    Zhang H, Yokoyama S . Molecular evolution of the rhodopsin gene of marine lamprey, Petromyzon marinus. Gene 1997;191:1–6.

    CAS  Article  Google Scholar 

  8. 8

    Hárosi FI, Kleinschmidt J . Visual pigments in the sea lamprey, Petromyzon marinus. Vis Neurosci 1993;10:711–5.

    Article  Google Scholar 

  9. 9

    Knowles A . The effects of chloride ions upon chicken visual pigments. Biochem Biophys Res Commun 1976;73:56–62.

    CAS  Article  Google Scholar 

  10. 10

    Crescitelli F . lonochromic behavior of gecko visual pigments. Science 1977;195:187–8.

    CAS  Article  Google Scholar 

  11. 11

    Novitsky IY, Zak PP, Ostrovsky MA . The effects of anions on absorption spectrum of the longwavelength retinal-containing pigment iodopsin in native frog cones (a microspectrophotometric study). Bioorg Chem 1989;15:1037–43.

    Google Scholar 

  12. 12

    Kleinschmidt J, Hárosi FI . Anion sensitivity and spectral tuning of cone visual pigments in situ. Proc Natl Acad Sci USA 1992;89:9181–5.

    CAS  Article  Google Scholar 

  13. 13

    Wang Z, Asenjo AB, Oprian DD . Identification of the Cl binding site in the human red and green color vision pigments. Biochemistry 1993;32:2125–30.

    CAS  Article  Google Scholar 

  14. 14

    Sun H, Macke JP, Nathans J . Mechanisms of spectral tuning in the mouse green cone pigment. Proc Natl Acad Sci USA 1997;94:8860–5.

    CAS  Article  Google Scholar 

  15. 15

    Govardovskii VI, Byzov AL, Zueva LV, Polisczuk NA, Baburina EA . Spectral characteristics of photoreceptors and horizontal cells in the retina of the Siberian sturgeon Acipenser baicri Brandt. Vision Res 1991;31:2047–56.

    CAS  Article  Google Scholar 

  16. 16

    Govardovskii VI, Röhlich P, Szél A, Zueva LV . Immunocytochemical reactivity of rod and cone visual pigments in the sturgeon retina. Vis Neurosci 1992;8:531–7.

    CAS  Article  Google Scholar 

  17. 17

    Loew ER, Sillman AJ . Age-related changes in the visual pigments of the white sturgeon (Acipenser transmontanus). Can J Zool 1993;71:1552–7.

    Article  Google Scholar 

  18. 18

    Sillman AJ, Sorsky ME, Loew ER . The visual pigments of wild white sturgeon (Acipenser transmontanus). Can J Zool 1995;73:805–9.

    Article  Google Scholar 

  19. 19

    Bowmaker JK . The visual pigments of fish. In: Osborne NN, Chader GJ, editors. Progress in retinal and eye research, vol 15. Oxford: Pergamon Press, 1995:1–31.

  20. 20

    Avery JA, Bowmaker JK, Djamgoz MBA, Downing JEG . Ultraviolet sensitive receptors in a freshwater fish. J Physiol (Lond) 1983;334:23P.

    Google Scholar 

  21. 21

    Hárosi FI, Hashimoto Y . Ultraviolet visual pigment in a vertebrate: a tetrachromatic cone system in the dace. Science 1983;222:1021–3.

    Article  Google Scholar 

  22. 22

    Bowmaker JK, Thorpe A, Douglas RH . Ultraviolet-sensitive cones in the goldfish. Vision Res 1991;31:349–52.

    CAS  Article  Google Scholar 

  23. 23

    Bowmaker JK, Kunz YW . Ultraviolet receptors, tetrachromatic colour vision and retinal mosiacs in the brown trout (Salmo trutta): age dependent change. Vision Res 1987;27:2101–8.

    CAS  Article  Google Scholar 

  24. 24

    Hawryshyn CW, Hárosi FI . Spectral characteristics of visual pigments in rainbow trout (Oncorhynchus mykiss). Vision Res 1994;34:1385–92.

    CAS  Article  Google Scholar 

  25. 25

    Archer SN, Lythgoe JN . The visual pigment basis for cone polymorphism in the guppy, Poecilia reticulata. Vision Res 1990;30:225–33.

    CAS  Article  Google Scholar 

  26. 26

    McFarland WN, Loew ER . Ultraviolet visual pigments in marine fishes of the family Pomacentridae. Vision Res 1994;34:1393–6.

    CAS  Article  Google Scholar 

  27. 27

    Neumeyer C . Tetrachromatic color vision in goldfish: evidence from color mixture experiments. J Comp Physiol [A] 1992;171:639–49.

    Article  Google Scholar 

  28. 28

    Bowmaker JK, Heath LA, Wilkie SE, Hunt DM . Visual pigments and oil droplets from six classes of photoreceptor in the retinas of birds. Vision Res 1997;37:2183–94.

    CAS  Article  Google Scholar 

  29. 29

    Maier EJ, Bowmaker JK . Colour vision in a passeriform bird, Leiothrix lutea: correlation of visual pigment absorbance and oil droplet transmission with spectral sensitivity. J Comp Physiol [A] 1993;172:295–301.

    Article  Google Scholar 

  30. 30

    Sillman AJ, Ronan SJ, Loew ER . Histology and microspectrophotometry of the photoreceptors of a crocodilian, Alligator mississippiensis. Proc R Soc Lond B 1991;243:93–8.

    Article  Google Scholar 

  31. 31

    Fleishman LJ, Loew ER, Leal M . Ultraviolet vision in lizards. Nature 1993;365:397.

    Article  Google Scholar 

  32. 32

    Provencio I, Loew ER, Foster RG . Vitamin A2-based visual pigments in fully terrestrial vertebrates. Vision Res 1992;32:2201–8.

    CAS  Article  Google Scholar 

  33. 33

    Kawamura S, Yokoyama S . Functional characterization of visual and nonvisual pigments of American chameleon (Anolis carolinensis). Vision Res 1998;38:37–44.

    CAS  Article  Google Scholar 

  34. 34

    Goede P, Kolb H . Identification of the synaptic pedicles belonging to the different spectral types of photoreceptor in the turtle retina. Vision Res 1994;34:2801–11.

    CAS  Article  Google Scholar 

  35. 35

    Ohtsuka T . Spectral sensitivities of seven morphological types of photoreceptors in the retina of the turtle, Geoclemys reevesii. J Comp Neurol 1985;237:145–54.

    CAS  Article  Google Scholar 

  36. 36

    Jacobs GH . The distribution and nature of colour vision among the mammals. Biol Rev 1993;68:413–71.

    CAS  Article  Google Scholar 

  37. 37

    Bowmaker JK, Dartnall HJ . Visual pigments of rods and cones in a human retina. J Physiol (Lond) 1980;298:501–11.

    CAS  Article  Google Scholar 

  38. 38

    Bowmaker JK, Dartnall HJ, Mollon JD . Microspectrophotometric demonstration of four classes of photoreceptor in an old world primate, Macaca fascicularis. J Physiol (Lond) 1980;298:131–43.

    CAS  Article  Google Scholar 

  39. 39

    Bowmaker JK, Astell S, Hunt DM, Mollon JD . Photosensitive and photostable pigments in the retinae of Old World monkeys. J Exp Biol 1991;156:1–19.

    CAS  PubMed  Google Scholar 

  40. 40

    Jacobs GH, Neitz J, Deegan JF . Retinal receptors in rodents maximally sensitive to ultraviolet light. Nature 1991;353:655–6.

    CAS  Article  Google Scholar 

  41. 41

    Jacobs GH, Deegan JF . Sensitivity to ultraviolet light in the gerbil (Meriones unguiculatus): characteristics and mechanisms. Vision Res 1994;34:1433–41.

    CAS  Article  Google Scholar 

  42. 42

    Mollon JD, Bowmaker JK, Jacobs GH . Variations of colour vision in a New World primate can be explained by polymorphism of retinal photopigments. Proc R Soc Lond B 1984;222:373–99.

    CAS  Article  Google Scholar 

  43. 43

    Nathans J, Thomas D, Hogness DS . Molecular genetics of human color vision: the genes encoding blue, green and red pigments. Science 1986;232:193–203.

    CAS  Article  Google Scholar 

  44. 44

    Tovée MJ, Bowmaker JK, Mollon JD . The relationship between cone pigments and behavioural sensitivity in a New World monkey (Callithrix jacchus jacchus). Vision Res 1992;32:867–78.

    Article  Google Scholar 

  45. 45

    Williams AJ, Hunt DM, Bowmaker JK, Mollon JD . The polymorphic photopigments of the marmoset: spectral tuning and genetic basis. EMBO J 1992;11:2039–45.

    CAS  Article  Google Scholar 

  46. 46

    Jacobs GH, Neitz J, Crognale MA . Color vision polymorphism and its photopigment basis in a callitrichid monkey (Saguinus fusicollis). Vision Res 1987;27:2089–100.

    CAS  Article  Google Scholar 

  47. 47

    Jacobs GH, Neitz J . Color vision in squirrel monkeys: sex-related differences suggest a mode of inheritance. Vision Res 1985;25:141–3.

    CAS  Article  Google Scholar 

  48. 48

    Shyue SK, Hewett Emmett D, Sperling HG, Hunt DM, Bowmaker JK, Mollon JD, Li WH . Adaptive evolution of color vision genes in higher primates. Science 1995;269:1265–7.

    CAS  Article  Google Scholar 

  49. 49

    Vollrath D, Nathans J, Davis RW . Tandem array of human visual pigment genes at Xq28. Science 1988;240:1669–72.

    CAS  Article  Google Scholar 

  50. 50

    Dulai KS, Bowmaker JK, Mollon JD, Hunt DM . Sequence divergence, polymorphism and evolution of the middle-wave and long-wave visual pigment genes of Great Apes and Old World monkeys. Vision Res 1994;34:2483–91.

    CAS  Article  Google Scholar 

  51. 51

    Jacobs GH, Neitz M, Deegan JF, Neitz J . Trichromatic color vision in New World monkeys. Nature 1996;382:156–8.

    CAS  Article  Google Scholar 

  52. 52

    Yokoyama S . Gene duplications and evolution of the short wavelength-sensitive visual pigments in vertebrates. Mol Biol Evol 1994;11:32–9.

    CAS  PubMed  Google Scholar 

  53. 53

    Jacobs GH, Neitz M, Neitz J . Mutations in S-cone pigment genes and the absence of color vision in two species of nocturnal primate. Proc R Soc Lond B 1996;263:705–10.

    CAS  Article  Google Scholar 

  54. 54

    Mollon JD . ‘Tho' she kneel'd in that place where they grew … ’. J Exp Biol 1989;146:21–38.

    CAS  PubMed  Google Scholar 

  55. 55

    Nagle MG, Osorio D . The tuning of human photopigments may minimize red-green chromatic signals in natural conditions. Proc R Soc Lond B 1993;252:209–13.

    CAS  Article  Google Scholar 

  56. 56

    Julliot C . Seed dispersal by red howling monkeys (Alouatta seniculus) in the tropical rain forest of French Guiana. Int J Primatol 1996;17:239–58.

    Article  Google Scholar 

  57. 57

    Osorio D, Vorobyev M . Color vision as an adaptation to frugivory in primates. Proc R Soc Lond B 1996;263:593–9.

    CAS  Article  Google Scholar 

  58. 58

    Regan BC, Vienot F, Charlesdominique PC, Pefferkorn S, Simmen B, Julliot C, Mollon JD . The color signals that fruits present to primates. Invest Ophthalmol Vis Sci 1996;37:2997.

    Google Scholar 

  59. 59

    Savage A, Dronzek LA, Snowdon CT . Color discimination by the cotton-top tamarin (Saguinus oedipus oedipus) and its relation to fruit coloration. Folia Primatol (Basel) 1987;49:57–69.

    CAS  Article  Google Scholar 

  60. 60

    Asenjo AB, Rim J, Oprian DD . Molecular determinants of human red/green colour discrimination. Neuron 1994;12:1131–8.

    CAS  Article  Google Scholar 

  61. 61

    Oprian DD, Asenjo AB, Lee N, Pelletier SL . Design, chemical synthesis, and expression of genes for the three human color vision pigments. Biochemistry 1991;30:11367–72.

    CAS  Article  Google Scholar 

  62. 62

    Merbs SL, Nathans J . Role of hydroxyl-bearing amino acids in differentially tuning the absorption spectra of the human red and green cone pigments. Photochem Photobiol 1993;58:706–10.

    CAS  Article  Google Scholar 

  63. 63

    Neitz M, Neitz J, Jacobs GH . Spectral tuning of pigments underlying red-green color vision. Science 1991;252:971–4.

    CAS  Article  Google Scholar 

  64. 64

    Neitz J, Neitz M, Kainz PM . Visual pigment gene structure and the severity of color vision defects. Science 1996;274:801–4.

    CAS  Article  Google Scholar 

  65. 65

    Sanocki E, Teller DY, Deeb SS . Rayleigh match ranges of red/ green color-deficient observers: psychophysical and molecular studies. Vision Res 1997;37:1897–907.

    CAS  Article  Google Scholar 

  66. 66

    Deeb SS, Motulsky AG . Molecular genetics of human color vision. Behav Genet 1996;26:195–207.

    CAS  Article  Google Scholar 

  67. 67

    Yokoyama R, Yokoyama S . Convergent evolution of the red-and green-like visual pigment genes in fish, Astyanax fasciatus, and human. Proc Natl Acad Sci USA 1990;87:9315–8.

    CAS  Article  Google Scholar 

  68. 68

    Chiu MI, Zack DJ, Wang YS, Nathans J . Murine and bovine blue cone pigment genes: cloning and characterization of two new members of the S family of visual pigments. Genomics 1994;21:440–3.

    CAS  Article  Google Scholar 

  69. 69

    Hisatomi O, Satoh T, Barthel LK, Stenkamp DL, Raymond PA, Tokunaga F . Molecular cloning and characterization of the putative ultraviolet-sensitive visual pigment of goldfish. Vision Res 1996;36:933–9.

    CAS  Article  Google Scholar 

  70. 70

    Wilkie SE, Vissers PMAM, Das D, de Grip WJ, Bowmaker JK, Hunt DM . UV vision in birds: spectral characteristics, cDNA sequence and retinal localisation of the UV-sensitive pigment of the budgerigar. Biochem J 1998;330:541–7.

    CAS  Article  Google Scholar 

  71. 71

    Max M, McKinnon PJ, Seidenman KJ, Barrett RK, Applebury ML, Takahashi JS, Margolskee RF . Pineal opsin: a nonvisual opsin expressed in chick pineal. Science 1995;267:1502–6.

    CAS  Article  Google Scholar 

  72. 72

    Okano T, Yoshizawa T, Fukada Y . Pinopsin is a chicken pineal photoreceptive molecule. Nature 1994;372:94–7.

    CAS  Article  Google Scholar 

  73. 73

    Kawamura S, Yokoyama S . Expression of visual and nonvisual opsins in American chameleon. Vision Res 1997;37:1867–71.

    CAS  Article  Google Scholar 

  74. 74

    Kawamura S, Yokoyama S . Molecular characterization of the pigeon P-opsin gene. Gene 1996;182:213–4.

    CAS  Article  Google Scholar 

  75. 75

    Shen D, Jiang M, Hao W, Tao L, Salazar M, Fong HK . A human opsin-related gene that encodes a retinaldehydebinding protein. Biochemistry 1994;33:13117–25.

    CAS  Article  Google Scholar 

  76. 76

    Hao W, Fong HK . Blue and ultraviolet light-absorbing opsin from the retinal pigment epithelium. Biochemistry 1996;35:6251–6.

    CAS  Article  Google Scholar 

  77. 77

    Pandey S, Blanks JC, Spee C, Jiang M, Fong HK . Cytoplasmic retinal localization of an evolutionary homolog of the visual pigments. Exp Eye Res 1994;58:605–13.

    CAS  Article  Google Scholar 

  78. 78

    Soni BG, Foster RG . A novel and ancient vertebrate opsin. FEBS Lett 1997;406:279–83.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to James K Bowmaker.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bowmaker, J. Evolution of colour vision in vertebrates. Eye 12, 541–547 (1998). https://doi.org/10.1038/eye.1998.143

Download citation


  • Colour vision
  • Cone
  • Evolution
  • Retina
  • Rhodopsin

Further reading


Quick links