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SUMMARY 

A fully automated digital image processiug system, 
which provides an objective and repeatable way to 
quantify micrdaneurysms in digitised fluorescein angio
grams, has been developed. The automated computer 
processing includes registration of same-eye retinal 
images for serial studies, cutting of regions-of-interest 
centred on the fovea, the detection of microaneurysms 
and the comparison of serial images for microaneurysm 
turnover. The microaneurysm detector was trained 
against a database of 68 images of patients with 
diabetes containing 394 trne microaneurysms, as 
identified by an ophthalmologist. The microaneurysm 
detector achieved 82% sensitivity with 2.0 false
positives per image. An independent test set, compris
ing 20 images containing 297 true microaneurysms, was 
used to compare the microaneurysm detector with 
clinicians. The microaneurysm detector achieved a 
sensitivity of 82% for 5.7 false-positives per image, 
whereas the clinician receiver-operator-characteristic 
(ROC) curve gives 3.2 false-positives per image at a 
sensitivity of 82%. It is concluded that the computer 
system can reliably detect micro aneurysms. The advan
tages of the computer system include objectivity, 
repeatability, speed and full automation. 

Microaneurysm counting is a useful technique for 
assessing the development and progression of 
diabetic retinopathy,1,2 but has proved to be a time
consuming and tedious operation that is subject to 
observer error. Automating counting procedures on 
computer, so that little or no operator intervention is 
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required, provides the potential for efficient and 
easily repeatable analysis. 

Early attempts at automated microaneurysm 
detection3,4 have addressed the detection process 
for isolated images and relied on simplistic morpho
logical and thresholding techniques. Unfortunately, 
the threshold can only be adjusted to achieve good 
sensitivity at the expense of poor specificity. 
Furthermore the monitoring of diabetic retinopathy 
requires a serial study of each patient-eye, and this 
issue has not been addressed. 

Spencer et al.s significantly improved the specificity 
of microaneurysm detection by using over-sensitive 
morphological/thresholding techniques to identify all 
possible candidate (microaneurysm) locations. A 
region-growing algorithm is then used at each 
candidate location to find the underlying candidate 
morphology. Knowledge of the candidate morphol
ogy is necessary for subsequent classification of the 
candidates. Eight features (such as area and total 
intensity) are measured on each candidate. Analysis 
of the features enables micro aneurysms to be 
distinguished from other microvascular abnormal
ities and background texture. The method of Spencer 
et al., while a significant improvement on previous 
attempts, is still suboptimal in terms of execution 
speed and its ability to distinguish micro aneurysms 
from other pathologies. In addition, the method 
requires human intervention to identify the specific 
region of the fundus for counting, and to register 
images for serial studies. 

Ideally, image registration and region identifica
tion should be automated as well as microaneurysm 
counting. The need for image registration arises from 
the nature of monitoring the progression of retino
pathy, which requires a serial study of each patient
eye, with the images being taken, typically, months 
apart. To ensure consistent microaneurysm counting 
between images, the same region-of-interest (ROI) 
must be used for each image. Normal procedures for 
capturing fluorescein images cannot ensure that 
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exactly the same region of the eye is captured at each 
patient visit; thus some method is required to ensure 
a consistent ROI for each image. One method is to 
register the 'later' images to the baseline image. This 
process involves rotating, scaling and translating the 
later image until its permanent features are matched 
to those in the baseline image. Then a ROI defined 
on the baseline image is also valid for any later 
images that have been registered, and microaneur
ysm counting that has been performed within the 
ROI will be consistent from image to image. 

The microaneurysm detection system described 
here is based upon the method of Spencer et al.s but 
involves a complete redesign of the region-growing 
and classification algorithm used in microaneurysm 
detection, and addresses automated registration and 
identification of the macula. This paper reports the 
improvements in the image processing strategy and 
gives evidence that the microaneurysm detection 
system is adequately robust for clinical use. 

MATERIALS AND METHODS 

Fluorescein angiograms of 35° field-of-view were 
captured with a Topcon fundus camera onto 35 mm 
film. Normally one frame at the early venous stage 
was chosen for analysis; however, a later frame was 
used if no earlier frames of satisfactory quality were 
available. In this way, any complications due to 
leakage were minimised. The chosen frame was 
digitised by back-illumination of the film-strip and 
the image recorded with a Kodak MegaPlus CCD 
(charged-coupled device) camera at 1024 x 1024 
pixel resolution. Each pixel (picture-element) in the 
digitised image represents the intensity of light 
received from the corresponding point of the film 
with a number in the range 0-255. The resultant pixel 
resolution achieved is approximately 8 f.Lm. In a 
negative the fovea appears bright white, and the 
brightness of each image, before digitisation, was 
adjusted so that a few pixels in the foveal region were 
just saturated. In this manner, the full dynamic range 
of the digitiser was exploited. A 'flood' image was 
also captured with no negative in the film-strip 
holder. The captured fluorescein image was divided 
by the flood image and then rescaled to the original 
intensity contrast range, to correct for any non
uniform illumination present in the digitisation 
system. 

All computer processing was carried out on a 
SUN-Sparc IPX workstation, whose speed is com
parable to a mid-range 80486 IBM-compatible Pc. 
All processing was carried out on the images in the 
negative state. However, for presentation purposes, 
the fluorescein angiograms are shown here as 
positives. 

For a serial same-eye study, a number of images of 
the same patient-eye were captured. A cross-

correlation algorithm6 was used to automatically 
register the later images to the baseline image. This 
process can be time-consuming - it takes approxi
mately 30 minutes per image on a SUN IPX - but 
with current state-of-the-art workstations can be 
completed within 5 minutes per image pair. If there 
were laser burns due to photocoagulation performed 
during the period being studied, or if the images were 
of poor photographic quality and contained signifi
cant regions of poor contrast, then the registration 
was unlikely to succeed. Out of 142 registrations, 20 
initially failed. Of the 20 failures, 12 were finally 
registered by adjusting parameters of the registration 
program, or by recapturing a different frame if the 
image was of poor contrast. The final 8 registrations 
were abandoned; however, manual registration 
techniques could have been used to successfully 
register those image pairs. 

The fovea was found by correlating the baseline 
image with a model that approximates the gross 
shading of a fluorescein image over the macular 
region. The peak of the correlation function gave the 
location of the fovea. For this study a 512 x 512 pixel 
ROI was defined to be centred on the fovea. This is 
large enough to cover the macula, which is of 
primary interest due to its functional importance. 
The same ROI was applied to all later images of the 
same-eye study; the registration process ensured that 
it was valid for all the images. All microaneurysm 
counting occurred within the ROI only. The auto
mated ROI calculation process is almost instan
taneous and is robust; we have observed it to fail on 
only two images (out of 95), which had shading very 
similar to that of the fovea near the edge of the 
image. 

As a check on accuracy two clinicians were asked 
to identify the fovea in eight digitised fluorescein 
angiograms on two separate occasions. The auto
mated foveal detector was also run on the same eight 
images. The Euclidean distance between two points 
was used as a measure of error. The two clinicians 
had a mean error of 13.8 pixels (± 8.5, SD) and 10.1 
pixels (± 4.7) between their two observations. There 
was a mean error of 10.2 pixels (± 2.9) between the 
two clinicians. The automated fovea detector had a 
mean error of 19.2 pixels (± 12.2) from the average 
of the four clinician points of each image. The worst 
case was 41.2 pixels. Note that 19.2 pixels corre
sponds to approximately 0.15 mm or about 1/10 optic 
disc diameters. 

An advantage of automated ROI placement is that 
should the study need to be repeated then exactly the 
same ROI will be found. For manual techniques, the 
regions-of-interest have to be carefully documented 
to enable selection of precisely the same ROI at a 
later date. 



624 

Automated Microaneurysm Detection 

The technical details of computed microaneurysm 
detection are discussed by Spencer et al.5 In short, 
the fluorescein image is processed to remove all gross 
shading due to the macular region and also due to 
limitations in image capture. Shade-correction, as the 
process is called, enables global image processing 
operators to run more successfully. It is achieved by 
grossly median-filtering the image to give an approxi
mation to the background fluorescence, which is then 
subtracted off the original image to give the shade
corrected image.5 The vessel structure is removed 
from the image with a top-hat transform using a long 
linear mask. The top-hat transform achieves the 
desired effect by first creating an image that contains 
all the structure that matches up with various 
orientations of the mask (in this case, vessels which 
have long linear sections tend to match well) and 
then subtracting that image off the original image. It 
is necessary to remove the vasculature from the 
image since the next stage, matched-filtering, is 
susceptible to inadvertent inclusion of vessels. A 
matched-filter is used to locate all possible micro
aneurysms in the image. It does this by comparing a 
model of a microaneurysm (a two-dimensional 
Gaussian function with (T = 2 pixels) with each 
position in the image and generating a number that 
describes how well that part of the image matches the 
model. By only accepting those numbers that are 
greater than a certain threshold value, candidate 
microaneurysm positions within the image are found. 
A low threshold value is chosen making it over
sensitive so that (ideally) all true microaneurysms 
present in the image are detected, along with a 
number of false-positives which bear similarity to 
micro aneurysms. Up to this point the processing for 
microaneurysm detection is identical to that as 
described by Spencer et al.5 and more detail can be 
found there. 

To increase specificity a region-growing algorithm 
is used on the shade-corrected image, at each 
candidate's position, to find the morphology of the 
candidate. Various features of the candidate's 
morphology are used to classify it as either a 
microaneurysm or a spurious object. Spencer et al.5 

extract eight features on each candidate; four are 
morphologically based (for example, how round the 
candidate is) and four are measurements of the 
candidate's intensity of fluorescence. For the present 
study, the features were augmented by a further four 
intensity-based measurements and the matched-filter 
response. The additional four intensity measure
ments were the same as those given by Spencer et al. 
but were multiplied by a scale factor calculated from 
the image's general contrast. This helped to give 
better discrimination between microaneurysms and 
other microvascular abnormalities. 
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While a priori knowledge of microaneurysms can 
be useful (they are classically said to be round and 
hyperfluorescent) it was found necessary to use 
empirically gained knowledge to derive a useful 
classifier. The classifier is that part of the micro
aneurysm detector that uses the measured features of 
each candidate to classify it as either a micro
aneurysm or a spurious object. The training and 
testing of the classifier is discussed below. 

Having empirically derived a rule-based classifier, 
the classifier was implemented in the microaneurysm 
detector software. For a serial same-eye study, the 
microaneurysm detector was run on the ROI of each 
image separately, and recorded the locations of the 
micro aneurysms and their total numbers. 

Training and Testing the Classifier 

To train the classifier a training set of 68 fluorescein 
images (of 26 patients, and no more than three 
images of the same patient obtained at different 
visits) was used. A modified version of the micro
aneurysm detector was run on each image up to and 
including feature extraction of each candidate. The 
same program, without giving any information of 
what the candidates may be, recorded an ophthal
mologist's opinion of what objects were micro
aneurysms. This was done by displaying the image 
on a computer screen and allowing the ophthalmol
ogist, who was experienced in viewing fluorescein 
images on computer screen, to click with a mouse 
pointer on every microaneurysm in the image. The 
programme then saved the feature data, including a 

label for each candidate object of whether the 
ophthalmologist thought it was a microaneurysm or 
not. For the training set there are 1627 candidates, of 
which 368 are true micro aneurysms. The ophthal
mologist also identified another 26 microaneurysms, 
which the match-filter/region-growing algorithms 
never found. Therefore, there is a total of 394 true 
micro aneurysms in the training set. 

A medical physicist analysed the feature database 
to find relationships between features that may help 
to distinguish micro aneurysms from other spurious 
objects. The primary tool used was to plot scatter 
graphs of micro aneurysms and spurious objects with 
one feature on the y-axis and the other on the x-axis. 
From these graphs a number of rules were estab
lished that were useful for distinguishing micro
aneurysms from other objects. These rules were 
implemented in the microaneurysm detection soft
ware, so that it could run entirely unaided. Two 
computerised non-parametric classification methods 
(linear discriminant analysis and learning vector 
quantiser - a type of neural network) were also 
tried on the feature database? They gave solutions 
almost instantaneously, but the classifiers obtained 
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Fig. 1. Free-response receiver-operator-characteristic (ROC) curve for clinicians and the microaneurysm (MA) detector. 
One clinician has a significantly different opinion from the others and was ignored for the purposes of drawing an ROC curve. 
The operating point is the recommended point for the microaneurysm detector reported in Results. The alternative operating 
point is described in the Discussion. 

were not as good as was achieved with the manual 
method described above. 

A total of eight intensity features were used in the 
classifier. Partial component analysis of the correla
tion matrix of the eight intensity features showed that 
96% of the information could be described by four 
orthogonal linear-combinations of the eight intensity 
features. However, it was found easier when 
manually deriving the classifier to work with the 
original eight features and they were retained for 
that reason. 

To test the microaneurysm detector, another 20 
images (each of a different patient who was not used 
for the training set; the mean frame time was 25.5 s 
with a range 17-48 s) were used to generate a 
database of candidate feature data in a manner 
analogous to the formation of the training set. In this 
case, however, a medical physicist as well as an 
ophthalmologist, both experienced with viewing 
fluorescein images on computer screen, indepen
dently identified micro aneurysms in the test images. 
Where the two agreed, this was taken to be 
authoritative. Where they disagreed over the identi
fication of an object, they reviewed the image 
involved again, and came to a decision jointly as to 
whether the candidate was a microaneurysm or not. 
The joint decision was therefore used as the 'gold 
standard' for testing purposes. There are 297 true 
micro aneurysms in the gold standard. The micro-

aneurysm detector was compared with the gold 
standard and figures of sensitivity and false-positives 
per image were calculated in the normal way. To 
obtain a full receiver-operator-characteristic (ROC) 
curve8 the classifier rules were varied alternately 
towards micro aneurysms and spurious objects. In this 
manner, the sensitivity of the microaneurysm 
detector can be varied against the false-positive 
rate. Because some of the rules can be varied 
continuously, a number of discrete points had to be 
chosen to make the problem manageable. Thus the 
ROC curve may not be optimal, but is believed to be 
nearly optimal. 

As a comparison, five clinicians were asked to 
identify microaneurysms within the 20 test images. 
This was performed from the computer screen rather 
than from negatives or photographic prints, so the 
clinicians were working with the same data as the 
computer. Direct digital fluorescein imaging is 
becoming clinically acceptable and our system, 
although digitising from negatives, achieves a similar 
resolution as commercially available high-resolution 
digital fundus cameras. 

RESULTS 

Against the training set, the automated micro
aneurysm detector achieved 82 % sensitivity with 
2.0 false-positives per image. Against the test set, it 
achieved 82% sensitivity with 5.7 false-positives per 
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Fig. 2. The baseline fluorescein angiographic image of a 
diabetic patient. The frame time is 22 s. 

Fig. 4. The microaneurysm classifier in operation (when 
configured to the standard operating point) . All candidates 
for the baseline fluorescein angiographic image (see Fig. 2) 
are shown. Those in red have been classified as spurious 
objects, those in green as microaneurysms, and those in 
yellow are candidates that have not been classified as yet. 

image. An alternative operating point (see 
Discussion below) achieved 77% sensitivity with 
2.9 false-positives per image against the test set. The 
free-response ROC curves derived from the 
clinician operating points and from the microaneur-
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Fig. 3. The fluorescein taken 12 months after the baseline 
image of the same diabetic patient (Fig. 2). The frame time is 
15 s. 

Fig. 5. Illustration of microaneurysm turnover. The 
fluorescein image shown was taken at baseline (as in 
Fig. 2). Microaneurysms in blue are present in the baseline 
image. Microaneurysms shown in green are present in the 
image taken 12 months later (Fig. 3) and can be matched to 
a (blue) microaneurysm present in the baseline image. The 
microaneurysms shown in red are present only in the 
fluorescein image taken at 12 months. 

ysm detector are shown in Fig. 1. An example run of 
the microaneurysm detector (when configured at 

the standard operating point) on a fluorescein 
angiogram of a diabetic patient (Fig. 2) is shown 
in Fig. 4. 
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DISCUSSION 

The microaneurysm detector and clinicians have 
been tested against a derived 'gold standard'. The 
microaneurysm detector performs almost to the same 
standard as the clinicians and, therefore, is robust 
enough for everyday clinical use. One clinician had a 
different opinion of what constitutes a micro
aneurysm and this further illustrates the difficulty 
of getting objective results and ensuring that 
clinicians are trained to the same standard. We 
ignored that particular clinician for the purposes of 
generating an ROC curve. However, the existence of 
such a point suggests that the clinician ROC 
presented may be a little optimistic. Note that the 
operating point of the microaneurysm detector 
(unlike clinicians) can be shifted to be more sensitive 
(or more specific) at the expense of some specificity 
(sensitivity) if so desired. A more sensitive operating 
point ·may be more suitable for primary screening 
purposes, for example. The operating point reported 
here, achieves good sensitivity, with very few false
positives, for images that are of reasonable quality 
and contain little to mild retinopathy. The same 
operating point, however, is unsatisfactory for use 
with severe retinopathy; it reports many false
positives in such cases. Because of this, we have 
implemented in our microaneurysm detector an 
alternative operating point that has been designed 
to handle a wide range of image qualities and types. 
By types, it is meant, for example, that some fundi 
are tigroid, others show little or no retinopathy while 
others contains a variety of microvasculature 
abnormalities. This alternative operating point is 
also shown in Fig. 1. 

It is worth noting that the images in the test set 
were chosen to ensure that certain types of images 
were present. That is, it was ensured that tigroid 
images, images with little or no retinopathy, and 
images with various forms of more serious retino
pathy were all represented in the test set. The reason 
for such a choice of images was to ensure that the 
microaneurysm detector worked for a broad spec
trum of images, and to present various 'difficult' 
cases that would test the operation of the micro
aneurysm detector in what may be more unusual 
circumstances. This approach had its rewards; it gave 
us a better understanding of the operation of the 
microaneurysm detector and suggested ways it might 
be improved. However, the test set may not be fairly 
representative of the general diabetic population, 
and definitely not so of patients with mild retino
pathy only. For these reasons, we believe that the 
test set probably represents a more difficult set of 
images than normally encountered in practice. 

The computer microaneurysm detection system is 
automated at all stages of analysis to the extent that 
human intervention is rarely required. Such pro-

cesses as registering of same-eye images taken at 
different patient visits and identification of the fovea 
on a fluorescein image are automated. Only for some 
images, for example when laser photocoagulation is 
performed during the study, is human intervention 
required to aid the registration process. This is 
because the laser burns present in the later image 
tend to dominate the general structure of the image 
and 'fool' the automated registration process. In any 
case, the failure of the registration process is always 
easily identifiable and can be corrected with human 
intervention. 

The 512 x 512 ROI for microaneurysm counting 
in this study was chosen partly because of hardware 
constraints encountered early in software develop
ment. These constraints have since been surmounted 
and any size ROI (up to the captured image size) 
may be used for microaneurysm counting. For the 
purposes of this study, which was to validate the 
automated microaneurysm detector, the choice of 
ROI was relatively unimportant, as long as the ROI 
was large enough to have a reasonable chance of 
encompassing some microaneurysms. 

The microaneurysm detector could also be imple
mented on current digital fundus camera control 
computers. The software is fast enough to analyse an 
early fluorescein frame, and give a result by the time 
the late frame is ready to be taken. The advantages 
are speed of operation and the ability to report back 
to clinicians preliminary results while patients are 
still at the clinic. If the image quality is found to be 
too poor for processing, then images can be re
captured while the patient is still at the clinic. 

Conventional manual methods for monitoring the 
progression of retinopathy can be tedious and are 
potentially error-prone. For such studies, the auto
mated microaneurysm detector offers clear advan
tages. All the processing, including registration and 
macular identification, is fully automated and offers 
greatly increased speed without a significant loss of 
sensitivity over what is achievable by clinicians. 
Furthermore the method is fully repeatable and, 
unlike clinicians, always gives the same result for the 
same image. The automated microaneurysm detector 
makes large pharmaceutical trials particularly man
ageable. 

As a recent innovation the microaneurysm detec
tor has been extended to compare the micro
aneurysm results, for serial studies, across images. 
By doing this, it is not limited to reporting micro
aneurysm counts only, but is capable of reporting 
newly developed and recently regressed micro
aneurysms as well. Such information may be as 
significant as microaneurysm counts themselves.9 A 
comparison of two fluorescein images taken a year 
apart is shown in Fig. 5; see Figs. 2 and 3 for the two 
fluorescein angiograms analysed. The result, for the 
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most part, appears reasonable; however, there are 
instances where micro aneurysms have been detected 
in the 12-month image and not in the baseline image, 
despite little change in the underlying feature. Closer 
inspection reveals that these instances are due to one 
of two causes. The first is that a patch of the baseline 
image is slightly out of focus so causing a micro
aneurysm to be missed. The second reason is that the 
leakage surrounding a potential microaneurysm has 
changed over the 12-month period so that the 
possible microaneurysm missed in the baseline 
image was found in the 12-month one. It is noted 
that in any case these examples involve questionable 
microaneurysm identifications and clinicians them
selves may disagree over their interpretation. It is 
also worth noting that the microaneurysm detector 
classifier was configured at the 'operating point' (see 
Fig. 1) for the purposes of producing Fig. 5. Since 
calculating microaneurysm turnover is essentially 
differentiation, and it is well known that this 
differentiation tends to emphasise noise at the 
expense of signal, it may be advantageous to use a 
more specific operating point, such as the 'alternative 
point' shown in Fig. 1, to achieve a form of noise 
suppression. Such issues need more investigation. 
We ultimately plan to use the microaneurysm 
detector to further study microaneurysm turnover 
in diabetic retinopathy. 
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