
THE RELATIONSHIP BETWEEN INFANTILE 
STRABISMUS AND LATENT NYSTAGMUS 

GUNTRAM KOMMERELL 

Freiburg, Germany 

SUMMARY 

The so-caUed infantile strabismus syndrome consists, 
among other signs, of (1) strabismus, (2) a defect of 
pursuit and optokinetic tracking with particular invol
vement of temporally directed responses on monocular 
viewing, (3) latent nystagmus and (4) adduction 
preference of the fixating eye. The following causal 
relationship between these three phenomena is 
suggested. (1) Binocularity in the visual cortex is 
impaired, either as a primary defect or as a conse
quence of misalignment of the eyes. (2) The reduced 
binocularity prevents maturation of signal transmission 
from the visual cortex to the brainstem such that slip 
control is evident in poor pursuit and optokinetic 
responses, particularly to monocular, temporally direc
ted stimuli. (3) The asymmetry of the pursuit and 
optokinetic systems is also evident in latent nystagmus 
which reflects a tonic preponderance, directed nasally 
with reference to the fixating eye. The directional 
preponderance drives the slow phases of latent 
nystagmus if the visual input is unbalanced in favour 
of one eye. Because of the maldeveloped slip control 
latent nystagmus is not inhibited by visual contours. 
When both eyes are open the better-functioning nasally 
directed pursuit and optokinetic control systems of the 
two eyes complement each other and largely prevent 
drifting of the eyes. The defect responsible for the 
abnormal motor control cannot be located between the 
retina and the visual cortex because perception of 
motion is only slightly impaired and a nasal-temporal 
asymmetry of the motion VEP, typically encountered 
in infantile strabismus, does not correlate quantitatively 
with the asymmetry of the motor control. Rather, the 
defect is located between the cortex and the brainstem. 
(4) Adduction preference of the fixating eye with a 
compensatory head turn is due to a gaze-evoked 
component added to the latent component of the 
nystagmus. The gaze-evoked component is a purposeful 
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reaction that allows dampening of the nystagmus in 
adduction at the expense of an increase in abduction. 

The occurrence of early onset strabismus, 
nasal-temporal asymmetry in smooth tracking 
responses, latent nystagmus (LN) and adduction 
preference of the fixating eye are highly corre
lated.l�ll Therefore, the combination of these 
phenomena (among others) has been defined by 
Lang12 as a syndrome, the so-called congenital squint 
syndrome. Because strabismus is rarely present at 
birth and usually becomes manifest during the first 6 
months of life, the term 'infantile strabismus syn
drome' may be more appropriate. 

Although a common cause for all three phenom
ena should be given consideration, a causal inter
dependence between them appears to be more likely. 
At a symposium of the German Ophthalmological 
Society in 1977, van Hof - van Duin13,14 suggested 
that the reduced binocularity caused by strabismus 
could prevent maturation of the smooth tracking 
systems, in that the nasal-temporal asymmetry in 
pursuit and optokinetic responses, which is a normal 
feature in the first few months of life, remains as a 
permanent defect. We proposed at the same sympo
sium that the nasal-temporal asymmetry of the 
pursuit and optokinetic systems results in LN.15,16 

The basic idea of this hypothesis is still valid. 
However, we now formulate the hypothesis with a 
slight modification, suggesting that only one of the 
two control mechanisms normally contributing to 
smooth pursuit remains poorly developed, namely 
the control of slip across the retina, whereas the 
control of position with respect to the fovea is intact. 
We further suggest that both asymmetry of the 
smooth tracking responses and LN are due to a 
maldevelopment of slip control. 

Hypothesis 

1. Binocularity in the visual cortex is impaired, 
either as a primary defect or as a consequence 
of misalignment of the eyes. 
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2. The reduced binocularity prevents maturation of 
signal transmission from the visual cortex to the 
brainstem such that slip control of the retinal 
image remains maldeveloped. The maldeveloped 
slip control is evident in poor pursuit and 
optokinetic responses, particularly to monocular, 
temporally directed stimuli. 

3. The asymmetry of the pursuit and optokinetics 
systems is also evident in LN which reflects a tonic 
preponderance, directed nasally with reference to 
the fixating eye. Because of the maldeveloped slip 
control LN is not inhibited by visual contours. 

4. Adduction preference of the fixating eye with a 
compensatory head turn is due to a gaze-evoked 
component added to the latent component of the 
nystagmus. The gaze-evoked component is a 
purposeful reaction that allows dampening of the 
nystagmus in adduction at the expense of an 
increase in abduction. 

ASYMMETRY IN PURSUIT AND 
OPTOKINETIC RESPONSES 

The asymmetry in pursuit and optokinetic responses 
is defined as a reduction of responses to monocular 
tracking stimuli directed to the temporal side, while 
the responses for nasally directed stimuli are normal 
or less reduced. Healthy infants show such an 
asymmetry,17-21 but the asymmetry disappears by 
about 6 months of age if signs of normal binocularity 
appear.17·19 In adults, a slight nasally directed 
preponderance is only observed if optokinetic 
stimulation is confined to the temporal hemifield; 
this asymmetry is counterbalanced by a temporally 
directed preponderace of the nasal hemifield.22 

Van Hof - van Duin suggested that the reduced 
binocularity caused by strabismus could prevent 
maturation of the smooth tracking systems.13·14 This 
hypothesis is supported by the persistence of 
nasal-temporal asymmetry in each eye in cats 
which had been deprived of binocular vision by 
unilateral lid suture early in life.13,23 The crucial 
factor in producing asymmetry in pursuit and 
optokinetic responses appears to be the reduced 
binocularity rather than monocular or binocular 
deprivation. Amblyopia is not a prerequisite for the 
asymmetry.24-28 Cats rendered exotropic, but not 
amblyopic, by early surgery, show reduced optoki
netic resfc0nses, predominantly in the temporal 
direction. 9 In monkeys deprivation of binocular 
vision by alternating lid suture or bilateral lid suture 
immediately after birth results in a complete defect 
of the temporally directed smooth tracking sys
tems?O,31 In the monocularly deprived, i.e. amblyo
pic, monkey a nasal-temporal asymmetry is present 
when the deprived eye is stimulated, whereas 
stimulation of the non-deprived eye results in normal 

k· · 32 opto metlc responses.' 

Neurophysiological Evidence 

On the basis of microelectrode recordings in cat and 
monkey it has been suggested that the asymmetry in 
the optokinetic and pursuit systems is due to a 
maldevelopment of the cortical projection to the 
NOT -DTN (Fig. 1) The NOT -DTN is an important 
relay station of the optokinetic and also for the 
pursuit system that receives direct input from the 
contralateral eye and indirect input from both eyes 
via both occiptal lobes?8-40 Lesions of the visual 
cortex dramatically reduce the optokinetic response 
to temporally directed motion under conditions of 
monocular viewing in the cat38A1 and in the 
monkey.42 Dark rearing of cats also results in 
asymmetry in the smooth tracking systems and may 
be equivalent to a surgical lesion of the visual 
cortex.14A3 The relative preservation of responses 
to nasally directed motion is due to the direct 
subcortical projection from the retina to the con
tralateral NOT -DTN. This has been demonstrated in 
cat38 and in monkey.44 In the normal adult human, 
the subcortical projection alone seems to be insuffi
cient to drive the NOT -DTN, as most critically blind 
patients do not show any optokinetic response.45 But 
the relative preservation of responses to nasally 
directed stimuli in patients with incomplete bilateral 
occipital lobe destruction could be due to remnants 
of the subcortical projection to the NOT -DTN which 
might have been released from cortical contro1.46 

In primates NOT-DTN is not the only relay 
station for smooth tracking. The DLPN (dorsolateral 
pontine nucleus) is also very important, particularly 
for pursuit of small objects.47 DLPN receives input 
from the visuomotor cortex (MT and MST corre
sponding to V5) and from the NOT-DTN?41t seems 
possible that maturation of the cortical input to 
NOT -DTN requires a gating input from the retina, 
but neurophysiological data to support this notion 
are still lacking. 

Electrophysiological Evidence 

The hypothesis demonstrated in Fig. Ic states that 
the impairment of temporally directed tracking is due 
to a defect in the transmission of motion signals from 
the visual cortex to the brains tern, and does not 
imply a defect between the retina and the visual 
cortex. Norcia et al.48 challenged this hypothesis 
because they found a nasal-temporal asymmetry of 
motion visual evoked potentials (motion YEP) in 
patients with infantile strabismus and suggested on 
these grounds that the optokinetic asymmetry might 
be due to a defect in the transmission of motion 
signals between the retina and the visual cortex. We 
performed a similar experiment in 20 patients with 
infantile esotropia, asymmetry of the monocular 
optokinetic nystagmus and LN.49 Only 8 of the 20 
patients showed a clear difference between the VEPs 
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Fig. 1. Pathways of horizontal pursuit and optokinetic 
responses in the normal human (a and b) and in the case of 
infantile esotropia (c). The NOT (nucleus of the optic tract) 
and the DTN (dorsal terminal nucleus the accessory optic 
tract) are located in the pretectum lateral to the quad
rigeminal plate. Stimulation of NOT-DTN evokes ipsilat
erally directed pursuit and optokinetic responses (arrows). 
NOT-DTN receives subcortical and cortical input. In 
animals with little binocular vision, such as the rabbit, 
NOT-DTN is restricted to subcortical input from the 
contralateral eye. This is the reason why, in the rabbit, 
smooth tracking movements of both eyes directed to the 
right can be elicited only from the left eye, and vice versa. 
The subcortical pathway 'inherited' from the rabbit also 
exists in humans,73 but, most likely, plays a role only the 
first 3 months of life. After this time the cortical pathway 
matures and provides a projection from each eye to both 
NOT-DTNs. (a) The projection from the left eye to the 
contralateral NOT-DTN which enables nasally directed 
smooth tracking. (b) The connection to the ipsilateral NOT
DTN which enables temporally directed smooth track
ing.33,34 (c) The situation in infantile esotropia according to 
the hypothesis of Hoffmann.34-36Temporally directed sti
muli cannot be transmitted to the ipsilateral NOT-DTN. 
Maturation of this function would have required an early 
match (during the first 3 months of life) between the action 
potentials coming via cortex from the left eye and those 
coming throu�h the 'inherited' subcortical pathway from the 
right eye.36,3 This match was not established because 
binocular cells were lacking in the visual cortex. 
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evoked by back and forth movements with a mirror
like asymmetry between the two eyes (phase shift 
180° ± 20°). There was no significant correlation 
between the degree of YEP and optokinetic asym
metries. Therefore, we assume that the YEP 
asymmetry does not reflect the primary cause of 
the optokinetic asymmetry. We considered that the 
YEP asymmetry might in part be a consequence of 
LN typically released under monocular stimulation, 
and therefore looked for a model condition to test 
this possibility. Upbeat and downbeat nystagmus are 
ideal for this purpose since they are acquired, not 
inhibited by fixation, and combined with good 
binocular vision. In such patients we found a marked 
up-and-down asymmetry of the motion YEP, sup
porting our suspicion.49 However, some asymmetry 
of the motion can be found in normal babies during 
the first few months of life and in patients with 
infantile strabismus who do not have LN.48 This 
shows a genuine defect of signal transmission 
between the retina and the cortex, probably related 
to undeveloped binocularity, but this defect is 
probably too small account for the asymmetry of 
the eye movements. 

Psychophysical Evidence 

Several studies of patients with infantile strabismus 
show that motion perception is intact or only slightly 
impaired. We studied a patient with a nasal-temporal 
asymmetry so marked that temporally directed 
smooth tracking movements could not be elicited at 
all. This patient was nevertheless able accurately to 
estimate various velocities in that direction.5o This 
result is compatible with a study conducted by 
Tychsen and Lisberge�6 who presented a nasally 
or temporally moving single target to patients with 
infantile strabismus whilst they were fixating a 
central stationary target. The ability to discriminate 
differences in velocity was normal when nasally and 
temporally directed motions were considered sepa
rately. Only when the patients compared target 
speed in the two directions did they judge temporally 
directed stimuli to be slightly slower than nasally 
directed. Tychsen and Lisberger regarded this 
perceptual asymmetry as an indication of a primary 
defect in the retino-cortical pathway, but an alter
native interpretation is possible. Since it is likely that 
their patients had 'manifest LN' due to suppression 
of their squinting eye, as most patients with LN 
have,I,51,52 they may have adapted to unidirectional 
slip of the retinal image in everyday life and 
therefore underestimated temporally directed 
motion. This idea is supported by recent work of 
Shallo-Hoffmann et al.74 

Contrast sensitivity for perceived motion in 
strabismus patients with a nasal-temporal asymmetry 

of the optokinetic nystagmus has been found to be 
symmetrica1.24 

LATENT NYSTAGMUS 

LN is defined as a jerk nystagmus whose rapid phases 
are directed to the side of the visually dominant eye. 
With the left eye occluded the slow phases are 
directed to the left and with the right eye occluded 
the slow phases are directed to the right. It has been 
suggested that the term 'latent nystagmus' should be 
reserved for waveforms with a linear or an exponen
tially decreasing velocity of the slow phase, whereas 
cases with an increasing velocity of the slow phase 
should be defined as 'congenital nystagmus with a 
latent component

,
.52.53 Apparently, there is some 

overlap between congenital nystagmus and LN both 
in patients54 and in experimental monkeys.30,31 

The intensity of LN can vary spontaneously,55 and 
during occlusion therapy for strabismic amblyopia 
LN can decrease considerably in a few days.56 In 
darkness the drift bias of the eyes depends on 
whether the patient has been using his or her right or 
left eye for fixation prior to being in darkness.57 

Cognitive factors also modify the LN. For instance, 
the slow phases can be reversed if the patient 
alternately occludes his or her right and left eye in 
total darkness,16,45,58-60 and some patients are able to 
manifest their LN at will in the presence of visual 
contours.61 

We suggest that LN reflects a directional pre
ponderance in the tonic neural activity of the pursuit 
and optokinetic systems. Because of the maldeve
loped slip control, evident in poor smooth tracking 
responses, LN is not inhibited by visual contours. 

This idea is based on an analogy with 'hemi
spheric' nystagmus. Patients with hemispheric lesions 
typically show an ipsilateral defect of pursuit and 
optokinetic responses45 and a nystagmus with slow 
phases directed to the opposite side.62 Similar to LN, 
hemispheric nystagmus is not inhibited by visual 
contours because slip control of the retinal image is 
not available. A unilateral lesion of the vestibular 
system also results in a directional preponderance, 
but the vestibular nystagmus is inhibited by visual 
contours if the pursuit and optokinetic control 
systems have remained intact. 

The directional preponderance in the pursuit and 
optokinetic systems drives the slow phases of LN if 
the visual input is unbalanced in favour of one eye. 
Occlusion of one eye causes such an imbalance. 
When both eyes are open the better-functioning 
nasally direct�d smooth tracking systems of both 
eyes complement each other and largely prevent 
drifting of the eyes. 

In support of our hypothesis Tychsen and Lisber
ger26 found a high correlation between the intensity 
of LN and the magnitude of pursuit asymmetry, 



278 

although part of this correlation may have been due 
to a mere addition of the LN and the pursuit 
response.63 Comparing LN with the asymmetry in 
full-field optokinetic nystagmus, a clear correlation is 
not obviouS,54,64,65 but it may well be that the 
asymmetry in pursuit of a small target and the 
optokinetic responses to small stimulus fields24,59 are 
more relevant to LN than the responses to large 
stimulus fields. Besides, our hypothesis does not 
require a high correlation between the intensity of 
LN and the asymmetry of smooth tracking, and the 
finding that not only temporally, but also nasally 
directed tracking responses are reduced in some LN 
patients54,64 is compatible with our hypothesis. 
Neither is the fact at variance with our hypothesis 
that normal infants show a nasal-temporal asymme
try of smooth tracking without having LNP-20 The 
spontaneous activity of NOT -DTN neurons in new
born kittens is very low and develops only very 
gradually?6 Accordingly, we assume that the direc
tional preponderance reflected in LN develops only 
gradually if the cortical input to NOT -DTN fails to 
mature. 

LN patients are able to keep the fixating eye close 
to a moving target, even when monocularly tracking 
a target that moves in the temporal direction. How 
can this be achieved if slip control of the retinal 
image is not available? We suggest that LN patients 
track a moving target by controlling the position of 
the retinal image relative to the fovea. Normals 
employ two control variables when they pursue a 
moving target: the position of the retinal image in 
relation to the fovea66.67 and the slip across the 
retina. Under artificial conditions such as an after 
image stabilised on the retina slightly away from the 
fovea, position control alone suffices to elicit smooth 
tracking.66 In patients with congenital nystagmus the 
effectiveness of position control has been demon
strated.68 In patients with LN the role of position 
control in tracking moving targets remains to be 
explored. 

Qualifications 

Although early deprivation of binocular VISIO 
appears to be an important pathogenetic factor of 
optokinetic asymmetry and LN, a lack of binocular 
vision is not an absolute determinant of LN and, 
conversely, the presence of binocular vision does not 
preclude LN absolutely. We have seen a patient with 
unilateral hypoplasia of the optic nerve who has 
congenital squint and very likely never had binocular 
vision. Nevertheless, the nasal-temporal asymmetry 
in the smooth tracking responses was very subtle and 
LN was absent on careful ophthalmoscopic examina
tion. On the other hand we have seen exceptional 
patients with LN who had no overt strabismus on 
cover testing and had binocular vision with only 
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slightly reduced stereopsis. These observations show 
that factors other than defective binocular vision play 
a role in the pathogenesis of LN. These factors can 
compensate or aggravate the condition. 

Our hypothesis does not concern the question 
whether infantile strabismus is caused primarily by 
an inability to establish binocularity in the visual 
cortex or by a defect in motor fusion.69 Both 
possibilities exist and may even overlap in the same 
patient. 

GAZE-EVOKED COMPONENT OF THE 
NYSTAGMUS AND COMPENSATORY 

HEAD TURN 

In many patients with infantile strabismus the 
nystagmus increases when the fixating eye is 
abducted and decreases when it is adducted (Alex
ander's law or, in bioengineers' terms, 'the integrator 
is leaky'). To make use of the nystagmus minimum 
the patient adopts a compensatory headturn. The 
gaze-evoked component of the nystagmus may be 
regarded as a purposeful reaction in that it allows the 
patient to dampen his or her nystagmus by bringing 
the fixating eye in an adducted position. This 
advantage may be so important that the patient 
puts up with an increase in the nystagmus in 
abduction and a compensatory head turn. This, 
admittedly teleological idea is based on analogous 
findings in vestibular nystagmus, which also obeys 
Alexander's law. 

ALTERNATIVE HYPOTHESES 

Tychsen and Lisberge?6 suggested that LN might 
constitute a tonic drive which leads to convergent 
strabismus. This hypothesis appears unlikely since 
the nystagmic drift is conjugate and nasally directed 
only in the viewing eye, while the non-viewing eye 
drifts temporally. Moreover, asymmetry in the 
smooth tracking systems and LN also occur in 
patients who have had divergent strabismus from 
infancy (Roelofsl and our own experience). 

Lang70 suggested that LN may be due to a 
preponderance of the nasal half of the retina over 
the temporal half. However, this hypothesis fails to 
explain why there are slow drifts towards the 
allegedly preponderant half of the retina. One 
would rather expect rapid movements, in analogy 
to acquired field defects where the preserved area of 
the retina is acquired by saccades. Moreover, in some 
patients the whole waveform of the LN is executed 
with the target imaged on the temporal retina.53 This 
finding cannot be reconciled with the idea that LN is 
driven by a preponderance of the nasal retina. 
Comparing the pupillary response to a light spot 5° 
in diameter, no significant difference between the 
nasal and temporal retina could be demonstrated in 
patients with LN.71 
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Dell'Osso et al.52 advanced the hypothesis that 
switching the egocentric localisation from one 
esotropic eye to the other may cause the slow phases 
of the LN. This explanation appears unlikely because 
there are no other conditions, such as pastpointing in 
patients with an eye muscle palsy, where a change in 
egocentric localisation is associated with a slow drift 
of the eyes. 

Whether or not proprioception plays a role in the 
pathogenesis of LN, as suggested by Ishikawa,72 has 
remained speculative. 

Key words: Strabismus, Latent nystagmus. Optokinetic nystag
mus, Visual evoked potential (VEP). 
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