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The primary objectives of this brief overview are: (1) 
to introduce an unusual, naturally occurring mal
formation of the visual pathways in the form of a 
mIssmg optic chiasm, i.e. non-decussating 
retinal-fugal fibre or achiasmatic syndromel-3 and 
(2) to discuss binocular function and dysfunction in 
the two major conditions of naturally occurring 
aberrant optic projections, albinism and newly 
discovered achiasmatic syndrome. In either of these 
inborn errors of visual pathway structure, retinal 
axons misproject at the locus of the optic chiasm, 
disrupting retinal-fugal projections, organisation and 
function throughout the visual pathways. In albinism, 
a preponderance of temporal retinal-fugal projec
tions erroneously decussate at the optic chiasm.4-9 
Within the primary retinal recipient target, the dorsal 
lateral geniculate nucleus (LGN), misrouted tem
poral retinal fibres misproject and misalign with 
normally decussating nasal retinal fibres of the same 
eye. As a result, for the albino mammal, regardless of 
albino genotype or phenotype, the medial segments 
of LGN layers representing a substantial portion of 
the ipsilateral visual field are mistakenly aligned with 
LGN layers of the opposite, contralateral field. 
Concomitant albino misprojections to auxiliary, 
subcortical visual pathways such as the superior 
colliculus, pulvinar and other retinal relays have also 
been identified and investigated.1O-I6 

The abnormal albino or the achiasmatic visual field 
representation and corresponding anatomical projec
tions have been referred to as misalignments in 
'mirror reversal' or 'mirror symmetry' of left and 
right half visual space coordinatesY7,18 The simpli
fied schematic of Fig. 1 illustrates that retinotopic 
mapping within the functionally and eye segregated 
LGN laminae is severely disrupted in both albinism 
and achiasmatic syndrome. As also illustrated in Fig. 
1, opposite to the preponderance of decussating 
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temporal retinal fibres in albinism, in achiasmatic 
syndrome all nasal fibres fail to decussate at the optic 
chiasmal junction, which is, in fact, missing. In the 
achiasmatic condition, the misrouted nasal retinal 
fibres project to and misalign with projections of the 
temporal retina of the same eye.3 The result, as in 
albinism (but in reverse order and in a more 
complete fashion), is that nasal retinal fibres align 
with temporal retinal fibres from the same retina. For 
the achiasmatic condition, the entire visual field is 
represented in mirror-reversed order. How this 
mirror-reversed information in the achiasmatic con
dition is communicated to the visual cortex is under 
investigation in a pedigree of mutant achiasmatic 
sheep dogS.19 

The major query that repeatedly arises when 
considering either of the two major optic pathway 
misrouting conditions, is how the brain and sensory 
systems develop, adapt to and function under such 
remarkable 'miswired' conditions?O-22 How the 
visual system functions and adapts to erroneous 
and conflicting visual input has proved of consider
able research and clinical interest not only for studies 
concerning visual pathway development but also for 
gaining a better understanding of the relationship 
between misrouted optic pathways and the typically 
concomitant ocular motor misalignments and/or 
instabilities.1,2,16-18,20-27 From the latter disarrange-
ments, the relevant issue of binocularity also 
emerges.1O,16-18,20-23 

A central issue of the present overview is whether 
the albino or achiasmatic visual system can adapt to 
the aberrant retinal-fugal projections, subsequent 
visuotopic mirror reversals and resultant ocular 
motor irregularities sufficiently to allow a substrate 
for binocular function. The first step in addressing 
this query is practical and simply concerns the 
methodology involved in the non-invasive detection 
of misrouted projections. The brief description of 
misrouting detection procedures is followed by 
ocular motor studies and the results of binocular 
tests of global stereopsis in albinos and achiasmatics. 
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Fig. 1. Schematic of the visual field representation onto 
two adjacent right dorsal lateral geniculate nucleus (LGN) 
layers. Normally contralateral hemi-visual field represen
tations in laminae A and Al are in register; nasal retinal 
projections from the contralateral, left eye project to LGN 
layer A; temporal retinal projections from the ipsilateral, 
right eye project to LGN layer AI. For the albino, the 
medial portion of layer Al representing a portion of the 
ipsilateral visual field is misprojected and misaligned with 
the corresponding projections of layer A. For the 
achiasmatic, the entire ipsilateral hemifield projected onto 
the nasal retina of the right eye is erroneously represented 
in right LGN layer A; temporal retinal projections from 
the same eye project to ipsilateral, right LGN layer AI. 
For both the albino and the achiasmatic, although retinal
fugal fibres misproject to the wrong side of the brain, 
termination is at the correct LGN locus for retinal area. 
Concurrently visual field representation is presented in 
partial or complete mirror reversal, respectively. (From 
Apkarian et a1.2; adapted from William� et a1.3 and 
Guillery et al. 20) 

NON-INV ASIVE DETECTION OF CHIASMAL 
CROSSING DEFECTS 

In humans, the misrouting of retinal cortical projec
tions can be readily recorded from the surface of the 
scalp in the form of interocular hemispheric response 
lateralisation of the visual evoked potential (VEP) 
following full-field monocular stimulation?8-30 
Because of the striking individual differences in 
cortical neuroanatomy,31-33 YEP hemispheric asym
metry per se is not a reliable index of misrouting. Of 
importance, are full-field interocular comparisons 
following appropriate YEP stimulation. To stress this 
point, in Fig. 2, binocular and monocular YEP 
amplitude at a given response latency is plotted as 
a function of electrode from left to right occiput for 
four normal and four albino controls.29 These 
subjects were selected as they each presented with 
interocular amplitude differences and also were 
representative of the remarkable variability in 
response lateralisation across subjects. For each 
function, a lateralisation value is ascribed which 
defines where across the electrode array the potential 
distribution shows its greatest activity. Once a 
lateralisation value per eye is obtained, an inter
ocular asymmetry index is derived by subtracting the 
lateralisation value of the right eye from that of the 
left. The rectangular bars indicate the calculated 
asymmetry index of each data set. Based on 
laboratory norms, asymmetry index values greater 
than ±O.7 are significant.29.3o As clearly depicted, 
significant interocular contralateral asymmetry 
indices are present only for the albinos. Moreover, 
the contralateral hemispheric shift in the potential 
distribution from left to right eye stimulation, 
constituting the classic albino YEP signature, is 
both specific and pathognomonic for the albino 
condition. 

Thus, with an appropriate YEP test protocol which 
is also age-dependent, the contralateral YEP asym
metry profile can be recorded in albinos regardless of 
genotype or phenotype, as depicted in Figs. 3 and 4. 
In Fig. 3,VEP asymmetry is present for the pattern 
onset responses from an adult genotyped as an 
oculocutaneous autosomal recessive albino as well as 
from an adult genotyped as X-linked ocular albino. 
Fig. 4 further emphasises the decisiveness of the YEP 
albino asymmetry paradigm in differential diagnosis. 
In this example, the monocular VEPs from an albino 
with the atypical absence of ocular motor instability 
readily show interocular contralateral asymmetry, 
whereas the monocular VEPs from a non-albino 
individual with idiopathic congenital nystagmus do 
not. 

The high sensitivity and selectivity of the YEP 
albino misrouting test has proved clinically viable for 
albino detection and differential diagnosis, particu
larly in infants and young children?9 The YEP albino 
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Fig. 2. lntersubject variability in YEP hemispheric response lateralisation for four normal controls (left) and four albinos 
(right). Binocular (OU, starred symbols), right eye (OD, filled squares) and left eye (OS, filled circles) YEP amplitude (peak 
to baseline) of the C, component of the pattern onset (40 ms onl460 ms off) response is plotted as a function of electrode 
derivation from left to right occiput. lnterocular, hemispheric asymmetry index values for each monocular data set are also 
presented. Maximum contralateral asymmetry in which the response peaks across the left occiput with right eye stimulation 
and across the right occiput with left eye stimulation is denoted by an index value of 2. Maximum ipsilateral asymmetry in 
which right hemispheric lateralisation is recorded with right eye stimulation and vice versa is denoted by the value -2 (not 
shown). Equal left and right eye hemispheric re�pon�e lateralisation is denoted by the value of O. Statistically significant 
interocular asymmetry is considered for index values greater than ±0. 7. Significant contralateral asymmetry indices are present 
only for the albinos regardless of the striking individual differences in hemispheric response lateralisation. (Adapted from 
Apkarian.29) 

misrouting test has also played a major role in the 
discovery of newly identified non-decussating 
retinal-fugal fibre syndrome.1.2 Fig. 5 depicts the 
YEP profile of an achiasmatic (AC1) who was 
initially referred for YEP testing for differential 
diagnosis. Because this patient presented with con
genital nystagmus the clinical question during refer
ral was whether the child had albinism or idiopathic 
congenital nystagmus. In Fig. 5 the YEP response 
profile of this child is compared with the responses 
from an age-matched normal control. The monocular 
YEP responses of the achiasmatic child demonstrate 
clear evidence of misrouting, but rather than the 
interocular contralateral asymmetry pathognomonic 
to albinism, interocular ipsilateral asymmetry is 
recorded. That is, following full-field monocular 
stimulation, the peak of the potential distribution 
localises to the ipsilateral occiput. The responses in 
Fig. 5 clearly show that the YEP misrouting correlate 
for the achiasmatic condition is the attenuation of 
primary visual evoked responses from the occiput 
contralateral to the eye of stimulation. In general, the 
YEP profile for the various optic pathway conditions 
and configurations discussed can be readily sum-

marised by: (1) ipsilateral interocular asymmetry in 
achiasmatic syndrome, (2) contralateral interocular 
asymmetry in albinism and (3) interocular symmetry 
in normal controls and in idiopathic or hereditary 
congenital nystagmus. 

In addition to the abnormal YEP response 
lateralisation in the achiasmatic condition, it is 
important to appreciate that non-decussating reti
nal-fugal fibre syndrome is an isolated split chiasm 
condition. That is, there are no identifiable, asso
ciated growth disturbances, midline anomalies, 
lesions, tumours or the like that typically accompany 
or produce an abnormal chiasmatic condition.34-37 
The isolated achiasmatic condition is confirmed by 
magnetic resonance imaging (MRI) in which the 
optic chiasm is emphasised as depicted in Fig. 6. The 
T1-weighted axial scan clearly shows the complete 
failure of the two intracranial optic nerves to 
approach the midline, requiring retinal-fugal fibres 
to continue an ipsilateral retinal-cortical path. The 
optic structures are constrained to maintain 
uncrossed trajectories as they pass unobstructed 
onto the thalamic structures. 

In patients with non-decussating retinal-fugal fibre 
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Fig. 3. Binocular (OU), left eye (OS) and right eye (OD) 
pattern onset (401460 ms) responses from two different 
albino genotypes: autosomal recessive oculocutaneous 
albinism and X-linked ocular albinism. In this and 
comparable VEP profiles, the upper five traces from each 
column represent responses derived from one of five 
electrodes positioned across the occiput from left (L, upper 
traces) to right (R, lower traces). The bottom traces of each 
column represent a difference potential in which trace 4 
from the right occiput (R) is subtracted from trace 2 from 
the left occiput (L). The vertical dashed lines indicate the C1 
response latency at which VEP is measured and plotted as a 
function of electrode as depicted in the VEP amplitude 
versus electrode plots. A contralateral hemispheric shift in 
the potential distribution from left to right eye stimulation 
constitutes the classic albino VEP signature. The stimulus 
conditions included a computer generated checkerboard 
pattern (55'), mean luminance 90 cdlm2, field size 100. In 
this example, contralateral asymmetry for both albino 
genotypes is reflected in the potential distributions, in the 
polarity reversal of the difference potentials and in the 
crossover of the monocular amplitude versus electrode 
functions. (From Apkarian.73) 

syndrome, despite the striking achiasmatic condition, 
ophthalmic evaluation confirms normal visual fields. 
On the basis of trauma-induced split-chiasm 
cases38-40 or experimental optic chiasm transection 
studies,41,42 one might have expected nasal retinal 
scotomata and corresponding bi-temporal hemianop
sia, but this is certainly not the case in patients with 
inborn, non-decussating retinal-fugal fibre syn
drome. Regarding visual fields in chiasmal crossing 
defects in general, it is of interest to note that human 
albinos also do not show visual field losses related to 
the paucity of ipsilateral temporal retinal projections, 
ie. bi-nasal hemianopsia. Interestingly, however, in 
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Fig. 4. Left eye (OS) and right eye (OD) pattern onset (401 
460 ms) responses of an albino with no nystagmus and a 
non-albino with idiopathic congenital nystagmus. The 
latency at which VEP amplitude of the pattern onset C1 
component was measured and plotted as a function of 
electrode position is denoted. The albino VEP profile shows 
a general left hemispheric response dominance and also 
greater amplitude responses for OD than OS. In contrast, 
the patient with congenital nystagmus shows a right 
hemispheric response dominance and greater amplitude 
responses for os than OD. Despite the general hemispheric 
response dominance and the interocular amplitude differ
ences, interocular contralateral asymmetry following full 
field monocular stimulation is present only for the albino. 
Note also for the albino, the change in the potential 
distributions from left to right eye stimulation, the polarity 
reversal of the difference potentials and the crossover in the 
VEP topography plot. (From Apkarian.73) 

some albino-related species, particularly the so-called 
Midwestern Siamese cat, nasal visual field losses 
have been documented?0,43.44 Concurrent with nor
mal visual fields, clinical features in the achiasmatic 
condition relevant to the present discussion include 
ocular motor instability as characterised in more 
detail below, interocular misalignments, and torticol
lis. Additional relevant clinical features of two 
unrelated, naturally occurring achiasmatics as well 
as a group of albinos whose binocularity results are 
discussed in the present study are listed in Table I. 
Note from the age range indices that the achiasmatics 
were evaluated over a period of several years. 
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Fig. 5. Monocular pattern onset responses for achiasmatic 
patient AC1 tested at about 14 years of age compared with 
an age-matched normal control. For stimullls, recording 
and data analysis details, see Figs. 2-4. For the achiasmatic, 
following left eye (OS) stimulation, a major positive peak of 
the pattern onset response lateralises to the left hemisphere; 
with right eye (0 D) stimulation, the response lateralises to 
the right. The ipsilateral asymmetry is reflected in the 
potential distributions, the polarity reversal of the difference 
potentials and the striking VEP amplitude versus electrode 
position functions. Note also the highly significant asym
metry index (-1.97) of the achiasmatic compared with that 
(-0.36) of the normal age-matched control. (From 
Apkarian.I ) 

BINOCULARITY AND CHIASMAL CROSSING 
DEFECTS 

Having thus described the presence and YEP 
detection of the two major forms of naturally 
occurring chiasmal defects, the next issue to be 
addressed concerns binocularity and whether or not 
misrouting conditions per se preclude binocular 
function, in general, and stereo vision, in particular. 
Previous albino studies across several species suggest 
that the answer to this query is negative.l0.20.24 As 
discussed in the introduction and also by Guillery in 
an accompanying study,45 aberrant decussation 
patterns preclude normal visuotopic and retinotopic 
mapping throughout the visual pathways. One 
consequence of the abnormal visual pathway projec
tions and disrupted functional organisation is a 
paucity or absence of normal binocular substrates 
for the encoding of retinal disparity and thus depth 
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Fig. 6. The Tl-weighted M RI section representing a 
transverse axial scan through the optic nerves and tracts 
shows continuity between the two without the expected 
chiasmal plate. Clearly illllstrated from top to bottom are the 
optic nerves, the region of the missing chiasm, and the 
suprasellar cistern. The arrows, superimposed upon high· 
contrast blood flow artefacts of the internal carotid arteries, 
indicate the expected location of the missing chiasm. 
(Adapted from Apkarian et al. 2) 
information. Whether the visual system, with 
chiasmal crossing defects and accompanying 
aberrant mapping and organisation, can support 
binocularity either directly via retino-cortical projec
tions or indirectly via, for example, cortico-corticalor 
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Table II. Summary of stereo results 
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cortical-thalamic projections, is readdressed in the 
present overview by reviewing the results of a 
previously reported study of albino binocular func
tion.46 

During a period several years ago, in which 
optimum YEP test parameters were being deter
mined for the non-invasive detection of misrouting,28 
the albinos tested underwent not only comprehen
sive genetic evaluation but also extensive ophthalmic 
evaluation. One unexpected result from the exten
sive screening procedures was that some albinos 
were shown to demonstrate not only binocular fusion 
but indeed also stereopsis, more specifically coarse, 
global stereopsis as evinced by standard clinical test 
plates including the Titmus polarised vectograph 
stereo test (Titmus Optical Co., Petersburg, VA) and 

the TNO anaglyph random-dot stereo test (Lameris 
Instruments, Utrecht, Netherlands). It is of impor
tance to note that those relatively few albinos who 
demonstrated stereo vision, also presented with 
normal ocular alignment with the exception of 
various phorias. A summary of the YEP findings 
and the ophthalmic evaluation including interocular 
alignment for 9 albinos (ALBl to ALB9) testing 
positive for stereopsis and 9 albinos (ALBlO to 
ALB1S) testing negative is presented in Table II 
together with the achiasmatic data. As outlined in 
Table II, some of the albinos evincing stereo vision 
had nystagmus; some did not. In evaluating the 
patients' performance with the standard clinic test 
plates, procedures as outlined by the manufacturers 
were carefully followed. In addition, if a positive 
response was obtained, the test plate was turned 
upside down and the patient was requested to 
respond to the direction of the depth percept. For 
the test plates in general, pass/fail criteria were 
employed; resultant albino stereo acuity estimates 
showed high intersubject and intrasubject variability. 
For the Titmus test, intersubject albino stereo acuity 
ranged from SO s to coarser; for the TNO test stereo 
acuity ranged from 60 s. In general, minimum albino 
stereo acuity values were below normal and can be 
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Fig. 7. Schematic representation of computer-generated 
stereograms presented onto two monochromatic monitors 
and viewed fused (as depicted) through a haploscopic 
configuration. Fusion was assured by alignment of two 
LEDs appearing at the top and bottom of the screen 
surround. The horizontal stimulus bar moved sinusoidally, 
up and down the screen at varying rates (upper, right). The 
stimulus bar generated by a zero shift in pixels was viewed 
with monocular. cues (upper, left). The stimulus bar with a 
given pixel shift appeared displaced from the background to 
yield a target visible only in stereo (lower, left). Lastly, with 
both bar and background presented in opposite disparity, 
the stereo target and the background were viewed in crossed 
and uncrossed disparity (or vice versa) respectively (lower, 
right). (From Apkarian and Reits.46) 
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considered primarily to reflect the ability for coarse, 
global stereopsis. A pass/fail summary of the test 
plate results for all the patients is listed in Table II 
under columns 'Titmus' and 'TNO'. 

Because stereo test figures, even TNO figures, can 
be recognised in the absence of true stereopsis,47 
albino binocularity was also evaluated with TV
generated random-dot stereograms as sketched in 
Fig. 7 and as described in more detail by Apkarian 
and Reits.46 The stereo target was displaced either in 
front or behind the screen in crossed or uncrossed 
disparity (50 min). In addition, to preclude positive 
response bias based on binocular correlation without 
stereo, the target background was also presented in 
crossed or uncrossed disparity. In this latter condi
tion, when the stereo bar was presented in crossed 
disparity (25 min, in front of the screen), the 
surround was presented in uncrossed disparity (25 
min, behind the screen) or vice versa. In one test 
protocol, the stereo target, a horizontal bar (sub
tending approximately 3S by 25°) was positioned at 
the top, middle or bottom of the test screen. The 
patient was asked to state the position of the bar and 
the direction of depth, if present. The results of this 
test are presented in Table II under the column 
heading of static random-dot stereogram (,static 
RDS'). 

To test for stereo vision more objectively, advan
tage was taken of the albino ability to track objects 
readily and accurately in the vertical plane?5 
Previous investigations have clearly confirmed the 
usefulness of objectively assessing stereopsis with an 
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Fig. 8. Vertical eye movements of albino ALBS during 
dichoptic viewing of the stimulus bar with monocular cues 
(left) and in stereo (right). The stimulus bar moved 
vertically across the screen at varying rates. Note that for 
lower temporal frequencies the ocular motor following 
profiles with monocular cues or in stereo are comparable. 
With higher rates, stereo pursuit diminishes. (From Apkar
ian and Reits.46) 
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ocular motor paradigm, such as stereo-induced 
optokinetic nystagmus.48A9 Since the capacity for 
vertical smooth pursuit typically is present in all 
albinos regardless of the accompanying horizontal 
ocular motor instabilitie�5 albino stereo vision also 
was evaluated by having patients track the horizontal 
target bar as it drifted upward or downward across 
the monitor screen. The drift profile was sinusoidal at 
rates that varied from 0.24 Hz to 2.37 Hz. The 
drifting bar was presented with monocular cues, in 
crossed disparity or in uncrossed disparity. In the 
study under discussion, albino vertical eye move
ments were recorded (coarsely) by electro-oculogra
phy (EO G) methodology. That patients could readily 
perform the tracking task with monocular cues is 
summarized in Table II under the column heading of 
'vertical pursuit'. EOG traces of vertical pursuit at 
varying target velocities with monocular cues is 
presented for ALB8 in the leftmost column of Fig. 
8. EOG traces in the rightmost column for ALB8 are 
in response to the drifting target presented in stereo 
with crossed disparity. Although vertical pursuit of 
the stereo targets is more degraded than pursuit with 
monocular cues for higher stimulus rates, tracking of 
the stereo target at lower rates is clearly present. 
Note from Table I that ALB8 also presented with no 
nystagmus. However, some albinos with nystagmus 
also could demonstrate stereo as shown for ALB7, in 
Fig. 9. In Fig. 9, stereo contours were presented at a 
low target rate (0.47 Hz) in either crossed or 
uncrossed disparity; albino EOG responses depicted 
at the right for ALB7 are compared with those at the 
left for a normal control. In general, the albinos, with 
or without nystagmus. who demonstrated stereo 
vision on at least one of the three static stereo tests 
and for whom the ocular motor tracking task was 
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Fig. 9. Vertical pursllit with the stimuills bar displaced in 
front of the display in crossed disparity and moving against 
a background the image of which was projected in 
uncrossed disparity (upper traces} or vice versa (lower 
traces). Although the albino responses (ALB7) show more 
EOG noise artef{u:ts than those of the normal control, both 
the normal and albino profiles show clear vertical pursuit to 
targets presented in either crossed and or uncrossed 
disparity. (From Apkarian and Reits . .f6) 
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implemented, typically showed appropriate vertical 
pursuit to stereo targets, at least for the lower target 
velocities, regardless of whether the targets were 
presented in crossed or uncrossed disparity. 

The positive stereo results are in strong support of 
the capacity for stereo vision, that is, global or coarse 
stereo vision, in at least some albinos. These 
unanticipated findings certainly give rise to the 
question of which visual pathways actually mediate 
binocularity in albinos. While stereopsis in albinos 
may be supported by residual appropriately project
ing temporal retinal-fugal fibres, previous electro
physiological and behavioural studies concerning 
albino animal models 10,18,50-54 vertical meridian 
overlap39,55 and corpus �allosum and/or optic chiasm 
transection56--62 suggest that a more likely candidate 
in providing an adequate neural substrate for albino 
binocularity involves inter- and intracortical commu
nication via corpus callosal connections. The devel
opmental course of the corpus callosum with 
accompanying aberrant retinal geniculate projections 
has been shown to compensate for the albino-like 
misrouting by dramatic reorganisation of callosal 
connections.63,64 The presence of global stereopsis in 
some albinos suggests that callosal connections have 
been reshaped and redistributed during early visual 
pathway development. This early reorganisation and 
remarkable plasticity appears to accommodate the 
processing of binocularly disparate information, thus 
providing an anatomical functional substrate that 
supports, in chiasmal crossing defects, at least coarse 
or global stereopsis. 

While animal models and trauma-induced split 
chiasm conditions, as cited above, readily support 
theories of corpus callosum mediated stereopsis, 
naturally occurring, isolated, non-decussating reti
nal-fugal fibre syndrome also presents itself as a 
most remarkable test model of these hypotheses. For 
example, previous studies document that stereo 
vision, albeit with field restrictions, was definitely 
present in a patient with isolated split chiasm due to 
trauma.57 Of considerable interest in this regard is 
that the naturally occurring achiasmatic patients 
described herein show, as described above, no visual 
field losses, implying that plasticity of inter- and 
intracortical connections may be even more dramatic 
than in conditions of late onset trauma or surgically 
induced achiasmatic conditions. Contrary to expecta
tions, however, the suggestion of plasticity also in 
binocularity does not come to fruition as neither of 
the naturally occurring achiasmatic children 
described herein show any evidence of stereo 
function. 

The absence of stereopsis or, for that matter, even 
a functional substrate to support binocular fusion in 
non-decussating retinal-fugal fibre syndrome is 
verified by closer examination of the interocular 
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Fig. 10. Horizontal (upper traces), vertical (middle traces) 
and torsional (lower traces) eye movements in achiasmatic 
ACI recorded with a dual-search coil technique. Calibrated 
eye position is plotted as a function of time. Dotted lines 
represent left eye position (OS), continuous, darker lines 
right eye position (aD). The horizontal dashed lines 
represent a pre-defined foveation window of ±O.5°. Positive 
values along the ordinate indicate rightward or upward 
position or rotation to the right shoulder; negative values 
indicate leftward or downward position or rotation to the 
left shoulder. The ocular motor task included first fixating, 
binocularly, a target positioned at primary position (00). 
The fixation paradigm then included a switch in fixation to 
a target displaced about 5°, down. Task completion was 
accomplished by returning fixation to primary position. 
Classic congenital nystagmus is recorded in the horizontal 
planes together with see-saw nystagmus in the vertical and 
torsional planes. Note for the congenital nystagmus traces, 
that interocular conjugacy is recorded in both amplitude 
and direction. For the vertical and torsional planes, 
pendular-like nystagmus is recorded along with vertical 
interocular directional disconjugacy (an interocular vertical 
amplitude difference also is present). Regarding interocular 
alignment, interocular, horizontal position differences 
indicate that the right eye is fixating the target while the 
left eye is esotropic and variably hypotropic. (From 
Apkarian et a1.65) 

misalignments and ocular motor instabilities asso
ciated with this condition. In fact, examination of the 
accompanying achiasmatic ocular motor misalign
ments and instabilities reveals that testing for stereo 
function or even binocular fusion in inborn achias
matic patients can be considered a non-viable 
proposition. This argument is supported by ocular 
motor investigations in the achiasmatic mutant 
Belgium sheep dogs27 as well as in the achiasmatic 
children, the latter of which are yet to be published in 
article form,z6,65 A preview of the achiasmatic ocular 
motor profile IS presented in Fig. 10, which depicts 
highly accurate dual-search coil recordings of hor
izontal, vertical and torsional left and right eye 
position for the older of the two achiasmatic children, 
ACl. Quantification of the achiasmatic eye move-
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ments reveals classic congenital nystagmus in the 
horizontal planes including characteristic waveforms. 
As presented in Fig. 10, the horizontal waveforms 
can be classified, after Dell'Osso and Daroff,66 as 
typical jerk nystagmus with extended foveation and 
with the superimposition of slow wave jerks. The 
horizontal congenital nystagmus traces depicted also 
show interocular conjugacy in both direction and 
amplitude. Interocular horizontal position differ
ences indicate that the right eye is fixating the target 
while the left eye is esotropic and variable hypo
tropic. Classic congenital nystagmus together with 
variable expression of the horizontal, interocular 
misalignments is characteristic of albino ocular motor 
instabilities as wel1.25 What is atypical and rather 
exceptional in the achiasmatic condition is that 
concomitant with the horizontal nystagmus there is 
also a pendular nystagmus in the vertical and 
torsional planes. The pendular nystagmus is dyscon
jugate in the vertical planes and conjugate in the 
torsional planes. This form of nystagmus has been 
termed see-saw nystagmus and is characterised by 
upward movement and intorsion of one eye with 
simultaneous downward movement and extorsion of 
the fellow eye.67 

It is of interest to note that the see-saw form of 
ocular motor instability is extremely rare, is typically 
identified with midline lesions, malformations or the 
like and also is typically accompanied by bitemporal 
hemianopisia.67-7o There are, however, even rarer 
reports of a form of congenital see-saw nystagmus in 
which the patients are apparently otherwise normal 
and also have normal visual fields.n,n It is of interest 
to ponder whether or not these latter patients 
represent, in fact, undetected cases of non-decussat
ing retinal-fugal fibre syndrome. However, of direct 
relevance to the present overview is that given the 
remarkable ocular motor profile in non-decussating 
retinal-fugal fibre syndrome, including the alternat
ing esotropia and vertical disconjugacies, it would be 
rather astonishing if inborn achiasmatics did demon
strate evidence of binocular integration and function. 

CONCLUSIONS 
This overview demonstrates a dissociation between 
primary visual pathway anomalies of retinal cortical 
misprojections and binocular function. Despite 
misrouted temporal retinal fibres, some albinos 
have the capacity to process binocularly disparate 
images as they demonstrate clear evidence of the 
capacity for binocular fusion and global stereopsis. 
These binocularity results in albinos are of particu
larly interest with regard to albino animal models, 
which indicate a paucity of binocularity-driven 
cortical neurons in primary visual areas. These 
studies also suggest that inter- and intracortical 
disparity processing via corpus callosal connections 
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may well provide the primary neural substrate to 
support albino binocularity. Although the quest to 
observe binocularity in the achiasmatic condition has 
failed, perhaps this naturally occurring chiasmal 
crossing defect will none-the-Iess stimulate the 
development of provisional models of the anatomical 
and physiological substrates that underlie highly 
unusual types of unyoked, dysconjugate eye move
ments. As postulated by Dell'Osso and Williams,27 

certainly binocularity imposes a tight ocular motor 
yoking that precludes significant interocular differ
ences for either eye position or eye movement 
trajectories. The present overview attempts to gain 
a better understanding of the direct and indirect 
visual pathways in chiasmal crossing defects and their 
relationship to single binocular vision and ocular 
motor coupling. Indeed, inborn errors of 
retinal-fugal projections, as described herein, may 
well yield insights into visual pathway development 
and how it is that the brain adapts to and processes 
sensory events even when left and right eye visual 
fields are cortically projected in mirror reversed 
order, partially, as in albinism, or completely, as in 
non-decussating retinal-fugal fibre syndrome. 

Key words: Albinism. Non-decussating retinal-fugal fibre syn
drome. Optic chiasm. Stereopsis. Nystagmus. Visual pathway, 
Visual evoked potentials. Eye movements. Corpus callosum. 
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