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SUMMARY 
We investigated factors involved in achieving a single gas 
bubble following intravitreal gas injection during surgery 
for retinal detachment. A simple mathematical model of 
gas bubble dynamics within the eye was developed. The 
model indicates that the speed at which the bubble rises 
within the eye is proportional to the radius of the bubble. 
The flow rate required to maintain a single bubble 
increases as a power function of the bubble radius. In 
conclusion, the speed of injection is of paramount 
importance in the attainment of a single gas bubble. 

Injection of gas into the vitreous cavity is often 
performed during external surgery for retinal detach
ment, in order to help drain subretinal fluid, reverse 
hypotony, or tamponade retinal breaks.1 The gas is 
usually injected using a syringe and a fine gauge 
needle inserted through the pars plana. It is 
important to obtain a single bubble of gas in order 
to maintain visualisation of the fundus. This is 
particularly important when employing the D-ACE 
sequence? in which gas injection precedes cryopexy 
and positioning of the explant. Unfortunately the 
creation of multiple small gas bubbles or 'fish eggs' is 
frequently reported after gas injection. This results in 
degradation of the ophthalmoscopic view, and can 
lead to subretinal gas bubbles. To avoid this com
plication previous authors have recommended that 
the needle be inserted through the highest point of 
the pars plana with the tip of the needle just visible.1 
It has been our clinical impression, however, that the 
speed of injection is of paramount importance, 
thou�h this is mentioned only rarely in the litera
ture. In this paper we consider the factors which 
may be important in the creation of a single bubble, 
and develop a simple mathematical model of gas 
bubble formation within the eye. 
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MATERIALS AND METHODS 
Consider a spherical gas bubble of radius r forming 
around the point of a needle through which gas is 
being injected into a liquid of density p and viscosity 
JL. The bubble will remain single as long as the 
needle tip remains within it as gas is being injected. 
This will depend on the motion of the bubble relative 
to the needle tip. If the bubble is in contact with the 
highest point of the eye, then it will not move and it 
will remain single as further gas is injected. However, 
until this position is reached it will move according to 
the balance of forces upon it. The bubble is buoyant 
in the liquid and will tend to rise due to an upward 
buoyancy force. By the principle of Archimedes this 
is equal to the weight of liquid displaced by the 
bubble, given by: 

Upward force = � 7T?pg (1) 

where g is Newton's constant. As the bubble moves 
through the liquid it will experience a retarding force, 
D, due to drag. Forces on the bubble due to surface 
tension are ignored in this model. The drag force can 
be calculated using principles of fluid mechanics.4 In 
fact, vitreous exhibits non-Newtonian behaviour, but 
variation in its viscosity is small,S so that for the 
purposes of this mathematical model vitreous can be 
considered to be Newtonian. For small spheres in 
very viscous media, the drag is given by Stokes' law: 

D = 6 7TrJLU (2) 

where U is the velocity of the bubble. However, this 
relationship does not apply when the ratio of inertial 
forces to viscous forces is high. This ratio is known as 
the Reynolds number, Re, and is given by: 

Re = 2rup / JL (3) 

Stokes' law is found by experiment to be invalid for 
Reynolds numbers above 0.1, which is unfortunately 
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the case for our model. Instead, the total drag force is 
given by: 

Total drag = CD �pu2A (4) 

where CD is the drag coefficient and A is the frontal 
area of the body in motion (in this case a sphere, so 
that A = 1T?).4 CD varies with the size of the sphere 
and the velocity, and has been determined experi
mentally for a range of Reynolds numbers. In the 
steady state the buoyancy is balanced by the total 
drag, so that: 

(5) 

ignoring the contribution of the weight of the gas 
bubble, which is small compared wth its buoyancy. 
Solving this equation for the velocity, U, is not 
straightforward since CD is a function of u. However, 
it can be rearranged in terms of CD and Re: 

1 1 23 3 H CD(Re) } = 2r{gp2 / f.12} (6) 

The left-hand side of the equation can be related to 
the Reynolds number by reference to standard 
graphs for drag relations of isolated smooth spheres,4 
giving a value for Re, and hence u, from equation (3). 
The relationship between the quantity in equation 
(6) and the Reynolds number is approximately linear 
for Reynolds numbers in the range 0.1 to 105, and 
can therefore be expressed by the equation of a 
straight line (y = ax + b) thus: 

10glORe = 210glOX -1 (7) 

where X is the left-hand side of equation (6). 
Combining equations (3), (6) and (7) gives an 
expression for the velocity of a gas bubble in terms 
of its radius and the viscosity of the liquid. It is more 
convenient to use the kinematic viscosity, v = f-tl p 
than f-t: 

U = � 10{21og!O(2r\1g/v2)-1} 
2r 

This simplifies to: 
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Fig. 1. The upward velocity of gas bubbles of various radii 
i.liquids of various viscosities. 
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Hence as the bubble increases in size, it also rises 
faster. If the bubble has not reached the highest point 
in the eye and is still in motion, it will leave the tip of 
the needle if its velocity exceeds the rate at which its 
radius is increasing. The rate of increase in radius is a 
function of the rate at which the gas is being injected. 
Hence the critical flow rate, f, at which the bubble 
would leave the tip of the needle is given by: 

(10) 

assuming the bubble to be spherical. Therefore, for a 
constant flow rate of f, the size of the gas bubble as it 
leaves the tip of the needle is given by substituting 
equation (9) for u in equation (10): 

(11) 

Suppose the needle tip is inserted a distance x from 
the highest point of the eye. In order to achieve a 
single bubble, the flow rate must be sufficient to 
create a bubble of radius x12, otherwise it will leave 
the tip of the needle before its motion is arrested. 
Hence the flow rate required is: 

f 1 2 31 = 750 1Tg X V (12) 

An experimental chamber was constructed from 
clear polymethylmethacrylate in order to illustrate 
some of the principles developed in the mathematical 
model. A cylindrical chamber with straight ends was 
immersed in a clear bath containing glycerol. Air was 
injected at various flow rates through small holes in 
the roof of the chamber. The bubbles that were 
produced were then photographed. 

RESULTS 
The relationship between upward velocity and 
bubble size described by equation (9) is illustrated 
graphically in Fig. 1. The upward velocity for a range 
of bubble sizes and liquid viscocities is shown. The 
viscosity of vitreous varies, but typical values are of 
the order of 1-2 cSt.5 The viscosity of water is 1 cSt at 
20.2 0c.4 The relationship between the critical flow 
rate, f, and the insertion distance of the needle tip, 
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Fig. 2. The way in which the flow rate required for a single 
bubble varies with the radius of the bubble. 
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Fig. 3. Gas being injected with the tip of the needle just 
within the cavity at the highest point. A single bubble is 
easily achieved. 

described in equation (12), is shown graphically in 
Fig. 2. It can be seen that the critical flow rate 
increases as a cubic power function of the insertion 
distance x. For example, to prevent a bubble of 1 mm 
radius leaving the tip of the needle requires a flow 
rate of 4 mlls. Once the bubble has increased in size 
to 2 mm radius, however, an injection rate of 25 mlls 
is required. The creation of a single bubble is 
therefore relatively easy if the needle is positioned 
so that the tip is near the highest point of the eye 
(Fig. 3). If the needle is not in an ideal position and 
the flow rate is slow, multiple bubbles are the 
inevitable result (Fig. 4). However, a single bubble 
can be achieved with the needle in the same position 
if the flow rate is sufficiently rapid (Fig. 5). 

DISCUSSION 
This model of bubble creation shows the importance 
of flow rate in achieving a single bubble - a factor 
which has not been emphasized previously. Recom
mendations currently in the literature include insert
ing the needle at the highest point in the globe, and 
withdrawing the needle so that the tip is just visible.1 

Fig. 4. Gas being injected slowly with the needle inserted 
some way into the eye, and not at the highest point. Multiple 
bubbles are the result. 
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Fig. 5. Gas being injected with the needle in a similar 
position as in Fig. 4 but at a higher flow rate. A single 
bubble is achieved. 

The needle is inserted through the pars plana, but the 
limits of ophthalmoscopy are such that there will be a 
finite distance, say 1 mm, between the tip of the 
needle and the pars plana epithelium. It is inad
visable to withdraw the tip from view because of the 
risk of injecting air into the supra-choroidal space. 
Are these conditions sufficient to achieve a single 
bubble? Our model suggests not. Fig. 2 indicates that 
multiple bubbles would result if the injection rate is 
less than 4 mlls. The speed of injection is therefore a 
vital factor in obtaining a single bubble, even if the 
other conditions are met. Equation (12) shows that a 
single bubble can be achieved with the needle tip 
inserted to any distance, but because of the cubic 
relationship, the flow rate becomes impractically 
large for distances greater than a few millimetres 
(Fig. 2). 

In conclusion, our model confirms the importance 
of needle tip position in avoiding 'fish eggs', but 
indicates that the rate of injection is equally 
important. 
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