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SUMMARY 

In addressing the worldwide shortage of human donor 
cornea for transplantation, animal cornea may be a 
substitute if mechanisms of xenogeneic (cross-species) 
rejection can be identified and controlled. Xenotrans
plantation of solid organs is followed by hyperacute 
rejection within minutes due to humoral graft rejection. 
In an experimental model corneal xenografts in rats 
survived for 2-3 days, depending on the phylogenetic 
disparity of the donor animal. Endothelial injury was 
the specific cause of graft failure, probably mediated by 
humoral rejection mechanisms. A later cell-mediated 
rejection response was seen. The potent humoral 
response is the most important feature differentiating 
xenograft from allograft rejection. 

Xenogeneic transplantation is the transplantation of 
tissues from a member of one species to that of 
another. In the past, clinical xenotransplantation of 
baboon and monkey kidneys and hearts in a small 
number of reported cases was followed in each 
recipient by short graft survival due to uncontrolled 
humoral and cellular rejection.1-4 The improved 
survival of clinical organ allografts in the 1980s, due 
largely to successful immunosuppression, has led to a 
shortage of human donor organs (in particular heart 
and liver) and recent renewed interest in xenotrans
plantation.5,6 In view of the recent and imminent 
advances in xenografting of solid organs, animal 
cornea would be a possible alternative to human 
donor material for corneal replacement, should 
control of the host xenogeneic response be possi
ble. As in the case of solid organs, the use of 
xenogeneic tissue might alleviate the shortage of 
donor corneas. 
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Experimental Organ Xenograft Rejection 

Early general experimental studies illustrated that, in 
general, xenografts were always rejected faster than 
allografts when similar types of tissues were 
transplanted under similar circumstances, and the 
phylogenetic disparity betwe�n 

.
donor �nd 

.
tecTsient 

species was related to the rapIdIty of reJectIOn.' At 
around the same time as this became evident, it was 
recognised that pre-existing 'natural' antibody and 
subsequently complement components, platelets and 
vasoactive substances were involved in the immedi
ate hyperacute rejection observed in many 
experimental xenograft models.9 In more recent 
investigations of experimental xenograft rejection, it 
has become apparent that mechanisms vary among 
different animal models and that graft survival may 
depend more on the organ or tissue transplanted 
than on the species disparity (reviewed by Auchin
closs5). 

Models of xenotransplantation of immediately
vascularised organs, such as kidney or heart, 
demonstrate invariable hyperacute antibody
mediated rejection within minutes of graft in 
discordant donor-host combinations. The character
istic pathological feature of hyperacute rejection is 
intragraft interstitial haemorrhage with margination 
of leucocytes and thrombosis clearly shown to occur 
in donor vessels. 10, 11 The major cell surface antigen 
recognised by pre-formed natural antibody is the 
terminal disaccharide a-1-3 galactose epitope, i.e. 
galactose in an (al-3) linkage with galactose.12-14 

This is abundantly expressed on the various cells of 
non-primate mammals, possible xenograft donor 
animals. The antibody which reacts with this antigen 
is present in all humans. Binding of pig endothelial 
cell surface oligosaccharides by human pre-formed . 

d 14 15 Th I f antIbody has been demonstrate . '  e ro es 0 
pre-formed natural antibody and complement in 
initiating hyperacute rejection have been clarified to 
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an extent. The consensus of opinion is that 
hyperacute rejection is mediated by pre-formed 
antibody via activation of the classical or alternative 
pathways of complement.16--20 The molecules which 
protect autologous cells from complement-mediated 
injury are membrane-bound complement regulatory 
proteins CD46 (membrane cofactor protein), CD55 
(decay accelerating factor) and CD59 (protectin). 
Unlike complement, these molecules are highly 
species-specific: graft injury by recipient comple
ment is likely to occur unless recipient complement 
regulatory proteins are expressed on xenograft cells. 
It is clear from all reports that hyperacute rejection 
must be understood and controlled or circumvented 
if xenotransplantation is to reach clinical practice. 

In contrast to vascular organs, survival of some 
tissue xenografts can be achieved even in species 
combinations that demonstrate hyperacute rejection 
of immediately-vascularised organs. CaIne examined 
the effect of xenografts in dogs of goat kidney and 
skin. Renal graft rejection at 30-90 minutes con
trasted with skin survival for 6 days?l The cornea, 
being avascular, might be considered likely to 
undergo rejection in a pattern more similar to skin 
than to immediately-vascularised organs. 

Corneal Xenotransplantation 

The first recorded human transplant operation was in 
fact a corneal xenograft performed by Kissam in New 
York in 1838. The patient was blind from staphyloma 
and the donor cornea was from a 6-month-old pig. It 
appears from the report that the graft perforated 
within 1 month?2 It was to be more than a century 
before the human xenotransplantation of any other 
tissue was reported, but all reported lamellar and 
penetrating corneal grafts performed until the late 
nineteenth century were xenografts. Von Hippel 
reported in 1888 a clear lamellar corneal xenograft 
in a young girl in which the donor was full-thickness 
rabbit cornea excised using a clockwork trephine 
which he had himself designed?3 However, all other 
available reports indicate that xenografts failed. With 
the recognition of the superior survival of human 
donor cornea, reports of clinical corneal xenografts 
have been only anecdotal in the last century. 

Other interesting early studies in xenotransplanta
tion involved the eye. Sixty years ago Harrison 
described xenotransplantation of the optic cup in 
salamander embryos. Recipients developed into 
xenogeneic chimaeras with entire eyes derived from 
other species.24 The natural tolerance of embryos 
was taken for granted. Of course these embryological 
experiments and the earlier clinical corneal xeno
grafts pre-dated the understanding of the immuno
logical basis of graft tolerance and rejection. First 
investigations of the immunological response to 
corneal xenografts were reported in 1952. In 

experimental studies of interlamellar corneal xeno
grafts, partial thickness donor cornea was trans
planted into a pocket in the recipient rabbit 
cornea.25-29 Rabbit interlamellar corneal xenografts 
survived for a mean 9.9, 10.2 and 8.8 days for guinea 
pig, human and chicken donors respectively in a later 
study?O In 1962, Kuwabara described lamellar rabbit 
xenotransplants of chicken, cat, dog and human 
tissue?l Orthotopic, penetrating grafts are most 
relevant to human corneal transplantation. In 1964, 
a series of 10 patients in Thailand were described 
who received penetrating grafts of gibbon cornea.32 

Five of the grafts were stated to remain transparent 
for more than 5 months. Vascularisation, inflamma
tion and graft necrosis was found on pathological 
examination of failed grafts. 

More recently, Ross and colleagues reported 10 rat 
penetrating xenografts of guinea pig donor cornea. 
These survived between 6 and 9 days - presented as 
evidence that hyperacute rejection of guinea pig-to
rat corneal xenografts does not occur.33 In the same 
donor-recipient combination, heart xenografts sur
vived 17±4 minutes in 17 rats, underlining the 
disparity in survival between cornea and heart 
xenografts. We have developed another rat model 
of penetrating corneal xenotransplantation, using 
several donor-recipient combinations, in which the 
immunopathology of rejection has been examined in 
an attempt to define the mechanism of rejection 
responsible for eventual graft loss. 

EXPERIMENTAL MODEL 

Donor-Recipient Combinations 
Experimental animals, surgical and examination 
procedures are reported in detail elsewhere34 ,35 and 
described here in brief. Out bred guinea pigs and 
chickens were used as corneal xenograft donors. 
Inbred adult Fischer 344 (F344) and congenitally 
athymic CBH rnulrnu rats were used as corneal graft 
recipients. 

A unilateral 3 mm diameter penetrating corneal 
graft was performed on each recipient rat. No 
immunosuppressive agent was given at any time. 
Recipient eyes were examined daily following graft 
for up to 14 days and the day of rejection was defined 
as that on which, in a graft that had previously been 
clear with or without intact graft epithelium, graft 
transparency was lost to the extent that iris vessels 
were not visible through the graft (Fig. 1). 

Characteristics of Rat Corneal Xenograft Rejection 

Xenograft rejection was observed in all cases. 
Survival of chicken donor and cornea was slightly 
shorter than that of guinea pig (median survival 2 
and 3 days respectively). Corneal graft epithelial 
defects and anterior chamber haemorrhages were 



Fig. 1. Left: Guinea pig donor corneal xenograft 3 days following graft. Donor and recipient corneal oedema is seen. 
Right: The same xenograft 7 days following graft, showing graft oedema and recipient corneal v(/scularisation. 

Fig. 2. Erythrocyte extravasation in recipient cornea 
4 days following graft. (H&E, original magnification 
X 1(00). 

6 

Fig. 3. Eosinophils at the graft-host Interj'ace, 14 
days following chicken donor xenograft. (H&E, 
original magnification X4(0) 

Fig. 4. Massive infiltration of immature, blast lymphocyte j(Jrms 
14 days following graft. These cells stained with CD2 monoclonal 
antibody on immunoperoxidase staining, confirming their T cell 
lineage. (H &E, original magnification X40()) 

Fig. 5. Chicken donor corneal xenograft 12 hOltrs 
following transplantation. Intense superficial epithelial 
staining with mouse anti-rat IgG2a monoclonal anti
body is shown. (Original magnification X4()O) 

Fig. 6. Corneal endothelial silver swin 4 days 

following xenograft. Only peripheral graft cellular 
staining is seen. (Original magnification X 1 ()()) 
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evident in many grafted eyes. Graft survival was 
similar in athymic and euthymic rats. 

Histopathological Correlates. In all xenograft speci
mens at day 4, interstitial haemorrhage was seen in 
recipient corneal stroma (Fig. 2). Significant numbers 
of xenograft stroma-infiltrating macrophages and 
granulocytes were observed from day 7, with 
CD4+ cells aggregated on the endothelium. At day 
14, the stroma of donor cornea and the host
xenograft interface were largely replaced by inflam
matory cells. Eosinophils were a prominent con
stituent of the infiltrate in all xenografts in 
immunocompetent recipients, in maximum numbers 
at the host-graft interface (Fig. 3). Massive xenograft 
infiltration was a uniform finding: cells comprised 
blast lymphocyte forms (Fig. 4) (staining with the T 
cell surface marker CD2), CD4+ cells and macro
phages. Specimens from athymic xenograft recipients 
at 7 and 14 days post-graft showed epithelial loss, 
endothelial loss and interstitial haemorrhage similar 
to corneas from euthymic rats. In striking contrast, 
however, there was only a very sparse graft infiltrate 
and negligible eosinophils. 

Rat Immunoglobulin Deposition on Xenografts. 
Strong and diffuse IgG2a monoclonal antibody 
staining was demonstrated by immunoperoxidase 
staining on xenograft surfaces at 12 and 24 hours 
post-graft, suggesting early recipient antibody
mediated damage to graft surfaces (Fig. 5). 

Xenograft Endothelial Damage. Corneal whole 
mount endothelial silver staining at day 3 post-graft 
showed central graft endothelial loss (Fig. 6). 

Rat Antibody to Guinea Pig and Chicken Cells. Sera 
from peripheral blood samples taken pre- and post
graft were tested for reactivity with unfixed guinea 
pig and chicken white blood cells (WBC) by indirect 
immunofluorescence on flow cytometry. All euthymic 
rats examined exhibited natural antibodies reactive 
with up to half of the peripheral WBC of both the 
guinea pig and chicken. 

DISCUSSION 

Clinical and histological examinations indicate a 
similar host response to guinea pig and chicken 
donor cornea.' Possibly reflecting greater species 
disparity and higher host levels of pre-formed 
antibody, the response to chicken was observed to 
be more intense. Chicken donor corneal survival was 
shorter, epithelial loss more extensive and frequently 
seen, intraocular haemorrhage more frequent, and 
graft infiltration evident earlier on histological 
examination in all cases. Survival of guinea pig 
cornea was similar in euthymic and athymic rat 
recipients. 

Corneal Xenograft Rejection Effector Mechanisms are 
Primarily Humoral 

(1) The finding of pre-formed antibody to guinea pig 
and chicken leucocytes in all recipient specimens 
examined, is the first evidence from this model 
suggesting a role for humoral mechanisms in graft 
rejection. Pre-formed rat antibody to guinea pig 
surface antigens has been detected by some investi
gators (Reding et al. by radioimmunoassay of anti
RBC antibodies,36 Leventhal et al. by lymphocyto
toxicity and platelet membrane-targeted immunoas
say37), but negligible levels of antibody have been 
reported by others (Terasaki et al. by lymphocyto
toxicity?8 Miyagawa et al. by haemagglutination16). 
We suggest that pre-formed antibody cross-reacts 
between leucocytes and corneal cells and is respon
sible for the early corneal xenograft injury found. 
Xenogeneic pre-formed antibodies have recently 
been shown to display cross-reactive idiotypes39 

and can bind to multiple ligands:4o this is in contrast 
with most antibodies that arise after immunisation, 
which are monoreactive and bind only to the 
immunogen. Our finding of pre-formed antibody in 
athymic rats is consistent with the observation that 
pre-formed antibodies derive in part or predomi
nantly from B cells expressing the CD5 glycopro
tein.40,41 

(2) Defects in the graft epithelial layer almost 
certainly represent clearance of dead cells, at an 
interval after cell death. It is possible that death of 
epithelial cells occurred in all xenografts, with only 
those in which it was extensive developing clinically 
manifest defects, partial or complete. This is the 
second piece of evidence which suggests humoral, 
hyperacute rejection, mediated by pre-formed anti
body in the tear film which is in direct contact with 
the epithelial layer.42 Replacement by recipient 
epithelium was, however, observed in all cases. The 
endothelium also manifested cell damage, in this 
instance probably due to damage by antibody in the 
aqueous humour. Unlike the tear film, this fluid is in 
normal circumtances protein-free due to the effect of 
the blood-aqueous barrier through which large 
molecules do not penetrate even if plasma concen
trations are high.43 Following surgery, circulating pre
formed antibody might enter the aqueous and reach 
the graft endothelium via Schlemm's canal or leaking 
uveal vessels.44 

(3) Deposition of rat IgG and IgM on epithelial and 
endothelial xenograft surfaces and the anterior 
chamber exudate within 24 hours of graft further 
support the major role of antibody in rejection. 
(4) Indirect evidence of humoral rejection is the 
equivalent xenograft survival in athymic and euthy
mic recipients. Median survival time for guinea pig 
donor cornea was 3 days in both immunocompetent 
F344 and athymic CBH rnulrnu rats. 
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(5) Finally, the rapid tempo of rejection, with 
demonstrable signs of graft failure within 2-3 days 
of graft in most xenograft recipients, suggests 
humoral rather than cell-mediated effector mechan
isms. Rejection at this interval post-graft is much 
earlier than would be expected in primarily cell
mediated rejection, and earlier than reported by 
other investigators?3 

While the dominant role of humoral mechanisms 
in corneal xenograft rejection is proposed, the 
relative contributions of natural antibody and 
complement to corneal xenograft tissue injury have 
not been delineated in this model. Such a study 
would necessitate selective antibody or complement 
depletion. Many of the complement pathway com
ponents have been shown to be present in tears,45 

aqueous humour45 and cornea46 of normal humans. 
Strong expression of each of the complement 
regulatory proteins CD46, CD55 and CD59 has 
been demonstrated in human corneal epithelium but 
not endothelium:47 this suggests the possibility of 
chicken and guinea pig corneal epithelial injury by 
rat complement. 

Cellular Immunity and Eosinophils are Involved in 
the Later Response to Corneal Xenografts 

Our finding of similar graft survival in athymic and 
immunocompetent mice is evidence that T cells or 
other thymic factors do not play a major role in 
corneal xenograft rejection. This conflicts with 
previous studies proposing cell-mediated responses 
to have a major role in xenograft rejection, such as 
one report of indefinite skin xenograft acceptance in 
athymic mice.48 Nevertheless, early graft injury was 
followed in immunocompetent rats by evidence of a 
cell-mediated response. The graft-infiltrating cell 
population included CD4+ and CD8+ cells, macro
phages and neutrophils. Eosinophils were the 
prominent cell type at the host-graft interface in 
specimens at day 14 post-graft. An eosinophil 
infiltrate has previously been reported in interlamel
lar sheep-to-rabbit xenografts.25 Eosinophils have 
not been reported in human or experimental corneal 
allograft rejection, but have recently been reported 
in liver allograft rejection.49 Eosinophils in the 
cornea could be directly involved in tissue damage 
or might be a non-specific indicator of substantial 
immune activation. These cells are antibody-depen
dent cytotoxic granulocytes and their presence in 
rejected xenogeneic cornea may be due to differ
entiation or migration as a result of local lymphokine 
release. Absence of eosinophils in athymic recipient 
corneas suggests that migration of tissue eosinophils 
is dependent on T cells or other thymus factors 
absent in athymic rats: this finding concurs with the 
absence of an eosinophil response to helminth 
infection in athymic mice. 50 Interleukin-5 is the 
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stimulant most specific for the eosinophil lineage, 
inducing late proliferation and differentiation in blast 
cells.51 Notwithstanding, selective eosinophil produc
tion in the setting of a massive xenogeneic response 
may be less likely than multiline age stimulation by 
GM-CSF or IL-3, which induce differentiation of 
neutrophils and macrophages in addition to eosino
phils.52 

Recipient Vascular Injury is a Component of 
Xenogeneic Rejection 

Interstitial haemorrhage from graft vessels is the 
pathognomonic histological feature of hyperacute 
rejection. In rejected immediately vascularised organ 
grafts haemorrhage from donor vessels is clearly 
seen.lO ,ll The finding in this model of interstitial 
haemorrhage from corneal vessels and contempora
neous haemorrhage from the iris is of particular 
interest, indicating damage not to xenograft but to 
recipient vessels. It is direct evidence of this 
phenomenon in graft rejection. Haemorrhage from 
recipient vessels has not been formally demonstrated 
in any other tissue. The pathogenesis of corneal 
recipient vascular damage is uncertain. The transient 
nature of haemorrhage from host vessels (observed 
at days 2-4 only) and the absence of associated host 
tissue damage support the concept that locat 

recipient vascular leakage is a necessary component 

of the xenogeneic response which allows humorall 

factor and inflammatory cell access to the avascular 

graft. Activation of the alternative complement 
pathway may by some mechanism be induced, 
followed by deposition of complement components 
on recipient corneal vascular endothelium. 

Xenograft Rejection Differs Substantially from Allo
graft Rejection, with Implications for Immunosup
pression Regimes 

The strength and the prominence of humoral rather 
than cell-mediated mechanisms of rejection are the 
dominant features which distinguish organ xenograft 
from allograft rejection. These studies have con
firmed this to be the case also for xenografts of 
cornea, with rejection in all cases and shorter graft 
survival. Loss of corneal transparency due to 
endothelial damage was evident in this study as 
early as day 2-3 following graft. The experimental 
model demonstrates evidence for multiple compo
nent mechanisms of xenograft rejection. Suppression 
of both humoral and cell-mediated components of 
the recipient immune system would be required to 
allow long-term corneal xenograft survival, and such 
pan-immunosuppression would not be justifiable in 
clinical management with present drugs. An alter
native approach would be to prevent xenoantigen 
recognition and rejection by modification of the 
donor cornea, using gene-based or other techniques. 
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If humoral rejection can be controlled it will then 
be necessary to identify the potential donor animal 
species with the most appropriate corneal size and 
refractive index. Corneal xenotransplantation is 
likely to reach clinical practice eventually, but the 
immunological factors that need to be understood 
and overcome to allow its application are formidable. 
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