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THE DENDRITIC CELL LINEAGE 

Dendritic cells (DC) are specialised antigen present
ing cells that form a critical component of the 
immune defence system in which they are central 
to the induction of many primary immune responsesl 
including the response to allografted tissues? All 
tissues of the body, with the possible exception of the 
brain,3 contain resident leucocytes (probably less 
than 1-3% of the total cell complement of most 
tissues) that belong to the DC lineage.4-7 In solid 
organs such as the heart and kidney they are 
distributed within the interstitial spaces but in many 
tissues they form a network within epithelial, 
mesothelial or endothelial surfaces. The Langerhans 
cell (LC) network of the epidermis is the best
characterised example but a similar network is 
present in the airways, gastrointestinal tract, perito
neum and beneath the endothelium of major blood 
vessels (1. A Roake, C. P. Larsen and 1. M. Austyn, 
unpublished observations). These cells, which are 
known as non-lymphoid DC to distinguish them from 
the DC found within the lymphoid organs, are 
specialised for antigen capture and translocati�n
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antigens acquired in the periphery to the drammg 
lymph nodes or spleen. Within lymphoid tissues DC 
are located predominantly in the T cell-dependent 
areas (paracortex of lymph nodes; central white pulp 
of the spleen) where they are known as interdigitat· 
ing cells (IDC). The primary function of lymphoid 
DC is activation of antigen-specific T cells,s except 
that in the thymus, where DC are located predomi
nantly in the medulla, they appear to be involved in 
deletion of autoreactive T cell clones (so-called 
negative selection)? 

In this review the features of the phenotypically 
and functionally diverse DC lineage will be dis
cussed, but further consideration of thymic DC will 
be omitted, and the concept of progressive differ-
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entiation from bone marrow progenitors to lymphoid 
DC will be developed. 

LYMPHOID DENDRITIC CELLS 

Dendritic cells cannot be defined by a single 
characteristic because the lineage is diverse and, to 
date, no lineage-specific markers have been identi
fied. DC are therefore defined by the sum of multiple 
characteristics and the absence of others. It is 
perhaps best to define DCs by reference to the 
characteristics of lymphoid DC since these were the 
first to be characteriseds,1 O-l2 and they appear to 
represent fully differentiated cells. In fact, there is no 
evidence that lymphoid DC proliferate to any 
appreciable extent, and they do not appear to 
recirculate via the blood or lymph. Thus, they can 
be considered to be 'end cells' , the final result of the 
development process. 

The characteristics of lymphoid DC have been 
reviewed in detail elsewhere1 and only a brief 
account will be given here. Lymphoid DC are bone 
marrow-derived leucocytes that express the leuco
cyte common antigen (CD45). They also express high 
levels of MHC class I and II and other cell surface 
antigens (for example CD4 (human subset), CD8 
(human subset), CDllb, CD25, CD58) including 
molecules such as ICAM-1 (CD54), B7-1 (CD80), 
B7-2 (CD86), and CD40 which may have importa�t 
'co-stimulatory' functions. In the mouse certam 
subsets express DC-restricted markers (N418 
(CDllc), NLDC145, M342, 33D1). They lack line
age-specific markers for T cells (CD3, T cell 
receptor), B cells (CD19, surface immunoglobulin), 
monocytes (CD14) and NK cells (CD56, CD57). 
When isolated and observed in culture they have an 
irregular 'dendritic' shape and exhibit motility, 
constantly changing their shape by extending out 
cytoplasmic veils and processes apparently continu
ously sampling the environment around them. They 
have limited phagocytic or endocytic capacity and 
consistent with this they express few or no Fe 
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receptors (Fc)'R: CD16, CD32, CD64) or comple
ment receptors (C3R: CDllb, CD21, CD35) and 
they process antigens poorly. Isolated DC are 
capable of 'homing' to the T-dependent areas of 
the lymphoid tissues when returned to the body by 
injectionp,1 4  They cluster spontaneously with T cells 
in vitro and possess potent capacity to activate naIve 
T cells. This is often referred to as immunostimula
tory activity. 

DENDRITIC CELLS IN NON-LYMPHOID 
TISSUES 

Epidermal LC (see Romani and Schuler4 for review) 
form a virtually continuous network over almost the 
entire external surface of the body including the 
conjunctiva and peripheral cornea, but excluding the 
central cornea which is normally virtually devoid of 
DC. They, and other surface-associated DC, are 
ideally situated as 'sentinels' strategically placed to 
encounter invading foreign antigensY Functionally, 
they appear to be specialised for antigen capture and 
processing. Freshly isolated LC are efficient at 
uptake and processing of soluble protein antigens 
in vitro.16 In addition they express surface molecules 
such as Fc receptors (FC)'RII; CD32) and comple
ment receptors (C3R; CDllb)1 7  which may assist in 
the uptake of opsonised antigens and it is known that 
particulate anti�ens can be internalised by LC1 8 and 
interstitial DC, but this phagocytic capacity is much 
less avid and more selective than that of 'profes
sional' phagocytes such as macrophages. Following 
uptake, exogenous protein antigens are processed 
within the endosomes/lysosomes and expressed at 
the cell surface as peptides in association with MHC 
class II. At this stage of development LC,1 9 and other 
non-lymphoid DC,6 are relatively poor stimulators of 
T cell proliferation in vitro and consistent with this 
they express low levels of B7 co-stimulatory 
molecules.2o,2 1  

In tissue culture non-lymphoid DC undergo 
dramatic phenotypic and functional changes which 
together are considered to represent a 'maturation' 
process durin} which they come to resemble 
lymphoid DC. ,1 7 ,1 9 In the case of LC, the caFacity 
for antigen uptake by phagocytosis is reduced1 as is 
expression of Fc)'RII (CD32)1 9 and the ability to 
process native soluble antigens. 1 6 Concomitantly, 
certain intracellular changes occur including loss of 
acidic organelles associated with the ability to 
process exogenous antigen?2 and reduced synthesis 
of invariant chain23 which is involved in the correct 
assembly of MHC class II molecules. However, 
surface expression of MHC class II is increased and 
expression of IL-2R u chain (CD25) is acquired.1 9 
These changes are associated with the development 
of potent immunostimulatory function and increased 
expression of B7-1 and B7-2.2 1  Many of these 
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changes appear to be dependent upon the influence 
of cytokines and, in particular, upon GM-CSF. It is 
known, for instance, that LC viability and acquisition 
of immunostimulatory capacity is dependent upon 
the presence of GM-CSF in culture24 and that IL-1 
may synergise in the acquisition of stimulatory 
capacity,z5 TNF-u on the other hand appears to 
maintain LC viability without promotin� the devel
opment of immunostimulatory capacity,z GM-CSF is 
also known to up-regulate expression of B7 mole
cules on murine LC and kidney interstitial DC.2 1  The 
LC in intact skin in tissue culture undergo similar 
changes?1 , 27 presumably under the influence of 
cytokines produced in situ by keratinocytes and it is 
assumed that the same 'maturation' process occurs in 
vivo, although there is little direct evidence for this. 

In summary, there is now persuasive evidence that 
non-lymphoid DC are 'immature' lymphoid DC. This 
is strongest for LC but the same appears to be true of 
other non-lymphoid DC. The 'maturation' process is 
dependent upon GM-CSF and other cytokines in 
vitro but it is uncertain whether a similar cytokine 
dependence operates in vivo (Fig. 1). 

MIGRATORY DENDRITIC CELLS 

Early studies of the afferent lymph draining a variety 
of tissues identified a population of 'veiled macro
phages' comprising about 20% of the afferent lymph 
leucocytes28 which have subsequently been shown to 
resemble LC and other Dc.29-31 They are now 
known as veiled cells (VC) and appear to be lymph
borne DC involved in the transport of antigen to the 
draining lymph nodes32 ,33 where they probably 
become short-lived IDC.34 Having reached the 
lymph node there is no evidence that VC leave via 
the blood and they are rarely found in the efferent 
lymph or normal thoracic duct lymph. Thus, it 
appears that they do not recirculate. 

A migratory route for non-lymphoid DC via the 
blood has also been defined. This was demonstrated 
following experimental transplantation of fully 
vascularised tissues in which donor strain leuco
cytes35,36 with the characteristics of DC2 were 
identified within the white pulp of the recipient 
spleen 2-4 days after transplantation. 

The factors that regulate the migration of DC are 
poorly understood. As discussed above, VC are 
found in afferent lymph draining normal tissues but 
the number of cells can be dramatically increased by 
the induction of local inflammation through applica
tion of contact sensitising agents. 37 This may be in 
response to local production of inflammatory 
mediators. Following skin transplantation, or skin 
organ culture, LC migrate from the epidermis to 
dermis and then apparently leave the skin via dermal 
lymphatics,27 and in this model it is clear that the 
stimulus to migration must originate within the skin. 
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Progenitor "Immature" dendritic "Mature" dendritic 
cell 

Proliferation No proliferation 

• Ii 
Development Maturation 

Bone marrow 
CD34+ 
MHC class 11- Non-lymphoid tissues .� '"'1''''''''' tissues 

Antigen uptake - phagocytosis + -

- pinocytosis + -

Processing of native antigen + +/-

Expression of - FcR ++ +/-

- IL-2R - + 

- B7.1, 7.2 +/- ++ 

- MHC class II + ++ 

Immunostlmulatory function - ++ 

Fig. 1. Stages of dendritic cell development and 'maturation'. In tissue culture dendritic cells undergo a cytokine-dependent 
'maturation' process· during which they become potent immunostimulatory cells. 

It is known that keratinocytes can produce a variety 
of inflammatory mediators and cytokines and they 
could, therefore, be one source of mediat<;lrs of LC 
migration. 

There is accumulating evidence that certain 
cytokines may promote migration of non-lymphoid 
DC. Systemic administration of lipopolysaccharide 
(LPS), which is known to induce the release of a 
variety of cytokines (including TNF-a, IL-1, IL-6, IL-
8 and interferons) increased the release of VC into 
pseudoafferent lymph in rats,30,38 and in mice it 
appears to induce migration of epidermal LC and 
interstitial DC of the heart, kidneys and liver. 39 
Qualitatively similar responses were observed fol
lowing systemic administration of TNF-a or IL-1 but 
not IL_239 and, in other studies, following adminis
tration of IFN-a or IFN-I3. 4o Systemic, or local, 
injection of IL-ll3 has been reported to induce 
migration of LC41 and intracutaneous injection of 
TNF-a is reported to increase the number of DC in 
the draining lymph nodes42 - indirect evidence that 
TNF-a stimulated LC migration. 

Studies on migration of corneal LC have provided 
further insight into which agents may be chemoat
tractant for DC. Surgical incision, or insertion of 
1 /-Lm latex beads into the central cornea, appears to 
stimulate centripetal migration of limbic LC, possibly 
as a consequence of the actions of local inflammatory 
mediators that may be produced by the corneal 
epithelium.43 This is supported by the observation 
that centripetal migration was induced by direct 
injection of the cornea with IL-1, which is known to 
be produced by corneal epithelium following expo
sure to latex beads.44 

BONE MARROW PROGENITORS AND DC 
PRECURSORS IN THE BLOOD 

In the past the study of DC has been frustrated by 
consistent failure to identify DC progenitors with the 
capacity to proliferate in vitro. This necessitated 
laborious procedures for isolation of small numbers 
of DC from lymphoid and non-lymphoid tissues 
before meaningful functional studies could be under
taken. Several early papers demonstrated the 
feasibilitr of obtaining DC precursors from bone 
marrow4 ,46 but only in small numbers, but in 1992 
Inaba et ai. succeeded in culturing cells with the 
characteristics of fully differentiated DC in large 
numbers from mouse blood47 and bone marrow.48 
This process was absolutely dependent upon GM
CSF, under the influence of which DC apparently 
arose from pluripotent, MHC class Ir, common 
myeloid progenitors that had the capacity to 
generate granulocytes, monocytes or DC, depending 
upon the culture conditions.49 In culture, small 
aggregates of proliferating MHC class Ir cells, 
with phagocytic capacity,sO eventually gave rise to 
typical non-proliferating, MHC class 11+, highly 
motile DC that had the capacity to initiate primary 
T cell responses in vitro and to home to T dependent 
areas in the draining popliteal lymph nodes when 
they were injected into the footpads of mice in vivo.47 

Similar cytokine-derived 'DC' have now been 
cultured from human bone marro�l and both 
neonatals2 and adult blood.s3 These cells are some
what less well characterised than in the mouse, in 
part because of lack of lineage-specific markers but 
also because of lack of studies on their capacity to 
home to the lymphoid tissues. Thus, although they 
are widely accepted as bona fide DC, there is still 
some uncertainty as to their true identity. 'DC' were 
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generated from the CD34+* MHC class Ir stem cells 
of human bone marrow and neonatal cord blood 
under the combined influence of GM-CSF and TNF
a.51,52 Culture in GM-CSF alone produced only 
granulocytes and typical monocytes, suggesting that 
DC arose from a pluripotent myeloid progenitor 
which, as in the mouse, was present in the bone 
marrow and blood. In contrast, culture of human 
'DC' from adult blood was most efficient in the 
presence of GM-CSF and IL_4.53,54 These cells 
exhibited a relatively immature phenotype in that 
they had abundant micropinocytic activity, and 
efficient antigen processing capacity, low expression 
of MHC class II and co-stimulatory molecules (B7 
and ICAM-I), and little capacity to activate T celis.54 
However, when cultured in TNF-a or LPS they 
apparently underwent a maturation process and 
developed into cells with the typical features of 
lymphoid DC.54 These changes were analogous to 
those undergone by LC and other non-lymphoid DC 
during culture (Fig. 1). 

DC precursors in the blood are en route from the 
bone marrow to seed tissues with 'immature' DC 
(non-lymphoid DC) but it is unknown whether 
normal tissues contain a significant pool of marrow
derived MHC class II- precursors that retain 
proliferative potential. It is known that classic 
MHC class Ir LC and DC isolated from spleen or 
lymph nodes do not proliferate in culture, but the 
identification of pluripotent progenitors in the blood 
indicates that divergence of the monocytic and DC 
lineages is incomplete at this stage of development 
and suggests that peripheral tissues might contain 
PC precursors with the capacity to proliferate. There 
is direct evidence for this in the thymus of the 
mouse55 and possibly other tissues56 but in the 
human this is largely speculative. 

It has been suggested that certain transplanted 
organs may contain DC progenitors, but the evidence 
for this is not yet secure. Clinical transplantation of 
organs such as the liver and small bowel under 
conventional immunosuppression is reported to be 
associated with seeding of the recipient tissues by 
cells, probably leucocytes, that have dendritic 
morphology and express high levels of donor MHC 
class II.57,58 They may persist in the recipient for 
many years and it has been suggested that they may 
be donor DC responsible for the induction and 
maintenance of 0jerational tolerance to the trans
planted organ.58,5 However, there is no conclusive 
evidence that they are DC or that they are actively 
involved in induction or maintenance of tolerance,6o 
but their existence does suggest that the transplanted 
organs contained leucocyte stem cells which seeded 

*CD34 is a polypeptide of unknown function which is expressed 
on the surface of haemopoietic stem cells and possibly 
endothelium. 
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the recipient tissues via the blood. Clearly, further 
characterisation of these cells is required. 

Little is known about how seeding of the tissues by 
DC precursors is regulated but it appears that 
inflammatory mediators such as those induced by 
LPS can stimulate recruitment of MHC class Ir 
leucocytes into murine tissues which have the 
potential to develop into cells with many of the 
characteristics of Dc.61 Biologically this makes sense 
since, as noted above, local inflammation, or 
administration of inflammatory mediators, depletes 
tissues of MHC class II+ DC which (presumably) 
must be replaced by precursors recruited from the 
bone marrow, or by proliferation of precursors 
resident within the tissues. 

CONCLUSION 

DC are a diverse lineage of leucocytes that is widely 
disseminated throughout the body. They arise from 
MHC class II- common myeloid progenitors in the 
bone marrow and, broadly speaking, they exist in the 
tissues in two stages of maturation. Those in the non
lymphoid tissues are immature cells that act as 
sentinels specialised for antigen capture and proces
sing. Under the influence of inflammatory mediators 
they migrate via the lymph to draining lymph nodes, 
or via the blood to the spleen, where as mature 

Epithelial surfaces 

MHC class II negative 
CD34+ 

MHC class II negative 
Blood precursors 

•• 

.. I\�� 

MHCclassll+ 
Blood dendritic 

cells 

t 

Fig. 2. Migration pathways for dendritic cells (DC). DC 
develop from progenitors in the bone marrow and migrate 
via the blood to seed the tissues. DC in the non-lymphoid 
tissues migrate via the blood or lymph and 'home' to the T
dependent areas of the lymph nodes or spleen. 
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immunostimulatory DC, in the T-dependent areas, 
they trigger activation of antigen-specific T cells 
(Fig. 2). 

Much remains to be discovered about the regula
tion of DC proliferation, development, migration and 
maturation, but a better understanding of these 
processes may suggest new ways in which the 
initiation of T and T-dependent immune responses 
may be manipulated for clinical gain. 

Key words: Dendritic cell, Differentiation, Immunostimulation, 
Maturation, Migration , Phagocytosis, Phenotype, Progenitors. 
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