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SUMMARY 

The Computer Assisted Touch Screen (CATS) and Com­

puter Assisted Moving Eye Campimeter (CAMEC) are 

personal computer (PC)-based video-campimeters which 

employ multiple and single static stimuli on a cathode ray 

tube respectively. Clinical studies show that CATS and 

CAMEC provide comparable results to more expensive 

conventional visual field test devices. A neural network 

has been designed to classify visual field data from PC­

based video-campimeters to facilitate diagnostic inter­

pretation of visual field test results by non-experts. A 

three-layer back propagation network was designed, 

with no units in the input layer (each unit corresponding 

to a test point on the visual field test grid), a hidden layer 

of 40 processing units, and an output layer of 27 units 

(each one corresponding to a particular type of visual 

field pattern). The network was trained by a training set 

of 540 simulated visual field test result patterns, including 

normal, glaucomatous and neuro-ophthalmic defects, for 

up to 20 000 cycles. The classification accuracy of the net­

work was initially measured with a previously unseen test 

set of 135 simulated fields and further tested with a genu­

ine test result set of 100 neurological and 200 glaucoma­

tous fields. A classification accuracy of 91-97% with 

simulated field results and 65-100% with genuine field 

results were achieved. This suggests that neural networks 

incorporated into PC-based video-campimeters may 

enable correct interpretation of results in non-specialist 

clinics or in the community. 

Perimetry is an indispensable part of complete examin­
ation of the visual system in ophthalmic or non-ophthal­
mic clinics such as neurology, neurosurgery, paediatrics 
and endocrine medicine. The use of perimetry is, however, 
severely restricted by its high cost, lack of widespread 
availability and the requirement of expert evaluation of 
the results. The Computer Assisted Touch Screen (CATS) I 
and Computer Assisted Moving Eye Campimeter 
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(CAMEC)"-3 are automated visual field analysers which 
operate on IBM-compatible standard personal computers 
(PC). These low-cost user-friendly video-campimeters 
have previously been shown to produce comparable 
results to more expensive conventional perimeters. In 
order to provide further assistance in diagnostic inter­
pretation in CATS and CAMEC, a PC-based neural net­
work for the pattern classification of the results was 
previously demonstrated using simulated visual field test 
results.4.5 

A neural network consists of a number of interconnec­
ted processing elements which are arranged in layers. 
Each processing element is analogous to a biological neu­
ron. The input units correspond to the dendrites and the 
output units correspond to the axons. The network con­
sists of three layers. The middle (= hidden) layer performs 
weighted summation of the input, applies a mathematical 
transfer function and allocates the input into one of the 
output categories. The network learns by example. The 
learning process involves presenting the network with an 
input pattern and a desired output pattern. Learning is 
accomplished by adjusting the input summation weights 
via repetitive cycling of the training patterns until the out­
put accuracy approaches the desired level.6 The network 
can be trained for a pre-set number of cycles or until the 
output error falls below a threshold value. The ability of 
the neural network to classify the patterns is affected by 
the number of the processing elements in the hidden layer, 
the size of the training set of data and the number of recy­
cles in the presentation of the training data. 

This study describes the use of a neural network to per­
form pattern interpretation on genuine visual field data 
which can be generated by PC-based visual test devices. 

METHODS 

Neural-Works Professional II (Neural-Ware Inc., USA) 
software was used to design a neural network with 110 

units in the input layer, each unit corresponding to a stimu­
lus location on the central visual field test grid,7 a middle 
layer of 40 processing elements, and an output layer of 27 

units that each corresponded to a particular type of sco-
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Fig. 1. A three-layer hack propagatio/1 nctwork. 0111' hUlldred 
and ten inpllt units constitute the tcst gridfiil' celltralfield. The 
large and small hlack dots represent 'missed' ([lid '.1'1'1'11' /Joillfs 
ill the centralfield test grid respecril'ely, The hl({ck sqllare repre­
sents the natural hlind spot. The grid resollltion of" the ill/Jilt 
layer is 5�(j°. which is eqllal to that oj' cO/1\'elltiol1al ({utOIl1({fcc/ 
perimeters? Processing elements fo/'m the output hr applying a 
mathematical transf"erjilllctioll to the summed inpllf. 

toma pattern, using an IBM-compatible 486 machine 
(Dell Inc,) (Fig. I, Table 0. 

Six hundred and seventy-five visual fields (25 examples 
of each of the 27 visual field patterns) plotted on the grid 
constituting the input layer were used as the simulated 
data set to train and pilot test the network. The simulated 
field patterns satisfied the criteria for glaucomatous and 
neuro-ophthalmic visual field classification, that is, chias­
mic defects show a correspondence to the vertical merid­
ian, nerve fibre layer type defects to the horizontal 
meridian and isolated scotomas are contained within the 
central visual field (Fig. 2).x-11 The data were split into a 
training set of 540 plots and a test set of 135 randomly 
selected plots from the original data set. 

The training session consisted of presenting the net­
work with 20 000 iterations of the training set. The distri­
bution of the weight values and the output error were 
monitored throughout the learning process. Training was 
accomplished by successively adjusting the input weights 
on each presentation of the training pattern until the output 
error (= desired - actual accuracy) reached its lowest 
level. 

Following the learning process, the network perform-
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ance was measured by presenting the test set and monitor­

ing the output. The performance was further tested with 

200 genuine visual field patterns from glaucomatous/glau­

coma-suspect eyes and 100 visual field test results from 

eyes with neuro-ophthalmic problems. The actual visual 

field test results were obtained with conventional peri­

meters including the Humphrey visual field analyser, 
Friedmann analyser, Dicon autoperimeter, and Tlibingen 
and Goldmann perimeters. Significant abnormalities on 
the field test plots within the central visual field (30° from 
fixation) were converted into scotoma patterns and trans­
lated onto the input layer of the neural network using a 
mouse-driven digital drawing tablet and Harvard Graphics 
Draw-Partner software programs. At least two adjacent 
abnormal points in the input grid were regarded as a 
scotoma pattern. 

RESULTS 

When the performance of the neural network was exam­
ined using the simulated data test set (II = 135), a diagnos­
tic accuracy of 91 % and 97% was achieved according to 
the first and second choices made by the network. 

When the genuine visual field data were presented to 
the network. 85% (254/300) of the peri metric results were 
recognised correctly as a result of the tirst output choice of 
the network. In the remaining 46 field results with inaccu­
rate pattern recognition. the correct classification was the 
second choice of the network in 17 cases, improving the 
network accuracy to 90% (II = 271/300). The full distri­
bution of the genuine tield patterns into different diagnos­
tic categories and the accuracy of the network in each 
category are shown in Table II. 

DISCUSSION 

The use of neural networks in visual field interpretation 
has previously been experimented with in automated per­
imetry.-))·1213 The application of neural networks in per­
sonal computers and the systematic evaluation of their 
diagnostic accuracy according to different classes of 
genuine scotoma patterns. however, have not been 
reported before. The size of the training data set, the 
number of processing elements in the hidden layer and the 
number of recycles on network performance have been 

Table I. Neural network output: 27 types 

Bjerrum scotoma 
Superior (S BS) 
Inferior (lBS) 

Nasal step 
Superior (SNS) 
Inferior (INS) 

Quadrantanopia 
(complete or incomplete) 

Superior nasal (SNQ cm 
Superior temporal (STQ Cm 
Inferior nasal (lNQ em 
Inferior temporal (lTQ cm 

Central hemianopia ( < I (f) 
Nasal (NC H) 
Temporal (T C H) 

Altitudinal 
(complete or incomplete) 

Superior (SA cm 
Inferior (lA Cm 

Paracentral scotoma 
Generalised constriction 
Horizontal sectoranopia 

Nasal (NHS) 
Temporal (T HS) 

Hemianopia «30°) 
(complete or incomplete) 

Nasal (NH C/I) 
Temporal (T H cm 

Nonnal 
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Fig. 2. Examples from simulated scotoma patterns which were 
used to train the network. 1, normal; 2, superior hjerrum sco­
toma; 3, inferior hjerrum scotoma; 4, paracentral scotoma; 5, 
superior nasal step; 6, inferior nasal step; 7, qlladrantano­
pia � incomplete; 8, qlladrantanopia � complete; 9, interior 
altitudinal � incomplete; 10, inferior altitudinal � complete; 
II, hemianopia � incomplete; 12. hemianopia complete; 13, 
constriction; 14, constriction; 15, central hemianopia; 16, hori­
zontal sectoranopia. 

determined and adjusted as optimum in this study accord­
ing to the results of our previous investigation,) 

The neural network successfully achieved a high accu­
racy in classification of previously unseen patterns, An 
average of 9 out of 10 genuine scotoma patterns were 
recognised correctly by the network. The field patterns 
that the network had most difficulty in classifying correct­
ly, such as Bjerrum scotomas and nasal steps, indicate the 
need for further improvements in the network design. The 
subgroups of chiasmatic and nerve fibre layer type defects 
frequently misinterpreted by the network may, in future, 
be combined under a new and smaller number of output 
categories reflecting the general morpho-pathology of the 
visual damage. Output layer design with fewer and more 
comprehensive output types may improve the accuracy of 
the pattern classification. An alternative solution may be 
the initial quadrantic evaluation of the each field result 1'01-

Table II. Genuine visual field results: network classification accuracy 
(/1 = 300) 

Diagnosis First choice Second choice 

Bjerrum scotoma 65% (55/84) 83°10 (70/84) 
Constriction 93% (43/46) 98% (45/46) 
Hemianopia 890;' (25/28) 89% (25/28) 
Nasal step 79% (27/34) 79% (27/34) 
Quadrantanopia 97% (31/32) 97% (31/32) 
Paracentral scotoma 93% (13/14) 93% (13/14) 
Altitudinal defect 88% (15/17) 88% ( 15/17) 
Normal 100% (45/45) 100% (45/45) 

Total 85°;', (254/300) 90% (271/300) 

lowed by the sequential hemifield and total field assess­
ments by the network as a step-by-step analysis approach. 

The network training is performed in a few hours on a 
486 personal computer. The software generates a run-time 
version of the trained network which can be transferred to 
less expensive personal computers and incorporated into 
PC-based video-campimetric test software for automatic 
reading of the individual results. The trained network can 
give instant classification of test data. 

In conclusion, a three-layer propagation network can 
classify a wide range of visual field defects with an accu­
racy of 65�97%. This addition to PC-based video-camp­
imeters such as CATS and CAMEC will enable diagnostic 
interpretation of the visual field test results in non-oph­
thalmic clinics or in the community where perimetric 
expertise is not readily available. 
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Gordon Dutton and Dr Bertil Damato for the purchase of the 
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