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SUMMARY 
The conduction properties of central demyelinated and 

remyelinated axons are discussed, and related to the 

expression of symptoms in central demyelinating disease. 
The mechanisms underlying the block and restoration of 
conduction in segmentally demyelinated axons are 
described, together with the range of deficits expressed by 
the conducting axons. These abnormalities are related to 
clinical relapses and remissions, and to the phenomena of 
weakness, fatigue, the temperature sensitivity of symp
toms, and the generation of 'positive' symptoms (e.g. 
Uhthoff's and Lhermitte's symptoms). The potential role 
of circulating 'blocking factors' in the symptomatology of 
central demyelinating disease is examined, and some 

approaches are advanced for the symptomatic therapy of 

such diseases. 

INTRODUCTION 
Demyelination of central nervous system (CNS) axons is 
the most prominent morphological characteristic of the 
lesions of disorders such as multiple sclerosis, optic neur
itis and acute disseminated encephalomyelitis, and it is 
believed that many of the symptoms associated with these 
disorders are directly attributable to conduction disturb
ances caused by the myelin loss. This review is primarily 
concerned with the conduction deficits of experimentally 
demyelinated CNS axons, and the symptoms which may 
be expected to arise from these deficits. The review 
focusses on axons in experimental demyelinating lesions, 
since here the morphology of the affected axons can 
usually be determined with some certainty, whereas in 
human disease morphological changes can rarely be 
studied. 

CONDUCTION BLOCK 
The first conduction abnormality to be reliably described 

Correspondence to: Dr K. J. Smith, Department of Neurology, United 
Medical and Dental Schools of Guy's and St Thomas' Hospitals, Guy's 
Campus, St Thomas Street, London SE I 9RT, UK. 

Eye (1994) 8, 224-237 © 1 994 Royal College of Ophthalmologists 

in experimentally demyelinated central axons was the 
complete block of conduction (Fig. lC, D),I and this 
remains the most striking feature of conduction in many 
segmentally demyelinated central axons when examined 
at body temperature. Conduction block is also a major 
cause of the most devastating symptoms of multiple scler
osis, such as paralysis and blindness.2-6 

McDonald and Sears' landmark study of conduction in 
demyelinated CNS axons employed the central demyel
inating lesion induced by the injection of diphtheria toxin 
into the cat dorsal columns/-9 and although the degree of 
demyelination of the affected axons in this lesion is uncer
tain (see below) several other studies have now confirmed 
that conduction block is the dominant feature where 
demyelination is largely segmental in character, i.e. where 
myelin is lost in units of complete internodes. Such lesions 
include those induced by the detergent-like substance 
lysophosphatidyl choline (LPC, also known as lysole
cithin),IO·11 the nucleic acid chelating agent ethidium bro
mide (EBr)12 and the autoimmune disease experimental 
allergic encephalomyelitis (EAE).13 Conduction block 
was also described in some earlier accounts,14-16 but con
fidence in these data is weakened by the uncertainty as to 
whether the blocked axons were truly demyelinated or 
were undergoing degeneration (for discussion see 
McDonald and Sears 17). Demyelination seems only to 
impair conduction at the site of the lesion, for conduction 
continues in an apparently normal manner along the mor
phologically unaffected portions of the axon on either 
side.I.17 Conduction block is also particularly prominent 
when the axons are examined at body temperature and 
above (see Effects of Temperature below). 

On theoretical grounds, the likelihood that demyel
ination will result in conduction block is related to the 
degree of demyelination present, particularly at the para
nodes. Thus conduction may be expected to continue, 
albeit with some reduction in velocity and security, where 
demyelination is restricted to loss of some but not all of the 
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Fig. 1. Schematic representation (�fthe conduction properties 
of normal, demyelinated and remyelinated celllral ((xons. The 
pattern of impulses ellterillg the site of a lesion is showll Oil the 
left, and the resulting pattern lea ring the lesion is shown Oil the 
right. Normal axons faithfully tYansmit both single impulses (AJ 
and impulse trains (B). Howel'er, sires (�(demyelination inirially 
cause conduction block to both single impulses (C) ((nd trains of 
impulses (D). Where the demyelinated axons later acquire the 
ability to conduct through the lesion it is with a reduced velocity 
(E) and a p rolonged refractory period of transmission (RPT), 
i.e. the second impulse of a closely spaced pair may fail to be 
transmitted (F) and a rapid train of impulses may be trans
formed to a low-frequency train due to jClilure of the lesion to 
transmit all the impulses (G). With repeated activation demyel
inated axons can become p rogressil'ely less able to conduct 
closely spaced impulses (H), and may exhibit intermittent 
periods of complete conduction block (l). Transmission along 
demyelinated axons is markedly affected by temperature 
changes, such that cooling p romotes successfiLl conduction (], 
K). Demyelinated axons can generate long trains of impulses in 
the absence of any deliberate stimulus (L), and can also gener
ate trains of impulses in response to deformation (M). Single 
conducted impulses can provoke the generation of other, ectopic 
impulses (N). The conduction dejicits associated with demyel
ination are almost entirely reversed by remyelinatioll (0, P J. 
myelin lamellae (partial-thickness demyelination), or to 
very limited paranodal widening. IS However, where 
demyelination is more extensive, and certainly where it is 

segmental, the presence of conduction block becomes 
much more likely. Indeed, conduction block may be inevi
table in newly segmentally demyelinated axons since 
there is normally only a relatively low ( < 25/)lm") sodium 
channel density beneath the myelin sheath (the channels 
expressed by myelinated axons are the subject of an excel
lent recent review by Waxman and Ritchie19 (see also 
Ritchie and Rogart"il and Shrager21); and so, initially at 
least, demyelination must expose axolemma ill-equipped 
for cunduction of nerve impulses. However, Waxman's 
group have noted that conduction can occur in premyel
inated optic nerve axons where the sodium channel 
density is also low (mly 2/)lm2),21 raising the possibility 
that even some freshly demyelinated axons may be able to 
conduct.19.2J This is an interesting possibility, but our 
experience is that conduction is routinely blocked in 
recently segmentally demyelinated axons. However, it 
may be significant that our experience is limited to the 
relatively large-diameter axons of the dorsal column, 
since conduction is probably favoured by a small axon 
diameter.2321 It is thus pos�ible that conduction may occur 
in, say, the recently segmentally demyelinated axons of 
the optic nerve, although such an event awaits description. 

Although newly segmentally demyelinated axons typi
cally exhibit conduction block, it does not necessarily fol
low that the demyelinated axolemma is inexcitable, 
because it may simply not be excited. In a normal myel
inated axon, conduction proceeds by the excitation of each 
node of Ram'ier in sequence, due to the spread of local 
currents generated by the preceding node Wig. 2). This 
excitation is facilitated by the presence of the myelin 
sheath, which reduces the lateral flow of current by virtue 
of its high resistance, and facilitates the longitudinal flow 
of current by reducing the membrane capacitance.* The 
presence of the myelin sheath also focusses most of the 
local current specifically to the very small area of axo
lemma at the node, and it is the outflow of current there 
which depolarises across the nodal axolemma to its tlring 
threshold.  At this time the nodal voltage-sensitive sodium 
channels open, and the ensuing influx of sodium ions gen
erates another local current which serves to depolarise the 
*The cell membrane is an insulator which separates conducting solu
tions which bathe it on either side. Since the inside of the cell is negative 
with respect to the outside (i.e. the resting potential) there is a tendency 
for negative charges to line up on the inside of the membrane and for 
these to attract positive charges from the bathing solution to line up 
along the outer surface of the membrane: this arrangement of charges 
separated by an insulator constitutes a capacitor. Because cell mem
branes are very thin the charges are physically close to each other and so 
they attract each other quite tightly. For the membrane to the depolarised 
and the capacitor discharged. energy (cun'ent) is required and the quan
tity of currem is proportional to the number of charges on the mem
brane. This measure i,. illlUfll. related to the area of the capacitor and to 
the distance separating the potentials (the smaller the distance the more 
charges will he attracted and the greater will be the current required to 
depolam,e the membrane). Inl11yelinated axons, the pre,ence of a bulky 
myelin sheath alnng the internode substantially reduces the internodal 
membrane capacitance si nce the myelin physically separates the 
charged particles from each other. Removal of the myelin by demyel
ination results in a dramatic increase in the area of exposed axolemma, 
and a decrease in the di,tance of ,eparation, and this increases the 
current required to depolarise the membrane, thereby decreasing the 
safety factor for conduction. Readers interested in a more fundamental 
account of membrane capacitance are referred to a text by Hille. '"" 
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Fig. 2. Diagrams showing theliolt' of local currents generated 
by the influx of sodium ions at actil'ated nodes of Ranl'ier in 
normal (A) and demyelinated (B) axons. (B) The .Iajim-jczctorjc)f· 
transmission at the demyelinated internode is redllced because 
(i) the density of outward (depolarising) current is decreased 
since the current is no longer restricted to the narrow nodal gap. 
and (ii) the capacitance of the axolemma[ membrane is sub
stantially increased by the absence of myelin. requiring ([ 
greater flow of current to depolarise the axon to its/iring thresh
old. For further explanation. see text. 

next node in line.25,2(, It follows that for conduction to pro
ceed across a demyelinated internode, the demyelinated 
axolemma must be excited by the flow of local currents 
generated by the action potential formed at the node pre
ceding the demyelinated region. To understand how 
demyelination affects the flow of local currents it is help
ful to consider the 'safety factor' for conduction from 
node to node:27 

Safety factor for conduction == 
Current available to depolarise a node 

Current necessary to depolarise the node 

In normal axons the safety factor may be as high as 
5_7,25.27 but in demyelinated axons the safety factor is 
typically reduced to near unity. If the safety factor is frac
tionally above I, conduction will continue (albeit with a 
reduced velocity, etc.) and there may be few symptoms, 
but if the safety factor is fractionally below I then con
duction will be blocked and symptoms may be expected. 
Many multiple sclerosis (MS) patients appear to have 
large numbers of demyelinated axons with a safety factor 
near unity, and so even very small changes in the safety 
factor for conduction can have profound consequences on 
the severity of the neurological deficit. 

The reduced safety factor associated with demyelina
tion arises primarily from two factors. First, the loss of the 
myelin means that the local currents are no longer fun
nelled specifically to the small area of nodal axolemma. 
but rather become dissipated over a larger area of the 
demyelinated internode. Consequently the current avail
able to depolarise any given area of membrane is reduced, 
and the safety factor is reduced. Second, the uncovering of 
a large area of axolemma by demyelination results in a 
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large increase in the membrane capacitance of the demyel
inated internode, and therefore a proportionately larger 
current is required to depolarise the membrane, again 
reducing the safety factor. In fact the geometry of the 
internode before the demyelinated stretch, and of the 
demyelinated segment itself, may mean that the safety fac
tor is so low that conduction in some demyelinated axons 
would inevitably be blocked even if the demyelinated axo
lemma were excitable. 

These concepts are discussed further elsewhere, and are 
sometimes grouped under the concept of an 'impedence 
mismatch' at the site of demyelination2X-11 (see also Ras
minsky ef al.12 and Smith ef al.ll). However, although con
duction might inevitably be blocked in some axons, it is 
now known that, with time, conduction can be restored 
along central demyelinated axons (see next section), and 
thus while impedance mismatch must occur it cannot be 
an insuperable barrier to conduction in all axons. 

However, the degree of demyelination is only one of 
several factors influencing the presence or absence of con
duction block. Other factors are the time which has elap
sed since demyelination was established, the geometry of 
the internode preceding the demyelinated stretch, the tem
perature (see Effects of Temperature), and properties of 
the previously internodal axolemma. 

The interval since the demyelination was established is 
important since it seems that although freshly demyel
inated axons routinely exhibit conduction block, the axons 
can adapt to the demyelinated state such that conduction 
may eventually be restored. Certainly. in the segmental 
demyelinating lesion induced by the intraspinal injection 
of ethidium hromide14 there is an initial period of con
duction block which persists for approximately 2 weeks 
after segmental demyelination is established, and only 
then is there the appearance of appreciable numbers of 
demyelinated axons which conduct successfully through 
the lesion (P. A. Felts and K. 1. Smith, unpublished obser
vations). The precise changes which occur during the 2 
week period are not known, but probably include an 
increase in the sodium channel density along the demyel
inated axolemma,nll and the development of contacts 
between the axons and glial cell processes.35-3X 

The dimensions of the internode(s) preceding the 
demyelinated region are important since the safety factor 
for conduction will be increased if this internode is rela
tively short so that the driving node is relatively close to 
the demyelinated axolemma:28 a short internode preceding 
the demyelinated region may be able to compensate for 
other factors which may not be optimal for conduction in a 
particular axon. The properties of the demyelinated axo
lemma are of paramount importance since conduction 
cannot occur across the length of a segmentally demyel
inated internode unless the axolemma actively propagates 
the impUlse: however. the properties of this axolemma are 
largely unknown. The relatively low density of sodium 
channels along demyelinated axolemma has already been 
discussed, but there are also likely to be important changes 
in the density, types and distribution of potassium chan-
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nels, electrogenic pumps and ion exchangers (reviewed in 
Waxman and Ritchiel,!). 

RESTORATION OF CONDUCTION IN 

DEMYELINATED AXONS 

Although McDonald and Sears found that conduction was 
typically blocked in axons passing through larger demyel
inating lesions (> 5 mm in length), II C.w they found that 
conduction continued in some axons passing through 
smaller lesions.ILw The conduction was not normal (see 
below), suggesting that the axons were among those 
which had been affected by the lesion. This early study 
examined the central demyelinating lesion induced by the 
injection of diphtheria toxin into the cat dorsal 
columns,7 9AII but, as noted above. this lesion contained 
several types of demyelination. including segmental 
demyelination, paranodal demyelination.'J partial demyel
ination (i.e. myelin thinning(9 and. starting at 19 days. 
axons repaired by remyelination.' The demyelinated por
tions of the axons were either completely naked, or par
tially or completely ensheathed by astrocytic or Schwann 
cell processes.? Because the lesion contained a range of 
myelin abnormalities. it was not possible to determine 
whether conduction would occur in the segmentally 
demyelinated axons which are prubably of most relevance 
to central demyelinating diseases such as MS and optic 
neuritis. The more recent studies of conduction in central 
demyelinated aXOllS have used more homogeneous 
lesions, but have still not been able to determine the pres
ence or absence of conduction in segmental ly demyel
inated axons.IO 1135 

This problem has, however. recently been overcome 
through studies in which the conduction properties of indi
vidual demyelinated central axons have been established, 
and then the axons labelled with horseradish peroxidase so 
that they could subsequently be identified beneath the 
light and electron microscope (P. A. Felts and K. J. Smith. 
unpublished observations). These studies have established 
that segmentally demyelinated axons can conduct, and 
that they have the properties expected of sLlch axons, as 
described below. The studies have also raised the possi
bility that the patchy or continuous ensheathment of 
demyelinated axons by glial processes, even without 
remyelination, can promote the restoration of conduction, 
although we have found that continLlous ensheathment is 
not an absolute requirement for conduction. The presence 
of conduction in at least some demyelinated axons which 
remain unensheathed for portions of their length is of par
ticular interest with regard to earlier immunocytochemical 
observations showing that it is only glial-ensheathed 
demyelinated central axons which exhibit high densitie� 
ofaxolemmal sodium channels, "  and to other studies 
showing that node-like axonal specialisations can form 
along demyelinated central axons. but only at sites where 
the axons are contacted by glial processes.153X 

However, although some unensheathed demyelinated 
axons can conduct, it is too soon to conclude that unen
sheathed demyelinated axolemma can be excitable, since 

at present the longitudinal extent over which demyelinated 
axons can be unensheathed, and yet still conduct, remains 
unknown. If the length is relatively short (e.g. 100 J.lm), 
then it may be that conduction could continue in a 'micro
saltatory' manner even if the unensheathed axolemma 
were inexcitable, as appears to be the case in some 
demyelinated axons in peripheral nerve.3.l.41 The presence 
of conduction in at least some continuously or patchily 
ensheathed demyelinated axons, and even in axons com
pletely unensheathed for short (e.g. 100 J.lm) distances, is 
of interest with regard to a detailed ultrastructural study 
which has shown the presence of these different types of 
demyelinated axon in MS lesions:41 the fact that con
duction can occur in each type of axon can explain the sev
eral reports of c linically 'silent' demyelinating lesions in 
pathways where conduction block would be expected to 
cause symptoms.2..lH1 The restoration of conduction to 
demyelinated axons is likely to be an important cause of 
the remissions often seen in central demyelinating dis
eases (see also Conduction in Remyelinated Central 
Axons below). 

Since a major cause of the symptoms in diseases such as 
MS and optic neuritis is conduction block in central 
demyelinated axons. it follows that pharmacological 
agents which can restore conduction may be effective in 
the symptomatic therapy of such diseases. Potential strat
egies for the use of such agents have been discussed45-51 
(and Blakemore, this issues I,,) and in clinical trials some 
agents have been demonstrated to be effective in reducing 
symptOlm 4752-5.1 (see also discussion under Effects of 
Temperature and Transmission of Impulse Trains below). 

CONDUCTION SLOWING 

It is clear that when conduction occurs in central demyel
inated axons it is with a slow velocity, and so the latency of 
conduction is prolonged (Fig. I E). The slowing of con
duction is restricted to the demyelinated portion of the 
tibre.17 The conduction velocity specifically along the 
demyelinated segment has not been determined in central 
demyelinated axons as precisely as in their peripheral 
counterparts, but the velocity is likely to be no more than 
\--3 m/s (P. A. Felts and K. 1. Smith, unpublished 
observations). 

Conduction slowing can account for certain subtle signs 
and symptoms in central demyelinating diseases, such as 
the Pulfrich phenomenon noticed by some patients with 
unilateral optic neuritis5' (one patient with optic neuritis 
reported that oncoming traffic appeared to travel in a curve 
towards him; personal communication), and it may also 
interfere with vibration sensation, which depends upon 
the arrival in the brain of synchronised bursts of activity 
along different axons.i.S6 A generalised, similar delay in 
latency across many axons probably does not impair func
tion significantly. since such delays must occur upon cool
ing of the limbs on a cold day and yet casual observation 
indicates that satisfactory function is preserved. MS 
patients also often fail to perceive any deficit in vision 
even when there are gross delays in' the visual evoked 
potentia!.5) 
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Fig. 3. Records of activity in a single unit isolated from an 
intercostal nerve caudal to an experimental demYelinating 
lesion (hatched area) in the cat dorsal column. The lower record 
shows that when the conduction pathway excluded the lesion the 
unit was able faithfully to follow supramaximal stimuli applied 
at 1000 Hz, but when the lesion was included in the conduction 
pathway (upper record) the unit was only able to follow stimuli 
at 410 Hz: indeed, after the first few responses the unit was able 
to conduct only the impulses arising from alternate stimuli. 1n 
this figure the action potentials are the shorter, continuous lines 
immediately following each stimulus artefact, which appears as 
a dotted line. (Reprinted from McDonald and Searsi7 with 
permission). 

EVOKED POTENTIALS 
Slowed conduction in demyelinated central axons, poss
ibly coupled with a reduction in the total number of axons 
conducting, leads to significant delays and other alter
ations in the visual, somatosensory and brainstem audi
tory evoked potentials.4.57-66 The changes in the form of 
the evoked potential, particularly the increase in latency, 
have proved to be of significant value in the diagnosis of 
demyelinating disorders such as multiple sclerosis.4.67.68 
McDonald69 has estimated that the reduced conduction 
velocity associated with demyelination provides a suf
ficient cause of the prominent delays in visual evoked 
potentials, and this view is supported by the observation 
that in MS the delay in the visual evoked potential persists 
after the recovery of vision, in combination with persistent 
demyelination of the optic nerve.57 

REFRACTORY PERIOD OF TRANSMISSION 
Recordings from single fibres passing through central 
demyelinating lesions have shown that some axons, pre
sumed demyelinated, are less able than others to conduct 
closely spaced pairs of impulses (Fig. ID).17 McDonald 
and Sears introduced the term 'the refractory period of 
transmission (RPT)' to describe this property, and the RPT 
is defined as the maximum interval between two supra
maximal stimuli at which the action potential arising from 
the second stimulus just fails to be propagated through the 
lesion. Thus the RPT is distinct from the more commonly 
described 'refractory period', which measures properties 
of the axon at the stimulating cathode.70 In demyelinated 
axons the RPT is prolonged partly as a consequence of the 
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slowed conduction through the lesion: the reduced con
duction velocity means that the first impulse lingers at the 
demyelinated site, preventing transmission of a second 
impulse following closely behind. McDonald and Sears17 
found the normal range of RPT in the cat dorsal columns 
to be 0.4-1.1 ms (mean 0.86 ms), but this was prolonged 
to 1.2---4.2 ms in most axons passing through the site of a 
demyelinating lesion. More recent studies have confirmed 
that the RPT is prolonged in axons proven upon ultrastruc
tural examination to be segmentally demyelinated, with 
the RPT ranging from 0.55 to 1.4 ms (mean 0.83 ms, 
n = 21) along the unaffected part of the central axons, to 
1.0-27.0 ms (mean 3.76 ms) in the same axons when the 
lesion was included in the conduction pathway (P. A. Felts 
and K. J. Smith, unpublished observations). The factors 
underlying the increase in RPT have recently been studied 
using computer simulations of conduction along partially 
demyelinated axons.71 

TRANSMISSION OF IMPULSE TRAINS 
The prolonged RPT of demyelinated axons inevitably lim
its the maximum frequency at which the axons can trans
mit trains of impulses (Fig. IF, G), but this deficit is only 
one of three deficits expressed by demyelinated axons 
with respect to the conduction of impulse trains. Demyel
inated axons can also accumulate refractoriness with con
tinued activation such that the maximum frequency which 
can be transmitted is progressively reduced (Fig. IH).I7·72 
For example, an axon may be able to conduct two or three 
impulses at 410Hz, but then only to conduct impulses in 
response to alternate stimuli (Fig. 3).17 In other axons 
McDonald and Sears found conduction deficits revealed 
only at 70 Hz,73 a frequency well within the range at which 
axons are normally required to fire. The accumulation of 
refractoriness may well contribute to the increasing weak
ness and fatigue observed upon sustained muscular con
traction in MS patients,' and possibly to the 'fading out' of 
vision reported by some MS patients if the gaze is fixated 
on a point for several seconds.74 

The third deficit expressed by demyelinated central 
axons during the conduction of impulse trains is the 
appearance of intermittent periods of complete con
duction block (Fig. I I). These periods develop after sev-

�10mv 
1 5 

Fig. 4. Record showing bursts of ascending impulses recorded 
Fom a sensory axon in the rat dorsal column, a few millimetres 
rostral to a central demyelinating lesion. The impulses arose at 
the site of demyelination in the absence of any deliberate stimu
lation. (R. Kapoor, P A. Felts and K. J. Smith, unpublished 
observations). 
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Fig. 5. Bursts o/ectopic impulses recorded intra-axonallyfrom 
a sensory axon in a rat dorsal column containing an experi
mental demyelinating lesion. In contrast to the record in Fig . .J, 
the recording micropipette is situated H'ithin the demyelinating 
lesion and the changes ill membrane jJotential ,\'hich generate 
the bursts are clearly seen. The bursts result from {/ plateau of 
depolarisation which is terminated by a period of hyperpolar
isation believed to arise from activity of the N{t IK+ -ATPase. or 
sodium pump. (R. Kapoor, P. A. Felts and K. J. Smith, unpub
lished observations.) 

eral seconds of stimulation at relatively high frequency 
(e.g. 200 Hz), and divide the impulse train into bursts of 
impulses separated by silent intervals of approximately 
0.5-2 s (Fig. 4; R. Kapoor, P. A. Felts and K. J. Smith. 
unpublished observations). In peripheral demyelinated 
axons the periods of conduction block have been shown to 
be due to membrane hyperpolarisation resulting from 
activity of the Na+/K+ ATPase,75.76 and this finding has now 
also been extended to central demyelinated axons (Fig. 5; 
R. Kapoor, P. A. Felts and K. J. Smith. unpublished obser
vations). During the period of 200 Hz stimulation it is 
supposed that a sufficient accumulation of potassium ions 
occurs outside the axon, and of sodium ions inside, that the 
activity of the Na+/K+-ATPase is stimulated: this pump is 
electrogenic, contributing to membrane hyperpolarisa
tion. Bostock and Grafe76 have also discussed other mech
anisms which may contribute to deficits in the 
transmission of high-frequency impulse trains, including 
the accumulation of sodium ions within the axon at the 
driving node,77 and depolarisation of the demyelinated 
axons due to increases in extracellular potassium.7X 

If the intermittent conduction block is due to activity of 
the Na+/K+-ATPase, it may be predicted that inhibitors of 
this pump, such as ouabain, may temporarily alleviate the 
conduction block. However, we have found this prediction 
difficult to prove in I'itm, perhaps due to the relative 
inaccessibility of the central lesion to this particular drug 
(R. Kapoor, P. A. Felts and K. J. Smith, unpublished obser
vations). However, such drugs have been reported to 
improve conduction in peripheral79 and centralXO demyel
inated axons, and to improve symptoms in three of seven 
patients with probable or definite MS.47 

The reduced ability of central demyelinated axons to 
conduct trains of impulses may contribute to the reduced 
flicker fusion frequency observed in patients,SI and which 
is also apparent when monitoring the visual evoked poten
tial:s2,83 similar changes occur in the somatosensory evo
ked potential. 84 

EFFECTS OF TEMPERATURE 
It is well known to many MS patients that changes in body 
temperature can affect symptoms, and as early as 1890 

Uhthoff. an ophthalmologist, described deterioration of 
vision upon exercise.85 Indeed, the effects of temperature 
changes on the symptoms and signs of MS are well docu
mented (Fig. I J, K)86-93 and there have been several 
accounts of the extreme sensitivity of symptoms to 
changes in body temperature (reviewed by Matthews94) 
such as improvements in vision upon drinking a glass of 
cold water,95 or the deleterious effects of sunbathing,96 a 
hot shower,,!7 hot drink, or the use of a hair dryer;98 
changes due to circadian temperature variations have also 
been reported.99IO() Indeed, the deterioration in symptoms 
can be so rapid and severe upon warming that a patient 
may require support to prevent drowning in a hot bath, 101 

and, indeed, a fatal case of scalding in a hot bath has been 
reported.'!7 The effects of warming are relatively specific 
to central demyelinating diseases, and diagnostic use has 
been made of the phenomenon, the 'hot bath test' .102-104 

The temperature-induced changes in symptoms are typi
cally reversible (but see also Berger and Sheremata96 ,105 

and DavisluO). 
The effects of temperature on the symptomatology of 

MS predict that temperature increases will contribute to 
conduction block in central demyelinated axons, and vice 
versa, and this view is supported by computer simu
lations 18,46 and experimental observations in peripheral 
demyelinated axons.49,50.l07-11U The effects of temperature 
on central demyelinated axons have now been examined 
directly, using the demyelinating lesion induced by the 
intraspinal injection of ethidium bromide (Fig. 6) (P. A. 
Felts and K. J. Smith, unpublished observations). Notably, 
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Fig. 6. Two series of superimposed, monophasic compound 
action potentials recorded in vitro from a normal rat dorsal 
column (A) and one containing an experimental demyelinating 
lesion (B). The delayed peak in (B) is due to conduction in seg
mentally demyelinated axons. The stimulating and recording 
conditions remained constant throughout the experiment, but 
the different records were obtained as the central length of the 
column (which contained the demyelinated lesion in B) was pro
gressively warmed from 30 DC to normal body temperature 
(37 DC). Note that the temperature changes had little effect on 
conduction in the normal axons in (A) and (B), but that many 
more demyelinated axons were able to conduct at the cooler 
temperatures: virtually no demyelinated axons were able to con
duct through the lesion at body temperature. (P. A. Felts and K. 
J. Smith, unpublished observations). 
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virtually no demyelinated axons are able to conduct at 
normal body temperature, despite the presence in the prep
aration of many axons capable of conducting when 
cooled. This type of observation has encouraged a search 
for pharmacological agents which may mimic the effects 
of temperature in the hope that such agents may provide an 
effective symptomatic therapy for central demyelinating 
diseases (reviewed by Davis and Schaut'-lX and Sears et 

al .49) . Attention has focussed on the potassium channel 
blocking agents, notably 4-aminopyridine (4-APJIII 115 
(see also Bostock et at . .!5) , and this agent has been shown 
to reduce symptoms in MS patients in clinical 
trials.53.54.93.116-120 The effects of 4-AP on conduction in 
experimentally demyelinated central axons have now 
been investigated ill vitro (P. A. Felts and K. J. Smith. in 
preparation). 

Temperature exerts its effects mainly by altering action 
potential duration.7o.121 For example. temperature in
creases shorten action potential duration . largely due to 
the temperature coefficient for sodium inactivation being 
larger than that for sodium activation . .I6Ax The relative 
brevity of the action potential at increased temperatures 
allows less time for local currents to depolarise the 
demyelinated axolemma to its firing threshold. and. in 
cases where the safety factor for conduction is only frac
tionally greater than unity, conduction block is likely to 
occur. Variations in the extracellular calcium ion concen
tration can also modulate symptoms in MS.I'2 

ECTOPIC ACTIVITY 

The presence of ectopic discharges is well documented in 
peripheral demyelinated,123-125 chronically inj ured I '6 and 
amyelinatedl27-129 axons, but studies in central demyel
inated axons are few. 

Smith and McDonaldl30131 reported the presence of 
ongoing discharges in axons passing through a demyel
inating lesion caused by the intraspinal injection of Iyso
phosphatidyl choline, and showed that the discharges 
arose ectopically at the lesion , propagating in both direc
tions from it. The discharges were either of evenly spaced 
impulses, or of bursts of impulses (Fig. I L). and they con
tinued for long periods (hours) in the absence of any delib
erate stimulation. These authors argued that since the 
discharges occurred for prolonged periods across many 
sensory axons, the discharges provided a sufficient 
explanation for many of the 'positive' symptoms com
monly experienced by patients with central demyelinating 
disorders, such as tingling paraesthesiae. 

The demyelinated axons were also extremely mech
anosensitive (Fig. 1M), such that the firing rate of dis
charging units was markedly increased upon even small 
deformations of the lesion using an eyelash. and such 
mechanical stimulation also induced activity in many 
axons which were otherwise electrically �ilent. This 
mechanosensitivity of the axons has been advanced as an 
explanation for the phenomenon of Lhermitte ' s symp
tom,m,133 namely a radiating pins and needles sensation 
upon stretching the cervical spinal cord, for example upon 
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bending to tie a shoe lace: the cervical cord is a common 
location for lesions in MS patients. 

Mechanosensitivity can also explain the perception of 
phosphenes observed upon eye movement by some 
patients with demyelinating lesions in the optic nerves.l.1-l 

The mechanism( s) underlying the ectopic discharges 
are 110t clearly understood. Ephaptic interactions (cross
talk) between axons may account for some discharges, but 
although such interactions have been shown between 
normal and amyelinated peripheral axons in the dys
trophic mouse.I'3,129,11:; they have yet to be shown between 
demyelinated axons within the eNS. Recent observations 
suggest that spontaneous activity can, however. arise in 
central demyelinated axons from inward. and thereby 
excitatory. potassium currents consequent upon a locally 
raised external potassium ion concentration 110.137 (see also 
Young ef at.llS J. Thus previously silent demyelinated cen
tral axons can be induced to express ongoing bursts of dis
charges (not shown). and bursts of impulses initiated by 
single action potentials (Figs. IN, 7). by procedures 
expected to raise the extracellular potassium 
concentration. 

Potential mechanism(s) underlying the paroxysmal 
symptoms of MS"-l have heen discussed by Rasminsk/2) 

and may involve the ephaptic excitation of myelinated 
axons which happen to be located adjacent to demyel
inated axons. It is also possible that if adjacent demyel
inated axons are not separated by intervening glial 
processes they may be able to excite each other, resulting 
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Fig. 7. Records ohtained intra-axonall.\' fi"0I1l a demyelinated 
sensor\" axon in the rat dorsal col limn, at or near the site or the 
lesion, Single elcctric stimuli (/f 1 H� (arrmrs) prescl1lcd to the 
donal colllllln 011 the opposite side or the lesion normally 
resulted in single impulses lI'hich trm'ersed the lesion to the 
reu)/"(]ing electrode. HOH'el'er. II/fer sereral seconds or high
f/"n/uenC\' stimulation (2()() H;, nO/ s/z()\\'Il) the sin,gle illlPulses 
(arr(}l\'s) el'Oked short hu nts oj' additiO/wl. ectopic impulses as 
the\" tral'ersed the site o(the lesion. (R. Kapoor, P. A. Felts and 
K . .I. Smith, ul1puhlishcd ohsermtiolls.) The high}i'eqllency 
stilllulation is expecled to mise the extracellular potassium iOIl 
cOllcenlratiol/. 
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in a synchronous, lateral spread of excitation across many 
axons,139 although this remains unproven. 

TOXIC OR 'NEUROELECTRIC BLOCKING' 

FACTORS 

A research area of great potential importance to MS con
cerns the putative existence of circulating factors which 
can modulate symptoms in the disease. The evidence in 
favour of such factors is unfortunately conflicting and 
inconclusive, but it seems appropriate to include this 
research area in this review which attempts. in part, to ill
uminate the genesis of symptoms in MS. 

The research is founded in the belief by some investi
gators that the production of symptoms in MS cannot be 
completely explained by demyelination.I�II.I�1 (see also 
RoseI42). This view was encouraged by the observation 
that relapses and remissions can occur quite rapidly in the 
disease, perhaps too rapidly to be readily explained by 
demyelination and remyelination alone: 1�1 indeed. at the 
time, remyelination was thought to be very limited or 
absent in this disease. The suspicion that MS symptoms 
were not necessarily due to demyelination was strength
ened by several reports which described the presence of 
prominent symptoms in animals with EAE. although little 
or no demyelination was detected to account for 
them.144 151 These findings indicated that unknown 
factor(s) were contributing to the symptoms of MS and 
EAE by blocking conduction: these factors were cal led 
neuroelectric blocking factors. 

As time has progressed, however, the rationale pre
dicting the presence of neuroelectric blocking factors has 
been largely undermined, for we now know that demyel
ination can occur quite rapidly in both central and periph
eral nervous systems, iii. I 1.15:' and careful histological study 
of animals with EAE has revealed ample demyelination to 
account for the deficits observed. 15.1-156 Furthermore. it is 
now clear that remyelination can be quite complete in both 
the early MS lesion,157 15x and in EAE.154 and where it 
occurs it presumably contributes to remissions." However, 
although the reasons for predicting the presence of neu
roelectric blocking factors may have diminished. there are 
several reports that such factors are present in demyelinat
ing disorders. 

The first, relatively small study indicating the possible 
presence of such factors indicated that. within minutes of 
application, sera obtained from animals with EAE and 
from MS patients during acute exacerbation partially 
blocked reflex activity evoked in cultured mouse brain and 
spinal cord.159 The blocking activity was described as 
reversible and dependent upon complement. although few 
controls were examined. The findings were sup
portedI4116o.If>1 by similar studies examining isolated frog 
spinal cord, which, in addition. indicated that the blocking 
activity was specific to MS sera and was not found in 
either normal human sera or in sera from patients with sev
eral other neurological disorders. These findings were 
confirmed by Lumsden et al.1lo:' 163 using guinea pig tissue 
and again by Schauf et al.IM using an isolated frog spinal 

cord preparation. The blocking activity was later found to 
be correlated with the occurrence of clinical signs and 
symptoms in MS.165.166 

However, Seil's group, examining reflex activity evo
ked in mouse cerebral neocortex, found neuroelectric 
blocking activity not only in sera from patients with MS 167 
and from rats with EAEIloR (irrespective of the clinical 
state)1lo9 but also in sera from control rats and from normal 
human volunteers. Blocking activity was also found in 
normal rat and human sera by another group. 170 Seil et al. 
therefore concluded that the neuroelectric blocking activ
ity was a non-specific property of many human and animal 
sera, although these authors pointed out that the blocking 
activity may stil l  act relatively specifically since it is only 
when the blood-brain barrier is compromised (as it is in 
MS) that serum factors may be expected to gain access to 
the CNS.167 

It should be noted that further studies by other groups 
failed to detect blocking activity in normal sera, or sera 
from patients suffering from Guillain-Barre syndrome 
(unpubl ished observations cited in Schauf and Davis 143) or 
strokesllo5 (but see Schmutz et al.171), although blocking 
activity was found in sera from patients with amyotrophic 
lateral sclerosis 172 and certain other diseases.171 The 
reasons for the conflicting findings remain unexplained, 
but have been attributed partly to differences in the record
ing techniques and in the interpretation of the data, and to 
differences in the type of explant examined. 173.1 74 

The identity of the blocking factor(s) remains uncertain, 
although most studies report a suspected role for anti
neural antibodies, due partly to the apparent dependence 
of the blocking activity on complement, and partly to the 
localisation of the blocking activity in the IgG-containing 
fraction of serum.IHI66.171J Furthermore. plasma exchange 
in MS patients, which removes factors such as blood
borne antibodies and immune complexes, also reduces or 
eliminates serum neuroelectric blocking acti vity.143, 175 If 
antibodies are involved, then it is likely that they act by 
means other than demyelination 176.177 since their action is 
both rapid (within minutes) and reversible. It seems likely 
that factors other than antibodies are also involved, since 
Sei I' s studies indicated the presence of several serum neu
roelectric blocking factors, not all of which were anti
bodies and only some of which were complement 
dependent. 167 

With more recent knowledge it seems possible that 
some of the blocking activity may have been due to factors 
associated with inflammation,66.17x since several cytokines 
have now been reported to affect ionic currents in neural 
tissues.l7Y IX6 Whether cytokines are involved in the modu
lation of either synaptic transmission or of conduction in 
demyelinated axons remains uncertain, although it is an 
interesting possibility which forms an exciting and poten
tial ly rewarding area for current and future research. 

Notwithstanding the above, the relationship between 
neuroelectric blocking factors and the symptomatology of 
demyelinating disease remains obscure, as does the poten
tial mechanism of their action in the disease. It is note-
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worthy that neuroelectric blocking activity is assayed by 
detecting the ability of sera to depress the amplitude of 
reflex acti vity evoked by the electrical stimulation of CNS 
tissue. Thus the sera are assayed mainly for their actions 
on synaptic transmission, and not for their action on 
demyelinated axons. This distinction is important but 
easily overlooked since the relevant literature is concerned 
with the role of blocking factors in the -;ymptomatology of 
demyelinating disease. and some author� suggest that the 
factors might be expected to cause conduction block in 
demyelinated axons due to their low safety factor for con
duction . 1 6), 1 66 Tn fact , when sera with potent neuroelectric 
blocking activity were eventually tested for their effect on 
myelinated and demyelinated axons. no detectable effect 
was found. 1 43 The sera did. however, inhibit transmitter 
release at the frog neuromuscular junction, I.1-'  comistent 
with the blocking effect detected on reflex ac t i vity in the 
CNS. 

Therefore. if neuroelectric blocking factors do affect 
symptoms in MS, it is likely that they do so by depressing 
synaptic transmission ,  rather than by promoting con 
duction block in demyelinated axons .  However. whether 
the factors have any role in the symptomatology of MS is 
uncertain, since cerebrospinal fluid wa" found to be 
generally free of blocking activity, even in those patients 
in whom corresponding serum samples had potent neu
roelectric blocking actjvity. I �3 In summary. v,'hile it seems 
likely that factors other than demyelination may affect 
symptoms in MS, especially given the low safety factor 
for conduction in many demyelinated axons. the role of 
serum 'neuroelectric blocking factor s '  remai ns unclear. 

CONDUCTION IN REMYELINATED 

CENTRAL AXONS 

There are two reasons for sll specting that the repair of 
demyelination by remyelination may not necessarily be 
accompanied by the restoration of cLlnduction to the 
repaired axons. First, remyelinated internodes are �horter 
than the normal internodes they replace, 18 7 18K and so the 
new nodes of Ran vier are formed around axolemma which 
was previously covered by myelin and which therefore 
lacks the high concentration of sodium channels normally 
present at the node. I'! Second, remyelinated internodes are 
noticeably thinner than normaL 187 . 1 88 which may be 
expected to increase membrane capacitance and thereby 
reduce the safety factor (although computer simulations 
suggest that even a very thin myelin sheath may be com
patible with conduction) . I S , l89 

The diphtheria toxin lesion, which revealed many of the 
fundamental conduction properties of central demyeli
nated axons, does not undergo extensive remyelination7 
and determination of the conduction properties of central 
remyelinated axons awaited development of the central 
LPC lesion. 190 In this lesion all the demyelinated axons are 
eventually repaired by remyelination, effected largely by 
oligodendrocytes although some axons are repaired by 
Schwann cells which invade the central nervous system.  
Serial electrophysiological study of the lesion established 
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that remyelination was accompanied by the restoration of 
conduction to most, if not all, of the remyelinated 
axons, I I I .1 1  and that the repaired axons conducted securely, 
with refractory periods of transmission indistinguishable 
from normal : the conduction velocity was also improved 
such that the latency of the response was returned to 
within normal lim its . A later. similar, study established 
that the repair of central axons by Schwann cells (the per
ipheral myelinating cell ) was similarly effective in restor
ing secure conduction,12 raising the possibility that the 
transplan tation of Schwann cells to central lesions may be 
effective in reversing symptoms. Such an approach would 
result in the formation on the central axons of peripheral 
myelin which. by analogy with the sparing of myelin in 
the peripheral nervous system in MS. may be resistant to 
the disease process .  

Relllyelination is believed to contribute to recovery 
from acute EAE, 1 55 and since it is now known that remyel
inat ion can be quite widespread in some lesions in 
MS, 157 1Y I192 it is probable that remyelination contributes 
to the remissions commonly seen in this disease.6 

SOME AVENUES FOR THE SYMPTOMATIC 

THERAPY OF CENTRAL DEMYELINATING 

DISEASE 

It is now proven that central demyelinated axons can con
duct. but it is also clear that frequently they fail to conduct 
in central demyelinating diseases . Since the fundamental 
wiring of the eNS is largely preserved in such diseases, it 
is reasonable to believe that an effective symptomatic 
therapy may be built around the reversal of this persistent 
conduction block. Certainly this belief is encouraged by 
the common observation that symptoms can be substan
tially improved by the restoration of conduction resulting 
from a reduction in body temperature (see above). There
fore, one promising avenue for research concerns the iden
tification of safe drugs which mimic temperature 
reductions in that they restore conduction by prolonging 
action potential duration. A problem with some of the 
agents examined so far (e.g. scorpion toxin, 4-AP) is the 
possibility of convulsant side effects resulting from the 
increased quantit ies of transmitter released at central syn
apses in response to the prolonged action potentials. How
ever, it is conceivable that agents may be found which 
bind to channels (yet to be identified) which are specific to 
regions of demyelinated central axolemma, and such 
agents could be relatively free from dangerous side 
effects. Certainly. the realisation that there are a multi
plicity of channels and receptors (particularly potassium 
channels but including ATPases. ion exchangers and 
receptors for neurotransmitters) along normal and 
demyelinated axons gives realistic hope that a pharmac
ological therapy targeted �pecifically at demyelinated 
lesions may be achieved. 

As mentioned above, one potassium channel blocking 
agent. 4-AP, is partially effective in the symptomatic ther
apy of MS. However, there is also evidence that at the con
centrations achievable in patients 4-AP may exert its 
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beneficial effects not by the restoration of conduction to 
blocked axons, as is commonly supposed, but rather by the 
potentiation of synaptic transmission (P. A. Felts and K. J. 
Smith, unpublished observations). It is easy to imagine 
that in a pathway where conduction in many axons is 
blocked, the potentiation of synaptic transmission in the 
few remaining axons may result in a partial remission of 
symptoms. This consideration is exciting in that it raises 
the possibility of a new avenue for the symptomatic ther
apy of MS, namely one directed at synaptic transmission. 
This approach would circumvent the problem of persistent 
conduction block in demyelinated axons (P. A .  Fel ts and 
K. J. Smith, in preparation). 

The potential role that oedema, inflammation and 
inflammatory mediators may play in the promotion of 
conduction block remains uncertain and largely unex
plored, but it is likely that research into these arcas wil l  be 
rewarded with new insights for the symptomatic therapy 
of central demyelinating disease. 

With regard to 'positive' symptoms (e.g. paraesthesiae 
and phosphenes), it is likely that potential avenues for the 
elimination of ectopic impulses may arise from a better 
understanding of the mechanism( s) underlying their gen
eration. Recent evidence 136.137 implicates a role  for dis
ordered potassium homeostasis which may be overcome 
by manipUlating the glial environment of the demyel
inated axons. 

It is known that remyelination is effective in restoring 
secure conduction to demyelinated axons. J() 12 but that 
remyelination is typically limited in extent in MS. Now 
that it is possible to use MRI safely  to identify the 
locations of demyelinating lesions during life, it may be 
possible to transplant cultured glial or Schwann cells 
directly into symptomatic lesions (e.g.  in the optic nerve) 
to effect both a morphological and functional repair (Tar
gett and Blakemore, this issue 5 1  a) . A lternatively, it may 
be possible to administer glial growth and/or trophic fac
tors to promote the natural tendency of central demyel 
inating lesions to undergo repair by endogenous glial 
cells . The apparent ability of glial cel ls  to influence the 
assortment of voltage-sensitive channels along demyel
inated axolemma's offers another avenue by which glial 
transplantation may promote remission from symptoms. 
Other potential avenues for the therapy of central demyel
inating diseases have recently  been reviewed. 1 9 511 9 l 
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