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SUMMARY 
Cellular automata modelling is a useful mathematical 
technique for simulating complex biological systems. An 
area to be studied is broken into a lattice of adjacent cells 
depicted by picture elements on a computer screen. The 
initial tissue pattern evolves on the computer screen, 
directed by a rule that considers the state of each cell and 
its neighbours in the lattice. Simulations of wound repair, 
cell proliferation, retinal circulation and pigment aggre­
gation serve to illustrate the potential value of cellular 
automata modelling in ophthalmic research and practice. 

Mathematical simulation can provide insights into disease 
and therapy, but most physicians have a healthy scepticism 
for mathematical models of medical phenomena. Models 
are typically cloaked in esoteric terms and methods, sel­
dom having real world clinical value. Realistic medical 
models are difficult to formulate for many reasons, but the 
complexity of biological systems is the greatest obstacle. 
In the past decade, new methods have been developed for 
describing complex systems,I-6 and there is new hope for 
devising computer models that are useful in the complex 
world of clinical practice. 

Mathematical models usually have a top-down or bot­
tom-up perspective.7-9 In top-down, phenomenological 
methods, a system is studied experimentally, inferences 
made about observations, and a model relating the 
system's variables devised to predict the system's behav­
iour. Examples of this empirical approach include 
multiple regression models for predicting intraocular lens 
powerIO and neural networks or expert systems for diag­
nosing retinal disease. I I In bottom-up, ontological 
methods, key variables and their relationships are postu­
lated, system behaviour calculated, and model perform­
ance improved by comparing predictions with 
experimental observations. Examples of this theoretical 
approach are heat conduction models used to calculate 
chorioretinaI12.I3 or corneal14 temperature increases from 
laser exposure. 
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In the physical sciences, mathematical models serve as 
vehicles for testing theories and designing experiments. 
Mathematical insights often anticipate experimental pro­
gress. For example, quantum mechanics was the foun­
dation for the discovery of lasers and semiconductors. 
Traditional bottom-up, reductionistic reasoning assumes 
that systems can be understood fully by studying their 
individual parts independently. This approach fails, how­
ever, when confronted by complex phenomena such as 
weather systems or turbulent blood flow in retinal vessels. 

A biological system can be thought of as a dynamical 
system. A dynamical system has a state and a dynamic. I Its 
state is specified by the values of variables needed to 
describe the system at a particular time. Its dynamic is a set 
of equations or rules that determine how the variables 
change with time. The variables that specify the system's 
state define a multidimensional phase (or state) space. 
Thus, the evolution of a dynamical system may be viewed 
as a trajectory (or orbit, or path) in phase space. For 
example, the clinical history of an individual retina may 
be represented as a trajectory in retinal phase space, 
altered by growth, ageing, disease and therapy. The 
development of effective mathematical models of retinal 
behaviour requires identifying the key structural and 
physiological variables that define retinal phase space. 

Mathematical models can be classified as continuous or 
discrete. The dynamic of a continuous model is usually a 
set of differential equations that governs how the system's 
state evolves continously in space and time. Continuous 
models provide valuable descriptions of heat flow, tissue 
deformation and other phenomena describable by differ­
ential equations.8,14 The dynamic of a discrete model is 
usually a set of difference equations6,8,12 (a mapping) or a 
cellular automaton5-7,15-18 that governs how the system 
evolves in individual time steps when space is divided into 
individual cells. 

Mathematical models can also be classified as determi­
nistic or indeterministic.8 In deterministic models, vari­
ables are governed by equations that completely specify 
their future values. In indeterministic (or stochastic) mod-
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els, randomness is built into the relationships of the vari­
ables and their temporal evolution. A great advance in the 
past two decades has been recognition that completely 
deterministic systems can be quite unpredictable. 1 -4 
Inaccuracies are introduced by the limited precision with 
which a system's variables can be specified at any one 
time. This imprecision eventually dominates the system's 
behaviour, a phenomenon known as deterministic chaos. 
Since chaotic systems can appear to have random behav­
iour, seemingly random patterns in clinical systems may 
arise from simple forces governing complex systems, and 
these patterns may hold the key to understanding under­
lying forces and devising therapeutic strategies. 

Cellular automata simulations are discrete, determinis­
tic mathematical models, powerful new alternatives to dif­
ferential equations. Automata can solve the same types of 
problems as differential equations, but they may be better 
suited to simulating biological systems with many degrees 
of freedom on contemporary serial and emerging parallel 
computer architectures. Cellular automata have been used 
to simulate hydrodynamics and thermodynamics,7,15-17 
chemical reactions,19 autoimmunity,20 tumor growth21 and 
excitable neural media.22 In this report, the usefulness of 
cellular automaton modelling in ophthalmic research and 
practice will be demonstrated in simulations of tissue 
repair, cell proliferation, retinal blood flow and pigment 
aggregation. 

METHODS 
1. Automata basics 
In a cellular automaton simulation, a region to be studied 
is broken up into a uniform lattice of adjacent cells. In two 
dimensional automata, each cell in the lattice may be 
represented by a single pixel (picture element) on a com­
puter screen. Each cell can occupy one of a finite number 
of states, depicted by the colour of the pixel representing 
it. An initial screen pattern is formed by assigning a state 
to each cell. The initial screen pattern is known as the first I 

generation of a cellular automaton simulation. 
The initial screen pattern (first generation) of an autom­

aton is changed to a second screen pattern (second gener­
ation) according to a rule. This change represents a single 
time step in the automaton's evolution. The rule selects 
the state of each cell in the second generation according to 
the state of the cell and its eight neighbouring cells in the 
first generation. The third generation is determined by 
applying a rule to the second generation, and so on. Thus, 
a cellular automaton pattern evolves in discrete time steps, 
generation by generation, when a rule is simultaneously, 
independently and uniformly applied to each lattice 
ceI1.6,7,1 5 The appearance of the pattern changes (grows, 
evolves) on the computer screen as the state of cells 
changes from one generation to the next. Different rules 
produce different types of changes in cell patterns. 

2. Automata rules 
Cellular automata use totalistic, semitotalistic, and par-
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titioning rules.7,15 ,23 Totalistic rules treat each cell of the 
lattice equally. When a calculation is performed to deter­
mine a cell's state in the next generation, the computer 
accesses the same amount of information in the current 
generation about that cell and each of its eight neighbours. 
Memory requirements increase rapidly when more than 
one bit of data are used for each cell in the lattice. Semi­
totalistic and partitioning cellular automata rules are ways 
to increase the complexity of simulations with the limited 
memory available in contemporary microcomputers. 

In a semitotalistic automaton, the computer accesses 
more information about the cell to be updated than its 
neighbours. In this report, an automaton will be used with 
eight bits of information about a cell and one bit of infor­
mation about each of the cell's neighbours (a total of 16 
bits). This limited data on neighbouring cells still restrict 
simulations to very simple systems. 

In a partitioning cellular automaton, the lattice is div­
ided into blocks of adjacent cells, and the algorithm oper­
ates on blocks rather than individual cells.7,15 ,1 6,24,25 Lattice 
partitioning is used in lattice gas models that simulate par­
ticle movement on the computer screen. Lattice gases pro­
vide an alternative to differential equations models of 
certain systems.15,1 6  In the simulations presented in this 
report, the lattice is divided into blocks of four cells, and 
particles move, bounce off each other, and rebound from 
walls (boundaries made up of pre-selected cells) accord­
ing to a purely deterministic automata algorithm, the 
HPP-gas model.7,15,24 

In the HPP model, particle number and momentum are 
unchanged (conserved) in collisions. Initial particle distri­
bution may be uniform or random. HPP particles obey the 
Navier-Stokes partial differential equation for the flow of 
a viscous fluid,1,1 5,24 but the simulation is only approximate 
for the square lattice used in this report. An exact simu­
lation requires a more complicated hexagonal lattice 
model to assure that viscosity is isotropic.7,15 ,25 

3. Software details 
Cellular automata simulations were carried out on a 320 x 
200 pixel lattice (64,000 cells), using the Autodesk CA 
Lab program7 on a Zenith 80386 25 MHz microcomputer 
with VGA graphics. Computation speed varies, but typi­
cally is five generations/second. Eight bits of data are 
available for each cell (a bit is a lor a 0), arranged into 
eight bit planes as shown in Figure 1. Each of the eight bits 
of data can represent a different cell characteristic. 

The combined binary data in each bit plane for a par­
ticular cell determines the state of that cell, a number 
between zero and 255. The computer screen pattern is 
formed by assigning a colour to the pixel representing 
each cell in the lattice, using a drawing utility and a palette 
that specifies a particular colour for each of the states that 
the cell can occupy. The palette can be changed to empha­
sise or suppress information in a particular bit plane. Since 
the eight bit planes are independent, the screen pattern 
actually represents the eight separate patterns in each bit 
plane. Eight bit plane buffers are available for storing, pro-
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BIT PLANE 0 ON 
BIT PLANE 1 OFF 
BIT PLANE 2 ON 
BIT PLANE 3 OFF 
BIT PLANE 4 ON 
BIT PLANE 5 ON 
BIT PLANE 6 
BIT PLANE 7 

1 
0 

0 

STATE 
BINARY 01110101 
DECIMAL 117 

Fig. 1. Cellular automata can be used to simulate clinical 
problems. An area to be simulated is broken up into a lattice of 
adjacent cells. Each picture element on the computer screen 
depicts the state of one cell. An initial screen pattern shows the 
state of each cell in the lattice. The initial pattern evolves in a 
series of time steps according to a rule that considers the state of 
each cell and its 8 neighbours. In the CA Lab program, a 
maximum of 256 states are available for each cell, providing 8 
independent bit planes for storing different types of information 
about each cell. 

cessing or displaying patterns. Rules, patterns and palettes 
can be stored, recalled or interchanged independently at 
any point in a simulation. Cellular automata rules were 
written in the Pascal language. 

Two dimensional cellular automata geometries were 
used in this report, although meaningful biological pat­
terns may be obtained with one and three dimensional 
automata.21•26 A closed (toroidal) lattice topology was 
used, but identical simulations can be performed with an 
open (non-toroidal) screen topology. With a toroidal lat­
tice, the top edge of the lattice (screen) wraps around and 
connects to its bottom edge, and the right edge of the lat­
tice connects to its left edge. With a non-toroidal 
geometry, the lattice ends at the edge of the screen. 

Computer screen patterns were printed on a Hewlett­
Packard LaserJet II with an Adobe PostScript cartridge. 
Patterns were transferred to the printer as postscript files 
or converted to TIFF bitmaps with Applications Tech­
nology Pizazz Plus for editing with Micrografx Designer 
and subsequent PostScript conversion. 

RESULTS 
Figure 2a presents a tissue repair simulation performed 
with a simple, one bit, totalistic algorithm. The automaton 
obeys a simple type of counting (voting) rule.27 If a cell is 
occupied, it remains so; if it is unoccupied, it becomes 
occupied if two or more neighbouring cells are occupied, 
or else it remains unoccupied. One bit of data is available 
to describe each cell and its eight neighbours (a total of 
nine bits). This automaton demonstrates two types of 
behaviour seen in cell layers: ( 1) if a hole is present in a 
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field of occupied cells, the field of occupied cells spreads 
inward to repair the defect; and (2) if one or more fields of 
cells are present in an unoccupied region, the fields expand 
to fill the region. 

The outer border of each of the three patterns in Figure 
2a is the original' wound' size. The outer border of each of 
the more lightly shaded regions is the size of the wound 
after 10, 20 and 30 generations of cell growth (40 and 50 
generations are also shown for the larger lesion). Figure 2a 
shows that automata can accommodate initial patterns of 
arbitrary complexity. For the two wounds on the left side, 

Fig.2a. 

Fig.2b. 
Fig. 2. Cellular automata simulation of tissue repair and cell 
culture growth. In Fig. 2a, the outer border of each of the three 
patterns is the original size of an unoccupied region or 'wound' 
in an otherwise intact tissue layer. The outer border of each of 
the more lightly shaded regions is the size of the wound after 10, 
20, and 30 generations of cell growth (40 and 50 generations are 
also shown for the larger lesion). Automata can accommodate 
initial patterns of arbitrary shape. The two lesions on the left 
side demonstrate that the duration of wound repair depends on 
the width not the length of a linear incision. In Fig. 2b, a field of 
cells (the black ellipse) expands within a circular dish that has 
interrupted linear partitions. The shaded regions show the size 
of the expanding tissue layer after 35, 70, IDS, 140 and 175 
generations. 
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Fig.3a. Fig.3c. 

Fig.3b. Fig. 3d. 
Fig. 3. A simple lattice gas simulation of retinal circulation. In Fig. 3a, the black rectangle at the left side is an initial collection of 
2568 particles representing fluorescein in a central retinal artery. Fig. 3b shows the arterial phase (450 generations) and Fig. 3c shows 
late transit phase (1450 generations) of particle flow. Fig. 3d is the late transit phase (1450 generations) of a simulated inferior branch 
retinal artery occlusion, showing reduced arterial flow and retrograde venous filling. 

Figure 2 also shows that the duration of wound healing 
depends on the width rather than the length of a linear 
incision. ' 

Figure 2b presents a semitotalistic variation of the 
automaton in Figure 2a. Eight bits of data are used for each 
cell and one bit for its eight neighbours (a total of 16 bits). 
The extra seven bits of information provide fixed bound­
aries for the totalistic algorithm used in Figure 1 a. In 
Figure 2b, a field of cells (the black ellipse) expands 
within a circular dish that has interrupted linear partitions. 
The shaded regions show the size of the expanding tissue 
layer after 35, 70, 105, 140 and 175 generations. 

Figures 3 and 4 are HPP lattice gas simulations7.15.24 of 
vascular networks in the retina, using the HPP model 
described above. The black rectangle at the left side of 
Figure 3a is an initial collection of 2568 particles used to 
simulate fluorescein in a central retinal artery. Figures 3b 
and 3c show arterial (450 generations) and later transit 
phases (1450 generations) of particle flow. Flow from left 
to right through the vascular network is driven by the 
higher particle density on the arterial than the venous side. 
Figure 3d is the late transit phase (1450 generations) of a 

simulated inferior branch retinal artery occlusion, illus­
trating decreased local arterial flow and retrograde venous 
filling. 

Figure 4 is a simple simulation of foveal circulation in 
which four blocks of particles ( 1512 particles/block) enter 
a rotary capillary network through four radial arterioles 
and exit through four radial venules. Figures 4a and 4b 
show arterial (250 generations) and late transit phases 
( 1250 generations) of the simulation. Figure 4c is the late 
transit phase of a simulation ( 1250 generations) where 
there is a leaking microaneurysm inferiorly. Particles that 
leak from the microaneurysm accumulate in adjacent 
parafoveal space, a simulation of parafoveal telangiectasis 
with oedema. Figure 4d shows the late transit phase ( 1250 
generations) of a similar computation after partial closure 
of the microaneurysm (as in laser therapy). Fewer par­
ticles accumulate in parafoveal space when the channels 
on either side of the leaky microaneurysm are constricted. 

Figure 5 was computed from an HPP lattice gas model 
modified to simulate aggregation.7 Particles still collide 
and bounce off each other, but now they stick to pre­
selected aggregation walls or individual cells when they 
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Fig. 4. A simple lattice gas simulation of foveal circulation. Particles representing fluorescein enter a rotary capillary neMork 
through 4 radial arterioles and exit through 4 radial venules. Fig. 4a shows the arterial phase (250 generations) and Fig. 4b shows the 
late transit phase (1250 generations) of the simulation. Fig. 4c is the late transit phase (1250 generations) of the system modified by the 
presence of a leaky microaneurysm inferiorly, resulting in parafoveal fluorescein accumulation. Fig. 4d shows the late transit phase 
(1250 generations) of a similar simulation after partial closure of the microaneurysm. Less fluorescein accumulates in para foveal 
space after channels on either side of the leaky microaneurysm are constricted as in laser therapy. 

encounter them. Thus, particles move across the screen 
until they strike and become part of the walls or cells, pro­
ducing aggregation patterns that grow in size. 

Figure 5a is the initial pattern for an HPP-gas aggrega­
tion automaton, showing a vascular pattern (walls), a ring 
of aggregation points temporal to the macula (point 
walls), a collection of particles within the aggregation 
ring, and a random layer of particles that increases in 
density from the centre to the periphery of the figure. 
Figure 5b shows the automaton after 40 generations of 
growth, illustrating aggregated particles along vessel 
walls and in a circinate pattern around the aggregation 
points. Perivascular pigment clumpng from lateral pig­
ment migration is seen in retinitis pigmentosa and pig­
mented paravenous atrophy. Circinate rings may occur in 
diabetic retinopathy when water removal at the periphery 
of an area of oedema leaves a ring of lipid residue at the 
perimeter of the oedematous region. 

Lattice gas models can also be used for diffusion limited 
aggregation (DLA) computations. IS In DLA, a single 

aggregation cell is placed in the centre of the lattice, and a 
particle does a random walk from a random location on a 
circle centered about the cell. If the particle strikes the 
circle, it bounces back toward the centre of the circle. 
When the particle strikes the aggregation cell, it stops and 
becomes part of a two cell aggregation pattern. Additional 
particles are released one at a time from random locations 
around the circle, attaching to a growing structure.28.31 The 
circle is increased in diameter as the pattern grows in lat­
eral extent. 

The pattern in Figure 6 is an enlarging diffusion limited 
aggregation pattern,28-31 computed directly from the DLA 
algorithm without a partitioning automaton.32 DLA pat­
terns have a fractal dimension (D) of 1.68 ± 0.05/3 span­
ning 2-dimensional space more effectively than a line (D = 

1) but less effectively than a disk (D = 2). In Figure 6, a 
DLA pattern and its fractal dimension are shown at three 
different growth stages. DLA-like patterns occur in a 
variety of situations governed by Laplace's equation such 
as dielectric breakdown34 and viscous fingering.35 Retinal 
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Fig.5b. 
Fig. 5. A lattice gas simulation of retinal pattern formation. 
Fig. Sa shows an initial vascular pattern, an initial ring of 
aggregation points temporal to the macula, a collection vf 
particles within the aggregation ring, and a random layer of 
particles that increases in density from the centre to the 
periphery of the figure. Fig. 5b shows the automaton after 40 
generations of growth, illustrating aggregation of particles 
along vessel walls as in pigmented para venous atrophy and in 
circinate pattern around aggregation points as in diabetic 
retinopathy. 

arterial, venous and capillary patterns have fractal dimen­
sions of 1.63, 1.7 1, and 1.82, respectively, suggesting that 
arteriole and venule formation are Laplacian processes but 
other factors predominate in capillary growth.3! 

DISCUSSION 
The objective of mathematical simulation is accurate pre­
diction of a biological system's future behaviour. From a 
practical perspective, simulations are useful only when 
they are much simpler and faster than original systems. 
Clinical simulations have numerous potential appli­
cations. For example, a retinal simulation could be used to 
test the efficacy of different laser patterns for treating 
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parafoveal telangiectasis or diabetic macular oedema. In 
the past, biological systems have been far too complex for 
conventional differential equation modelling. This out­
look has changed with new mathematical techniques and 
powerful interactive computers. 

Cellular automata are discrete, deterministic, local 
mathematical models. Every pixel on the computer screen 
represents the state of a cell in the automaton lattice. An 
automaton is discrete in three ways: ( 1) each cell occupies 
one of a finite number of states, (2) space is broken into 
individual cells, and (3) an initial pattern evolves in indi­
vidual time steps (generations) when the same rule is uni­
formly and simultaneously applied to each lattice cell. 

Cellular automata models may be computationally irre­
ducible36.37 (unsimulatably complex)9: that is, there may be 
no way of computing an automaton's future pattern that is 
faster than letting it evolve. For certain systems, it may be 
possible to develop reversible automata that run back­
wards in time to identify the patterns that lead to pathol-
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Fig. 6. An enlarging diffusion limited aggregation (DLA) 
pattern, formed when particles stick one by one to a single 
aggregation cell in the center of a lattice. Large DLA patterns 
have a fractal dimension (D) of 1.68 ± 0.05, spanning 
2-dimensional space more effectively than a line (D = 1) but 
less effectively than a disk (D = 2). DLA growth patterns occur 
in nature when processes are governed by Laplace's equation. 
Retinal arterial, venous and capillary patterns have fractal 
dimensions of 1.63, 1.71, and 1.82, respectively, suggesting that 
arteriole and venule formation are Laplacian processes but that 
other factors predominate in capillary growth. 
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ogy. Much of the recent interest in cellular automata is due 
to the success of lattice gas models in describing complex 
physical processes such as fluid flow in three dimensional 
and multiple-fluid systems.16,17 

In a certain sense, cellular automata simulation is image 
processing38. Image processing involves digitising a pic­
ture (breaking it into a finite number of pixels) and chang­
ing pixel darkness (or colour) to emphasise or suppress 
certain types of information. Cellular automata also oper­
ate on images, the initial screen patterns. An automaton 
uses a local rule (based on the state of each cell and its 
neighbours) to transform the initial screen pattern into the 
screen patterns of subsequent generations. 

The ability to change an automaton rule (a dynamic) or 
modify a pattern (the system's state) between generations 
provides remarkable flexibility for clinical simulation. 
Since automaton rules are local, an automaton may be 
thought of a special case of a neural network, where non­
local interactions are permitted.6,1 1 Far more complex 
systems could be simulated by generalising automata to 
permit non-uniformity and non-locality. Microscopic 
detail could be simulated in one grid region without exces­
sive cell numbers by exponentially stretching the lattice 
away from the region.1 2 Non-ocular effects could be 
accommodated by permitting an automaton rule to access 
information from distant lattice locations. The distant 
locations could represent systemic effects evolving inde­
pendently with different algorithms in isolated lattice 
partitions. 

Ophthalmic practice involves identifying abnormal tis­
sue patterns and treating them when indicated. Recognis­
ing and classifying biomicroscopic and ophthalmoscopic 
patterns remain largely subjective processes in contempo­
rary practice, but digital imaging offers a foundation for 
more objective analyses. A digitised image can be quanti­
fied by using a computer to count structures such as micro­
aneurysms,39 to measure areas such as the lateral extent of 
macular exudates40 or non-perfusion,41 to assess the spatial 
frequency of repetitive structures such as the retinal nerve 
fibre layer,42 and to determine the fractal dimension of 
space filling patterns such as the retinal arterial and venous 
arcades.31 

Image analysis is a valuable phenomenological source 
of data for theoretical modelling. Cellular automata are 
well suited to using this data to test theories of patho­
genesis and therapy. It might be argued that the automata 
in Figures 2-5 are more caricature than mathematical 
model. Tissue proliferation certainly depends on many 
factors other than the presence of adjacent cells, and capil­
lary circulation is far more complex than the flow of a vis­
cous fluid through a rigid tube. Nonetheless, the 
simulations are of heuristic value, and with few assump­
tions about structure and interaction, they produce pat­
terns remarkably similar to those seen in clinical practice. 

The simplicity of the simulations in Figures 2-5 is 
imposed by current microcomputer constraints, not the­
oretical limitations. For example, a scanning laser oph­
thalmoscope fluorescein angiogram43-45 of a patient with 
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parafoveal telangiectasis could provide the basis for the 
first generation of a lattice gas simulation. Alternative 
forms of focal laser therapy could then be tested to deter­
mine which provided the desired perturbation of retinal 
circulation with the least damage to underlying photo­
receptors and retinal pigment epithelium. 

Cellular automata simulations with sophisticated paral­
lel computer architectures can be performed currently at 
speeds 104 times faster on lattices 106 times larger than in 
this microcomputer study.1 7 With enough states for each 
lattice cell, automata simulations could address factors 
such as chemical mediation in wound repair, pulsation in 
blood flow, turbulence at arteriovenous crossings that 
might lead to retinal branch vein occlusion, and migration 
and aggregation of debris in pigmentary or pseudoexfoli­
ation glaucoma or macular degeneration. 

A cellular automaton is a metaphor on nature in binary 
arithmetic, no more or less real than any other rational 
conceptualisation of reality. Since an automaton may be 
computationally irreducible, it may also offer the simplest 
mathematical description obtainable for a system. Auto­
mata are vehicles for testing our understanding of reality, 
important members of an emerging new generation of 
experimental mathematical techniques that may dramati­
cally expand the role of computer modelling in clinical 
practice. 

This research was supported in part by Kansas Lions Sight 
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