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Clinical Psychophysics 
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Summary 
New developments in clinical psychophysics allow a non-invasive assessment of visual function 
which may otherwise not be possible. Measurements of spatial and temporal contrast sensiti
vity functions, perimetric rod and cone sensitivity, colour vision testing, and newer tests such 

as hyperacuity thresholds may provide information about the mechanism of an abnormality, 

allow earlier detection of damage, determination of retinal function in the presence of ocular 

media disturbances, and allow more sensitive detection of the effects of treatment on visual 

function. Some methods are more effective in screening or monitoring patients over time while 

others can be used as research tools to investigate the underlying causes of visual dysfunction. 

Emerging technologies such as those based on video displays and computer generated graphics 

and advances in methodology provide potential for new applications. The selection of which 

aspect of visual function to test depends on the condition (e.g., retinal degeneration or 

glaucoma), the goals of the investigation, and the facilities available. These non-invasive 
methods can provide accurate information about retinal function and further improve our 

ability to quantify and document this most important aspect of the eye - its role in visual 
function. 

Psychophysical measurements of visual function 
include conventional measurements such as 
Snellen acuity, visual fields, and colour vision. 
More recently newer types of testing such as 
spatial and temporal contrast sensitivities and 
hyperacuity thresholds have been introduced. 
These provide additional information about the 
function of the visual system beyond that 
provided by conventional tests. A great strength 
of these studies is that they are generally non
invasive, and they allow quantitative investiga
tion of the abnormality of the visual system in 
patients which might not otherwise be attain
able. A major difficulty of the subjective nature 
of the tests is that they require the co-operation 
of the patient and not all patients are able to 
provide accurate data. However, modern 
techniques can provide reliable data from most 
patients and the degree of reliability can be 
assessed to allow a measure of the validity of the 
results. 

It is important to remember that these tests 
measure the function of the visual system as a 
whole (i.e., the optics, the retina, and the higher 
centres of the central nervous system) and before 
any conclusions can be drawn about the locus of 
a visual defect, the potential contribution of the 
other elements must be considered. As an 
example, if the sensitivity of the dark adapted 
periphery of the eye is measured to monochro
matic light of different wavelengths, the normal 
eye would be expected to show a peak near 
500nm and the shape of the function should be 
similar to that of the rhodopsin absorption 
spectrum. However, we would expect a reduc
tion of sensitivity at the shorter wavelengths due 
to absorption by the crystalline lens and this can 
be accounted for if necessary. A further reduc
tion of sensitivity would be expected in the 
shorter wavelengths if the measurements are 
made within the macular region where macular 
pigment could modify the shape of the curve. 
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This too can be taken into account if the 
measurements are made in this region. Since the 
task of the subject is just to report the detection 
of a flash of light (which would typically appear 
colourless), without considering any aspect of 
the quality of the stimulus, we would expect little 
effect of central nervous system factors on the 
overall shape of the function. loIigher order 
effects would mainly be expected to act on the 
reliability of the measurement at each wave
length ("noise"). 

The following is intended to provide an 
overview of some of the newer clinical tests of 
visual function using psychophysical methods 
and will discuss some of the considerations 
required for interpreting the results of these 
tests. In particular, which types of tests may be 
more informative in different conditions and 
what kinds of questions may be answered will be 
discussed. Psychophysical tests, for all their 
difficulties, remain important and cannot be 
entirely replaced by more objective tests. While 
other investigations of the eye provide important 
information, some require the results of 
psychophysical measurements to be fully useful 
(i.e., reflection densitometry) and some are only 
indirect measures. For example, in determining 
whether an eye is suffering from glaucomatous 
damage measurement of intraocular pressure 
does not tell us whether there is loss of vision. 
Further, while a treatment may be effective in 
reducing intraocular pressure, its efficacy in 
sparing visual function may not be simply 
related to its pressure reducing effects. The final 
determining factor in deciding whether damage 
is occurring or hindered must be in the degree to 
which visual function is affected. Hence 
accurate methods for clinical measures of visual 
function remain critically important. 

Spatial Contrast Sensitivity 

A recent excellent series of articles has appeared 
on the subject of the spatial contrast sensitivity 
function (CSF).1-9 It has been used in ocular 
hypertension 10 and applied to the problem of 
optic neuritis. II Typically, a series of gratings of 
differing spatial frequencies is varied in contrast 
to find the threshold for visibility. The resulting 
curve of contrast sensitivity versus spatial 
frequency characteristically shows a peak in the 
medium spatial frequency range (5-10 cpd) with 
a drop-off in sensitivity at both lower and higher 

values. At the high frequency limit near 30 cpd 
a contrast approaching 100 % is required and this 
corresponds to visual acuity measured by the 
Snellen chart. Recent work has suggested a 
discrete loss of sensitivity at some intermediate 
spatial frequencies,12 a possible relation to 
childhood amblyopia, 13,14 and effects of 
cycloplegia. 15 Contrast sensitivities at lower 
spatial frequencies provide additional informa
tion in that in some conditions, a loss of low 
frequency sensitivity has been reported with 
normal high frequency sensitivity and visual 
acuity.4 There is an additional importance in 
finding a loss of lower spatial frequency contrast 
sensitivity in the presence of normal higher 
spatial frequency contrast sensitivity in that this 
provides evidence for non-optical factors as the 
basis of the loss of sensitivity. 

This introduces one of the major problems of 
measuring the CSF; that is, the problem of 
controlling the contribution of the optics. 
Refractive error has a substantial effect on the 
high frequency region of the contrast sensitivity 
function. 16 This implies that if a retinal basis for 
a loss of contrast sensitivity is to be inferred, any 
refractive errors of the eye must be well 
corrected. For the case of simple refractive error 
the correction can be made but must be done 
carefully, including compensation for the 
viewing distance of the test. This is especially 
important for older presbyopic individuals. 
However, even if refractive error is carefully 
corrected, there remain potential optical errors 
which could affect the CSF. Pupil size could 
reduce high frequency contrast sensitivity due to 
diffraction effects if the pupil is unusually small 
(e.g. in the older subject with a miotic pupil or 
in a patient treated with pilocarpine). It could 
have a similar effect if the pupil is unusually 
large because spherical and higher order optical 
aberrations become more important. These 
optical errors can often not be fully corrected. 
Some techniques can, in part, bypass some of 
the optical errors of the eye. These include the 
use of laser interferometry 17 and otherwise 
projecting grating images through the pupil. 18 
However, 'these require a clear region of the lens 
and are not unaffected by scattering bodies or 
lens alterations. It is for these reasons that great 
care must be taken in interpreting the results of 
spatial contrast sensitivity measurements in 
clinical applications. 
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Temporal Contrast Sensitivity 
Temporal contrast sensitivity provides the time 
varying analog of the spatial contrast sensitivity 
function. It is usually represented as the contrast 
sensitivity as a function of flicker frequency in 
cycles per second. Especially in photopic 
conditions, patients will often report that the 
decision of whether a stimulus is flickering is an 
easy one to make. It has proven to show early 
abnormalities in glaucoma and ocular hyper
tension 19 and in light of our current understand
ing of magno- and parvo-cellular systems of the 
primate visual system holds considerable further 
potential. Rod and cone mediated flicker 
sensitivity in the dark adapted eye has shown 
early dysfunction in Rp20 and has proven useful 
in detecting carriers of X-linked RP.21 However, 
in the dark adapted eye, scotopic sine wave 
flicker can be a difficult judgement to make, 
particularly at the low flicker frequencies which 
characterise rod mediated flicker sensitivity. An 
interesting rod-cone interaction has recently 
been found22,23 which has been shown to be 
abnormal in some retinal dysfunctions and is the 
subject of active investigation. 

Perimetry 
Some tests of visual function are inherently 
photopic while others are scotopic so that for 
example, measurements of colour vision using 
colour matching essentially involve foveal cone 
function while measurements of absolute thres
hold perimetry generally reflect rod mediated 
function. However, the distinction sometimes is 
not so clear, so that absolute threshold sensiti
vity to a long wavelength, small area (i.e. 20 
minutes of arc) stimulus in the fovea may be cone 
mediated but outside the fovea may be rod 
mediated. The wavelength composItIOn, 
temporal properties and other characteristics of 
the stimulus can be selected to emphasise the 
relative contribution of the rods and the cones 
and thereby provide a measure of photopic and 
scotopic function. 

Photopic (or mesopic) perimetry has under
gone a revolution and been rejuvenated with the 
advent of computerised perimeters.24,25 Glau
comatous visual field loss has .been a major 
source of interest in this type of perimetry. Much 
activity has centered around controlling poten
tially confounding variables in detecting scoto
mas. These include the effects of defocus,26,27 

comparing serial measurements,28 and the 
problem of variability,29 the effects of age,30 the 
use of various stimulus sizes31 and various 
stimulus spacing,32 the effects of light scatter,33 
fluctuations using different perimeters,34 factors 
affecting LED (light emitting diode) 
perimetry,36 the effects of drugs which constrict 
the pupil, 36 and peripheral field testing.37,38 A 
view which has emerged is the difference in 
character of field loss39,40,41 with diffuse and 
localised aspects which may be related to the 
similar changes seen in the nerve fibre layer. 

Recent work includes early effects of 
glaucomatous damage,42 effects on central 
vision,43 the representation of data in pseudo 3 
dimensional format,44 automated kinetic 
perimetry, 45 acuity perimetry, 46 scotopic 
perimetry in glaucoma,47 high pass resolution 
perimetry,48 and peripheral displacement thres
holds49 which may be considered a form of 
hyperacuity motion perimetry. New types of 
testing have shown some potential for earlier 
detection of damage. The role of newer methods 
is still evolving and the effects of potentially 
confounding variables will have to be investi
gated as well as their appropriateness for general 
clinical use. Like more conventional field 
testing, the effects of optical error, pupil size, 
ocular media changes, age, and other factors 
require consideration and some newer tests may 
suffer from poor patient acceptance or excessive 
testing time. Nonetheless, there is a clear need 
for improvement in photopic perimetry and this 
promises to be an active area in the near future. 

Colour vision 

A recent book on defective colour vision5o and 
the proceedings of a meeting on colour vision 
deficiencies51 provide evidence of the continued 
activity in this area. An especially good review 
has just appeared52 which covers current basic 
research in this area which will no doubt have an 
important impact on clinical questions in the 
near future. An excellent discussion of acquired 
colour vision defects in glaucoma has also 
recently been published. 53 Comparisons have 
been made of colour vision to retinal nerve fibre 
layer appearance, 54 age and perimetry, 55 and 
area of visual field. 56 

A different type of approach is that where the 
blue mechanism has been investigated in terms 
of sensitivity changes (i.e., in glaucoma and 
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ocular hypertension57-59) which includes 
measurements made at different retinal locations 
in the macular region. Measurements of short 
wavelength cone sensitivities have been made in 
the ageing eye60-61 and in macular oedema of the 
diabetic eye. 62 In general, colour vision 
measurements must consider the effects of the 
yellowing of the crystalline lens and ageing.63.64 
These reports of a particular susceptibility of the 
blue mechanism promise considerable potential. 

Retina 

Clinical investigations of the function and mal
function of the retinal degenerations have bene
fitted substantially from the use of non-invasive 
techniques such as psychophysics and fundus 
reflectometry. Much can be learned about the 
underlying causes of the loss of vision from 
these new methods. It is vital to co-ordinate 
these different types of studies to answer 
questions about the underlying causes of the 
dysfunctions. For example, if we wish to know 
whether the loss of night vision in a retinal 
degeneration is entirely due to loss of rhodopsin 
in the photo receptors or whether the defect 
involves a more proximal mechanism such as the 
neural elements of the retina, we must correlate 
the threshold elevation with the measured 
rhodopsin. 

Patients with retinitis pigmentosa (RP) have 
been extensively studied in terms of genetic 
type, clinical findings, retinal function measured 
electrophysiologically and physchophysically, 
and by fundus reflectometry. Several important 
findings have emerged65.66 and a number of 
instruments have been developed for making 
perimetric measurements in scotopic 
conditions.67-69 It is clear that within genetic 
types there are fundamentally different forms of 
disease which are consistent among family 
members. One form shows diffuse loss of rod 
function ("D" type) throughout the retina while 
cone function may be nearly normal until later in 
the disease. In the other form there is 
concomitant loss of rod and cone function in 
retinal regions (" R" type) with areas where rod 
and cone function can be nearly normal early in 
the disease coexisting with regions of severely 
abnormal rod and cone function. 70-71 Further 
there are fundamental differences in the relation 
between rhodopsin and sensitivity.72-74 In the 
"D" type relatively substantial amounts of 

rhodopsin can be measured even where retinal 
sensitivity is severely reduced while the "R" 
type the loss of rhodopsin can account entirely 
for the sensitivity loss. These findings suggest 
fundamentally different processes and the 
classification of RP families into pure RP type is 
important for understanding disease mechanisms 
and for interpreting the results of other studies. 
The relation between rhodopsin levels and 
scotopic sensitivity has also been investigated in 
humans with sector RP,75 choroideremia76 and 
vitamin A deficiency. 77 

Variations in delayed rates of dark adaptation 
have been found in some regions of the retina of 
Sorsby's fundus dystrophy.78 This was attribu
table to the corresponding rhodopsin regenera
tion rate which was also found to be delayed. 
Severely delayed dark adaptation has been found 
in some patients with Rp79,80 with a time course 
of hours or even days. This similarity in time 
course to that of the outer segment renewal 
mechanism could reflect the effects of an under
lying abnormality of shortened outer segments. 
It has been suggested that an abnormality in the 
balance between outer segment renewal and 
phagocytosis may be involved in Rp81 and these 
non-invasive techniques may provide a means of 
indirectly measuring these processes in patients. 
Abnormal diurnal variation in visual sensitivity 
in patients with retinal oedema has been 
measured82 and reports of abnormalities in 
sensitivity with a daily variation83 suggest that 
we may be able to relate abnormalities in RP 
patients to animal findings of diurnal rhythms of 
outer segment renewal mechanisms which could 
be tested by manipulating the light-dark cycle in 
patients. Absolute threshold measurements have 
shown interesting abnormalities in age related 
macular degeneration84,85 and techniques of 
measuring scotopic function86 hold much 
promise for the near future. 

Video display devices 

A strong new area of technology involves the use 
of video display units (VDU s) for testing. These 
have long been used as psychophysical stimulus 
generators.87-94 Although a variety of psycho
physical measurements95-97 have been made, 
perimetric threshold determinations have only 
recently been attempted98-103 and it is necessary 
further to develop and test the technology. 104-111 

Computer generated graphics and video 
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display units have an important appeal in that 
they allow the use of a great variety of stimuli of 
different form, spatial configuration, spectral 
composition, location and other factors deter
mined simply by a mathematical expression 
describing their characteristics. This removes 
the limitations to a large extent of the hardware 
changes which would otherwise be needed to 
alter these parameters. Of course, there are some 
kinds of stimuli which are better formed using 
other techniques (e.g., narrow wavelength band 
stimuli). However, some measurements which 
would otherwise be prohibitively tedious or have 
been impossible to perform in the past are now 
possible using computer generated graphics. 
These include such potential tests as movement 
sensitivity, iso-luminant colour stimuli, flashes 
of "darkness", and others. These new types of 
tests may allow more selective and sensitive 
measures of the function of the visual system 
while the technology makes it easy to implement 
the new tests. 

Retinal abnormalities have been further 
investigated on a microscopic scale using the 
newly developed technique of fine matrix 
perimetry to further characterise retinal function 
with higher spatial resolution. 112.113.78 These 
measurements are made using video displays and 
computer generated graphics with methods to 
control the optics of retinal image forma
tion 114-117 and eye movements and using 
computer image analysis and processing of the 
data. These measurements are correlated with 
rhodopsin density measurements to allow further 
characterisation of the retinal abnormalities on a 
microscopic scale in particular at the edge of the 
advancing front of the degeneration and on the 
borders between nearly normal and severely 
affected retina. 118 

Statistics and screening 

For all of these tests an important component 
which must not be overlooked is the design and 
interpretation using statistical methods."9-123 It 
is also useful to consider the implications of 
screening tests 124,125 for such common diseases 
as glaucoma. 

Newer tests 

Emergent techniques for the assessment of visual 
performance have recently been reviewed 126 and 
there has been considerable activity in the 

development of newer types of testing which 
would be expected to have a greater impact in the 
near future. One test incorporates the stimulus 
into a fundus camera,127 another uses colour 
matching to estimate foveal cone pigment optical 
density,128 the flash-on-flash paradigm sug
gested that loss of foveal sensitivity in some 
patients with RP could not be attributed to 
decreased quantum catch,129 static and kinetic 
perimetry have been combined into one test, 130 
and hyperacuity testingI31-134,49 has shown a new 
approach of measuring spatial vision with little 
artefactual susceptibility to optical errors. 
Recent advances in our understanding about the 
pathological changes of some abnormalitiesl35 
combined with knowledge of the visual 
system 136 suggest new approaches to detect 
damage at an earlier stage, provide information 
about the mechanism of an abnormality, the 
determination of retinal function in the presence 
of ocular media disturbances, and the effects of 
treatment on visual function. Emerging techno
logies such as those based on video displays and 
computer generated graphics and advances in 
methodology provide potential for new applica
tions. These non-invasive methods can provide 
accurate information about retinal function and 
further improve our ability to quantify and 
document this most important aspect of the eye 
- its role in visual function. 
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