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Metformin ameliorates experimental-obesity-associated
autoimmune arthritis by inducing FGF21 expression
and brown adipocyte differentiation

Eun-Kyung Kim1,5, Seung Hoon Lee1,5, Seon-Young Lee1, Jae-kyung Kim1, Joo Yeon Jhun1, Hyun Sik Na1,
Se-Young Kim1, Jong Young Choi2, Chul Woo Yang3, Sung-Hwan Park4 and Mi-La Cho1,4

Rheumatoid arthritis (RA) is a systemic autoimmune disease involving excessive inflammation. Recently, RA associated with a

metabolic disorder was revealed to be non-responsive to RA medications. Metformin has been reported to have a therapeutic

effect on RA and obesity. The aim of this investigation was to study the therapeutic effect and the underlying mechanism of

metformin's action in an experimental model of collagen-induced arthritis (CIA) associated with obesity. Metformin was

administered daily for 13 weeks to mice with CIA that had been fed a high-fat diet. Metformin ameliorated the development of

CIA in obese mice by reducing autoantibody expression and joint inflammation. Furthermore, metformin decreased the

expression levels of pSTAT3 and pmTOR and had a small normalizing effect on the metabolic profile of obese CIA mice. In

addition, metformin increased the production of pAMPK and FGF21. Metformin also induced the differentiation of brown

adipose tissue (BAT), which led to a reciprocal balance between T helper (Th) 17 and regulatory T (Treg) cells in vitro and

in vivo. These results suggest that metformin can dampen the development of CIA in obese mice and reduce metabolic

dysfunction by inducing BAT differentiation. Thus, metformin could be a therapeutic candidate for non-responsive RA.
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INTRODUCTION

Rheumatoid arthritis (RA), a progressive and systemic form of
autoimmune arthritis, is characterized by chronic inflamma-
tion and the infiltration of synovial immune cells into the
affected joints. It has been well-documented that several
proinflammatory cytokines are involved in the pathogenesis
of RA and exacerbate its progression.1 Although there have
been advances in the therapeutic functions of RA drugs, the
treatment of RA remains extremely difficult.2,3 Furthermore, a
significant proportion of RA patients (30–40%) have no
response to RA drugs such as anti-tumor necrosis factor
(TNF)-α antibody therapy (such as infliximab).4,5 Currently,
RA patients who show no response to RA drugs are more
susceptible to non-response to other biologics used to treat
RA.6 It has recently been reported that the probability of non-
response to RA treatment is associated with metabolic

disorders.7 Obesity, a metabolic disorder that plays a key
role in the inflammatory response, leads to the upregulation
of proinflammatory cytokine expression. It has been
demonstrated that there is in increase in the expression of
proinflammatory cytokines and a parallel decrease in
the expression of anti-inflammatory cytokines among
obese individuals compared to healthy lean individuals.8,9

Additionally, obesity is associated with inflammatory and
autoimmune diseases, thus increasing the possibility of diseases
such as RA occurring in obese people.10,11

Brown adipose tissue (BAT) is found predominantly in
human neonates and has an important role in the modulation
of body temperature. It has been demonstrated that BAT is an
essential factor in non-shivering thermogenesis and energy
production, and that it can therefore slow the progression
of diet-induced obesity.12 The development of metabolic
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disorders has been shown to be inhibited by BAT and several
genes related to BAT differentiation, making BAT a promising
candidate for the treatment of metabolic disorders.13

Fibroblast growth factor (FGF) 21 is a metabolic hormone
that is primarily expressed by the liver, but is also released by
adipocytes. It has been demonstrated that FGF21 has a
significant role in the progression of obesity.14 Indeed, obesity
is characterized by resistance to FGF2115 and there is notable
interest in the administration of FGF21 as a therapy for
obesity.16 Recently, FGF 21 production was shown to be
associated with BAT differentiation. The circulating level of
FGF21 and the activity of BAT were increased during acute
cold exposure in human subjects.17 FGF21 also demonstrated
potential therapeutic function in mice with collagen-induced
arthritis (CIA).18

Metformin is a biguanide anti-diabetic drug. In patients
with type 2 diabetes, body weight decreases with metformin
treatment.19,20 Recently, metformin has demonstrated thera-
peutic efficacy in other disorders. It has been suggested that
metformin has the ability to ameliorate experimental auto-
immune arthritis and colitis by decreasing the activation of
signal transducer and activator of transcription (STAT) 3.21,22

Metformin has also been shown to have a therapeutic effect in
obese mouse models via the upregulation of genes involved in
BAT differentiation.23 Moreover, the expression of FGF21 was
shown to increase in obese mice following treatment with
metformin.23

We hypothesized that metformin would attenuate the
development of CIA in mice with high-fat diet-induced obesity.
The present study sought to determine whether metformin
ameliorates CIA in obese mice by upregulating FGF21 expres-
sion and BAT differentiation. We measured the therapeutic and
anti-inflammatory activity of metformin in obese CIA mice by
studying its activity on the Th17/Treg balance and on BAT
differentiation in vitro and in vivo.

MATERIALS AND METHODS

Animals
Five 7-week-old male DBA/1J mice were purchased from Orient Bio.
The mice were housed in polycarbonate cages and fed 60 kcal fat-
derived calories or standard mouse chow (Ralston Purina, St Louis,
MO, USA) and water ad libitum. All experimental procedures
were examined and approved by the Animal Research Ethics
Committee of the Catholic University of Korea (permit number:
CUMC:2015-0009-01), which conforms to the guidelines of the
National Institutes of Health.

Induction of obesity and CIA
Chicken type II collagen (CII) immunization was performed initially
when mice weighed 25 g. Complete Freund’s adjuvant (CFA;
Chondrex, Redmond, WA, USA) was prepared by grinding 4 mg of
heat-killed Mycobacterium tuberculosis (H37Ra; Difco Laboratories,
Detroit, MI, USA) mixing with 2 ml of incomplete Freund’s adjuvant
(IFA; Chondrex). An emulsion was then formed by dissolving
4 mg ml− 1 CII (Chondrex) overnight at 4 °C in 0.5 M acetic acid,
followed by mixing the solution with an equal volume of CFA. The
mice were injected intradermally in the tail. A booster injection was

administered 14 days after the primary immunization. The score of
arthritis severity in the joints of these mice was determined twice
weekly; the arthritis score was recorded as the sum of the scores on a
scale of 0–4.

Metformin and Enbrel treatment
Metformin was obtained from Sigma-Aldrich (St Louis, MO, USA)
and dissolved in saline. Mice were given 50 mg kg− 1 of oral metformin
daily for 13 weeks starting on day 7 after the first immunization.
Enbrel (Pfizer, New York, NY, USA) was injected subcutaneously (SC)
3 times per week after the initial immunization. The Enbrel dose was
100 μg per mouse. Control mice were injected with saline.

Histological assessment
Mouse joint, liver and interscapular BAT (iBAT) samples were
obtained 13 weeks after immunization and fixed in 4% paraformal-
dehyde, decalcified in calci-clear rapid (National diagnostics), and
embedded in paraffin. The joint, liver and iBAT were sectioned at a
thickness of 6 μm, deparaffinized using xylene, dehydrated through a
gradient of alcohol and then stained with hematoxylin and eosin
(H&E), or Safranin O. The H&E-stained sections were scored for
inflammation and bone erosion. Inflammation was scored according
to the following criteria: 0=no inflammation, 1= slight thickening of
the lining layer or some infiltrating cells in the underlying layer,
2= slight thickening of the lining layer plus some infiltrating cells in
the underlying layer, 3= thickening of the lining layer, an influx of
cells in the underlying layer, and the presence of cells in the synovial
space, and 4= synovium highly infiltrated with many inflammatory
cells. Cartilage damage was determined using Safranin O staining
where the extent of cartilage damage was scored according to the
following criteria: 0=no destruction, 1=minimal erosion limited to
single spots, 2= slight-to-moderate erosion in a limited area, 3=more
extensive erosion, and 4= general destruction. Immunohistochemistry
(IHC) staining was performed using a Vectastain ABC kit (Vector
Laboratories). The tissues were incubated with anti-IL-17 and anti-
IL-6 antibodies (Santa Cruz Biotechnology Inc., SantaCruz, CA, USA)
overnight at 4 °C. These primary antibodies were detected with a
biotinylated secondary linking antibody for 40 min, followed by
incubation with streptavidin–peroxidase complex for 1 h. The final
color product was developed using 3,3′-diaminobenzidine (DAB)
chromogen (DAKO, Carpinteria, CA, USA). Positive cells were
counted, with the results expressed as the mean± s.d.

Confocal microscopy
For immunostaining, 7 μm tissue sections of spleens were stained. To
analyze the populations of T helper cells, we used Alexa 488
conjugated anti-CD4, PE-conjugated anti-IL-17, APC-conjugated
anti-CD25, and PE-conjugated anti-Foxp3 antibodies (eBiosciences,
San Diego, CA, USA). To analyze the populations of STAT, AMPK
and mTOR, the samples were stained with Alexa 488 conjugated
anti-CD4, PE-conjugated anti-phosphorylated STAT-3 tyrosine 705,
PE-conjugated anti-phosphorylated STAT-3 tyrosine 727, anti-mTOR,
anti-AMPK, and anti-FGF21 antibodies, and anti-rabbit IgG-PE
secondary antibody. The nuclei were stained with 4′,6-diamidino-2-
phenylindole. The stained sections were analyzed using a Zeiss
microscope (LSM 510 Meta; Carl Zeiss, Oberkochen, Germany) at
× 400 magnification. Positive cells were counted, and the numbers
expressed as the mean± s.d.
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Biochemical analyses
Blood samples were collected from all treated and control mice at
13 weeks and stored at − 70 °C until use. The levels of AST, ALT,
HDL- and LDL-cholesterol were measured using commercial kits
from Asan Pharmaceutical Co. (Hwangseong-gi, Gyeonggi-do, Korea).

Analysis of gene expression by real-time quantitative PCR
Total RNA was extracted using TRIzol (Molecular Research Center,
Cincinnati, OH, USA). Two micrograms of total RNA was reverse
transcribed using the Superscript Reverse Transcription system
(Takara, Shiga, Japan). Quantitative real-time PCR (qRT-PCR) was
performed with LightCycler FastStart DNAmaster SYBR green I
(Takara) fluorescent dye using an ABI PCR machine. Primers for
FGF-21 (forward: GCATACCCCATCCCTGACTC, reverse: ACCAC
TGTTCCATCCTCC CT), IL-17 (forward: CCTCAAAGCTCAGCG
TGTCC, reverse: GAGCTCACTTTTGCGCCAAG), IKBKE (forward:
CCCAAAGTTCGTCCCTAAGGTTG, reverse: ATCAACGCCTGTCC
ATCCAGCA) and β-actin (forward: 5′-GAAATCGTGCGTGACATC
AAAG-3′, reverse: 5′-TGTAGTTTCATGGATGCCACAG-3′) were
designed using Primer Express (Applied Biosystems, Foster
City, CA). The mRNA expression levels were normalized to those of
β-actin.

Murine T-cell isolation and differentiation
Spleen cell cultures were performed in RPMI 1640 medium supple-
mented with 5% FBS. To purify CD4+ T cells, the cells were incubated
with CD4-coated magnetic beads and isolated using magnetic-
activated cell sorting (MACS) separation columns (Miltenyi Biotec).

Positively selected CD4+ T cells were stimulated with plate-bound
anti-CD3 (0.5 μg ml− 1), soluble anti-CD28 (1 μg ml− 1; both from BD
Biosciences), anti-interferon-γ (2 μg ml− 1), anti-IL-4 (2 μg ml− 1)
antibodies, recombinant TGF-β (2 ng ml− 1), and recombinant IL-6
(20 ng ml− 1) (R&D Systems) for 3 days to achieve polarization of
Th17 cells.

Co-culture experiment of Th17 cells with BAT
Spleen Th17 cells were seeded in 24-well plates at 1 × 106 per well in
5% RPMI, and BAT was layered onto Th17 cells. Culture plates were
incubated at 37 °C for 72 h, and then, the culture supernatants were
collected.

BAT transplantation
BAT was removed from DBA1/J donor mice (age 7 weeks) and
washed in sterile PBS. We then transplanted 0.2 g donor BAT into the
subcutaneous dorsal region of CIA mice as quickly as possible.
Recipient mouse spleen samples were obtained 5 weeks after the
transplantation. The control group underwent the same procedure.

Enzyme-linked immunosorbent assay
The amounts of IL-17 in culture supernatants derived from mice were
measured by sandwich enzyme-linked immunosorbent assay (ELISA,
R&D Systems). Alkaline phosphatase (Sigma-Aldrich) was used for
color development. Absorbance was measured at 405 nm on an ELISA
microplate reader (Molecular Devices).

Figure 1 Treatment with metformin attenuated in obese collagen-induced arthritis (CIA) mice. (a) Reduction in the arthritis score and
arthritis incidence in obese CIA mice treated with metformin. (mean± s.e.m. of five mice per group,*Po0.05, **Po0.01, ***Po0.001).
(b) Levels of IgG, IgG1 and IgG2a were determined by enzyme-linked immunosorbent assay. (Mean± s.d. of five mice per group,
*Po0.05.).
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Measurement of IgG concentrations
Blood samples were taken from the orbital sinuses of mice, and the
serum concentrations of IgG, IgG1 and IgG2a were measured using
mouse IgG, IgG1 and IgG2a ELISA quantitation kits (Bethyl Labora-
tories), respectively.

Intracellular staining and flow cytometry
Cells were stimulated with 25 ng ml− 1 PMA (Sigma-Aldrich, St Louis,
MO), 250 ng ml− 1 ionomycin (Sigma-Aldrich) and Golgi Stop
(BD Biosciences, San Diego, CA) in 5% CO2 at 37 °C for 4 h.
Cells were stained with Percp-conjugated anti-CD4 antibody and
APC-conjugated anti-CD25 Ab (BD Pharmingen) and then
stained with APC-conjugated anti-IFN-γ, PE-conjugated anti-IL-4,
FITC-conjugated anti-IL-17 or PE-conjugated anti-Foxp3 (all from
eBiosciences), followed by fixation and permeabilization using
the Cytofix/Cytoperm Plus Kit (BD Biosciences) according to
the manufacturer’s instructions. All samples were processed with
FACSCalibur (BD Pharmingen), and the data were analyzed using
FlowJo software (Tree Star, Ashland, OR, USA).

Statistical analysis
Statistical analyses were performed using GraphPad Prism 5 software.
Differences between treatment groups were tested for statistical
significance with the Mann–Whitney U-test. The results are expressed

as the means± s.d. (or means± s.e.m.). The data were considered
significantly different at Po0.05 (two-tailed).

RESULTS

Metformin ameliorates the progression of CIA in obese mice
Compared to mice that received vehicle, metformin-treated
mice had a significantly lower arthritis score during the entire
experimental period. Treatment of mice with metformin also
attenuated the progression of arthritis compared with mice
receiving Enbrel (Figure 1a). The concentrations of total IgG,
IgG1 and IgG2a in the serum of metformin-treated obese CIA
mice were less than those in vehicle-treated and Enbrel-treated
obese CIA mice (Figure 1b).

The anti-inflammatory profile of metformin-treated mice
Consistent with the arthritis score, minimal signs of
inflammation were detected in the metformin-treated obese
CIA mice, whereas extensive infiltration of immune cells was
observed in vehicle- and Enbrel-treated obese CIA mice.
Histological analyses also showed that joint destruction,
bone and cartilage damage, and pannus formation were
ameliorated in the metformin-treated obese CIA mice com-
pared to vehicle- or Enbrel-treated obese CIA mice (Figure 2a).

Figure 2 Effects of metformin on proinflammatory molecules in the joints of collagen-induced arthritis (CIA) and obese CIA mice.
(a) Histologic features of the joints were stained with hematoxylin and eosin (H&E), and Safranin O. (b) Tissue sections from joints were
immunohistochemistry stained with anti-IL-6 and anti-IL-17 antibodies. (Values are the mean ± s.d., *Po0.05, **Po0.01.)
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Additionally, the expression levels of IL-6 and -17 in the
joints were significantly lower in the metformin-treated
obese CIA mice than in the vehicle-treated obese CIA mice
(Figure 2b).

Counter-regulatory effects of metformin on Th17/Treg cells
in obese CIA mice are associated with activation of STAT3
Confocal imaging showed significantly fewer CD4+IL-17+,
CD4+pSTAT3 Tyr705+, CD4+pSTAT3 Ser727+ and CD4+

pmTOR+ cells in the spleen tissue of the metformin-treated
obese CIA mice than in that of the vehicle- or Enbrel-treated
obese CIA mice. However, there were significantly more CD4+

CD25+Foxp3+ and CD4+pAMPK+ cells in the spleen tissue of
metformin-treated obese CIA mice than in that of vehicle- or
Enbrel-treated obese CIA mice (Figure 3a). There was also a
significant upregulation of FGF21+ cells in spleen tissue from
metformin-treated obese CIA mice compared to the vehicle-
or Enbrel-treated obese CIA mice (Figure 3b). The gene

expression of FGF21 in the spleen was also significantly
increased with metformin treatment (Figure 3c).

Effect of metformin treatment on metabolic profiles in obese
CIA mice
Metformin treatment caused no changes in weight (data not
shown) or other macroscopic changes (Figure 4a). The weight
of the liver also did not change with metformin treatment
(Figure 4b). However, H&E staining showed a decrease in the
immune cell infiltration of the liver among metformin-treated
obese CIA mice compared to vehicle-treated obese CIA mice
(Figure 4c). Metformin slightly reduced the levels of AST, ALT
and LDL in the serum from obese CIA mice. The HDL level
did not change with metformin treatment (Figure 4d). The
levels of IL-17 and IKBKE mRNA in the liver of metformin-
treated obese CIA mice were significantly downregulated
compared to those in the vehicle-treated obese CIA mice
(Figure 4e). However, treatment with metformin significantly

Figure 3 Metformin reduced STAT3 phosphorylation, decreased the frequency of Th17 cells within the population of CD4+ T cells and
induced FGF21 expression in collagen-induced arthritis (CIA) and obese CIA mice. (a, b) Spleen tissues from each mouse were examined
by immunofluorescence staining. Original magnification ×400. (c) Expression of FGF21 mRNA in isolated splenocytes was measured by
real-time polymerase chain reaction, with the results normalized to the expression of β-actin mRNA. (Values are the mean± s.d., *Po0.05,
**Po0.01.)
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increased the expression of FGF21 in the liver of obese CIA
mice (Figure 4f).

Effect of metformin treatment on BAT regulation in obese
CIA mice
There was an increase in the weight of BAT in obese CIA mice
treated with metformin, but it was not significant (Figure 5a).
Metformin treatment also reduced the infiltration of immune
cells in the BAT of obese CIA mice (Figure 5b). FGF21
production in the BAT of obese CIA mice was also increased
with metformin treatment (Figure 5c).

Effect of co-culture and transplantation with BAT on the
suppression of Th17 and IL-17
IL-17 levels significantly decreased in the culture medium
obtained from Th17 cells co-cultured with BAT (Figure 6a).
Th1 and Th17 cell differentiation was also decreased in the
spleen of mice transplanted with BAT, but the difference was
not significant (Figure 6b).

DISCUSSION

Metformin is known to be an effective treatment for type 2
diabetes and obesity. Recently, metformin was revealed to have
an anti-arthritic effect on experimental autoimmune arthritis.21

To the best of our knowledge, the mechanism of metformin’s
action and its activity on BAT in obese CIA mice has yet to be
documented. In this investigation, the therapeutic functions of
metformin in an obese CIA mouse model were observed, and
the findings suggested the possibility of using metformin in
therapeutic strategies against RA associated with obesity.

An important observation was the therapeutic efficacy of
metformin in obese CIA mice and its association with the
reciprocal Th17/Treg balance and the upregulation of BAT
differentiation. The downregulation of Th17 and the upregula-
tion of Tregs is an important therapeutic process in experi-
mental autoimmune arthritis.21,24,25 A high-fat diet has been
shown to induce the downregulation of BAT while increasing
markers of fatty liver, including AST and ALT.26 By contrast,
the upregulation of BAT has been shown to reduce the levels of
plasma ALT and AST.27 It is also widely believed that BAT has
therapeutic potential in the treatment of metabolic disorders.13

Figure 4 Metformin treatment ameliorated fatty liver and normalized metabolic profiles. (a, d) Obese collagen-induced arthritis (CIA) mice
or metformin-treated obese CIA mice had a similar phenotype, but different metabolic profiles. (b) Liver tissues obtained from obese CIA
and metformin-treated obese CIA mice were weighed. (c) Sections were stained with hematoxylin and eosin (h&e). Original magnification
×400. (e) Expression of IL-17 and IKBKE mRNA in isolated hepatocytes was measured by real-time polymerase chain reaction, with the
results normalized to the expression of β-actin mRNA. (f) Liver tissues from obese CIA and metformin-treated obese CIA mice
were examined by immunofluorescence staining. Original magnification ×400. (Values are the mean± s.d., *Po0.05, **Po0.01,
***Po0.001.)
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Here it was found that metformin reduces obesity and has an
anti-arthritic effect via inducing BAT and restoring the
reciprocal balance between Th17 and Tregs. In addition,
metformin reduced the infiltration of immune cells in the
liver and BAT. We observed that transplantation of BAT
decreased Th17 cell differentiation, while a co-culture with
BAT reduced IL-17 expression in vitro. These results suggest
that metformin can decrease the inflammatory response in RA
associated with metabolic disorders.

Metformin decreased the expression of pSTAT3 and mTOR
and enhanced pAMPK expression. The inflammatory response
and the expression of proinflammatory cytokines, including
IL-6 and -17, are induced by pSTAT3.28 By contrast, AMPK
inhibits the activation of mTOR, which in turn leads to
enhanced expression of pSTAT3.29,30 It has been demonstrated
that the IL-6 level in the synovial fluid and blood of RA
patients is excessively high and is positively correlated with
joint destruction.31,32 IL-17 is also produced at high levels in
the synovium and synovial fluid of RA patients.33 In this study,
a significant downregulation of IL-6 and -17 was found in the
joint tissue of metformin-treated obese CIA mice. Additionally,
the expression levels of mTOR and pSTAT3 were reduced with
metformin treatment. Since the inhibition of proinflammatory
cytokines and pSTAT3 expression plays a key role in the
suppression of inflammation, our results reveal that metformin
has anti-inflammatory activity in obese CIA mice.

Previously, metformin was found to downregulate the levels
of obesity-related factors, including cholesterol and LDL, but to
promote FGF21 expression in obese mice.23 Since FGF21 has
been shown to be a key regulator of obesity,14 enhancing

FGF21 expression has great potential therapeutic efficacy.
FGF21 also attenuates obesity-mediated inflammation.
Recently, treatment with FGF21 slowed the progression of
obesity by downregulating ALT, AST and IL-6.34 There are
recent reports that FGF21 attenuated CIA development,
decreased inflammatory cytokine production and diminished
the Th17-IL-17 axis via the STAT3 pathway.18,35 We observed
that metformin reduced the levels of inflammatory mediators,
such as IKBKE, which is a therapeutic target for obesity-
associated inflammation36 and a means to increase FGF21
production in the liver and BAT. Therefore, our observations
suggest that metformin has an anti-obesity effect, as well as an
inflammatory effect, in obese CIA mice.

Previous research has documented the ability of metformin
to induce FGF21 production,37 as well as attenuate the
progression of obesity, thereby ameliorating dysregulated
metabolic function.23,38,39 On the other hand, metformin
decreases FGF21 expression. It has been suggested that treat-
ment with metformin downregulates the FGF21 level in the
plasma of type 2 diabetes mellitus patients.40,41 However, the
effect of metformin on FGF21 levels is associated with an anti-
inflammatory effect. Metformin has also been shown to reduce
the expression of high-sensitivity C-reactive protein, which is
an inflammatory indicator that can demonstrate the progres-
sion of metabolic disorder in the plasma of type 2 diabetes
mellitus patients.41 Metformin might decrease FGF21 levels by
alleviating inflammation in type 2 diabetes mellitus patients.

Our findings demonstrate the possibility of metformin
treatment for autoimmune arthritis associated with metabolic
disease. Our study suggests that metformin ameliorates the

Figure 5 Brown adipose tissue was upregulated by metformin treatment. (a) Weight of brown fat obtained from obese CIA mice or
metformin- or Enbrel-treated obese CIA mice. (b) Histologic features of the brown fat tissues stained with hematoxylin and eosin (h&e).
Original magnification ×200. (c) Brown fat tissues from each mouse were stained for FGF21+ cells. Original magnification ×400.
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inflammatory response and decreases obesity progression and
may be a therapeutic candidate for RA associated with
metabolic disorders.
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