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The significance of intertumor and intratumor
heterogeneity in liver cancer

Jinping Liu, Hien Dang and Xin Wei Wang

Genomic analyses of primary liver cancer samples reveal a complex mutational landscape with vast intertumor and intratumor

heterogeneity. Different primary liver tumors and subclones within each tumor display striking molecular and biological

variations. Consequently, tumor molecular heterogeneity contributes to drug resistance and tumor relapse following therapy,

which poses a substantial obstruction to improving outcomes of patients with liver cancer. There is an urgent need to the

compositional and functional understanding of tumor heterogeneity. In this review, we summarize genomic and non-genomic

diversities, which include stemness and microenvironmental causes of the functional heterogeneity of the primary liver cancer

ecosystem. We discuss the importance and intricacy of intratumor heterogeneity in the context of cancer cell evolution. We also

discuss methodologies applicable to determine intratumor heterogeneity and highlight the best-fit patient-derived in vivo and

in vitro models to recapture the functional heterogeneity of primary liver cancer with the aim to improve future therapeutic

strategies.
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INTRODUCTION

Approximately one million cases of primary liver cancer (PLC)
occurs annually and ranks the second most lethal tumor type in
the world.1 It is predicted that the incidence of PLC will
increase by more than 50% by 2030 in the United States.2–4

Notably, in the past 20 years, PLC has been the only cancer
with the fastest rising incidence and mortality and with a 5-year
survival rate of less than 15% in the United States.5–8 Tumor
heterogeneity is the major contributing factor for the refractory
nature of PLC to treatment.

Tumor heterogeneity consists of intertumor (tumor by
tumor) and intratumor (within a tumor) heterogeneity. Inter-
tumor heterogeneity refers to PLCs from different patients
whose altered genotype and phenotype are induced by diverse
etiological and environmental factors.9,10 In contrast, intratu-
mor heterogeneity refers to genomic and biological variations
within a tumor lesion gained by tumor cell evolution under
diverse microenvironments linked to different etiologies.
According to the Darwinian evolution selection, a PLC lesion
evolves from a single malignant cell into a functionally
heterogenous tumor mass with a hierarchically organized
tumor cell community, promoting its survival and fitness in
response to the various microenvironments.11

The most current understanding of PLC heterogeneity is
limited to intertumor heterogeneity, mostly focused on mole-
cular subclassification based on genomic profiling. Accordingly,
molecular subclassification has identified different patient
subtypes according to their genomic profiles with targeted
therapy choice. Notably, subclass-related oncogene addiction
loops have been identified based on genomic profiling of
various tumor subtypes.12–18 This approach has been success-
fully applied to the management of chronic myeloid leukemia
(CML) and breast cancer.19–21 For example, most of CMLs are
driven by a fused BCR-ABL oncoprotein, a constitutively
activated tyrosine kinase. Ninety-eight percent of BCR-ABL
CML responds favorably to the initial treatment of tyrosine
kinase inhibitors (TKIs). While BCR-ABL-based subclassifica-
tion and associated target therapy remain the standard care for
CML patients, there is growing evidence showing that a
minority of mutational subclones within CML are highly
resistant to tyrosine kinase inhibitors,22–24 suggesting that
subclassification based on intertumor heterogeneity may not
capture the full tumor spectrum. Thus, we need to integrate
molecular features of both intertumor and intratumor hetero-
geneity with functional heterogeneity to improve patient
subclassification and response to therapy.
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PLC consists of two major histological types,10 hepatocellular
carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC),
each of which is treated differently, according to their clinical
guidelines. Currently, no biomarker-guided targeted therapy is
available for HCC or ICC. However, emerging studies aim to
HCC or ICC molecular subclassification associated with
subtype-related target therapy.15,25–29 Studies such as whole-
genome sequencing (WGS) of HCC reveal frequent mutations
in various tumor suppressor genes and oncogenes, including
telomerase reverse transcriptase promoter mutations (54–
60%), catenin beta 1 (CTNNB1) mutations (11–37%), tumor
protein P53 (TP53) mutations (12–48%) and AT-rich inter-
active domain-containing protein 1A (ARID1A) mutations (4–
17%).30–33 However, mutation-specific subtypes are not evi-
dent. In contrast, transcriptome-based studies have revealed
stable molecular subtypes of HCC and ICC. For example, HCC
can be divided into several molecular subtypes based on
stemness gene expression patterns.12–15,34,35 Similarly, ICC
have been categorized to two major subclasses linked to patient
outcomes, that is, proliferation subtype and inflammation
subtype.36,37 While subclassification based on intertumor
heterogeneity is stable among different data sets, improved
PLC treatment remains to be seen. Furthermore, much less is
known about intratumor molecular heterogeneity of HCC or
ICC. It is unclear whether the degree of intratumor hetero-
geneity is associated with specific tumor types and patient
outcomes. Thus, understanding the link between intertumor
and intratumor heterogeneity may help improve PLC sub-
classification and treatment stratification.

SOURCES OF INTRATUMOR HETEROGENEITY

Intratumor heterogeneity has been observed in PLCs in many
studies, including histology, ploidy patterns analyses, DNA
fingerprinting and WGS.38–42 Here we propose a concept of
intratumor ‘functional’ heterogeneity that describes the abilities
of cancer cells to undergo cellular proliferation, adaption and
drug resistance within a defined microenvironment linked to a
specific etiology. We argue that the compositional heterogene-
ity helps to understand functional heterogeneity, which is key
to understanding PLC heterogeneity (Figure 1).

Intratumor genomic heterogeneity
One important concept about intratumor genomic heteroge-
neity is the genome-axis evolution model, which describes that
gene evolution can increase the survival adaptive function of a
cell known as ‘genomic heterogeneity’.43 This model suggests
that genomic heterogeneity is composed of oncogenes and
tumor suppressors that have multiple alterations, including
mutation and copy number alterations. Together, these altera-
tions maximize tumor proliferation and survival.44,45 One
intriguing example of intratumor genomic heterogeneity and
functional heterogeneity is demonstrated in glioblastoma.
Accordingly, glioblastoma intratumor with varied epidermal
growth factor receptor copy number gain has been measured
by Shannon diversity index, demonstrating that functional
heterogeneity is linked to increased cell proliferation, resistance
to epidermal growth factor receptor inhibitor treatment and
aggressive tumor relapse.46,47 Similarly, it has been demon-
strated that larger PLC cell populations exhibit greater genomic
heterogeneity.48,49 Furthermore, genomic sequencing analyses
of HCC specimens have revealed identical mutational profiles
of multiregional HCC and ICC and distinct CNVs from single-
cell analysis.50,51 However, only a small percentage of muta-
tions were found differently among tumor cell subclones.42

While much is known about the heterogeneity for PLCs, the
functional consequence of genomic heterogeneity remains
unclear.

Intratumor non-genomic heterogeneity
The dysregulation of the epigenome is one mechanism that
contributes to intratumor subclonal variations. Non-genomic
intratumor heterogeneity, including histone modifications,
DNA hypo- or hyper- methylation, non-coding RNAs, and
transcriptional regulators, contribute intratumor heterogeneity
by regulating the spatial chromatin organization and altering
the transcriptome. Interestingly, aberrant DNA methylation
patterns in PLCs are associated with chronic viral hepatitis
infections.52 Moreover, other studies show that CpG methyla-
tion status within the E-cadherin gene promoters is strongly
correlated with the heterogeneous expression of E-cadherin in
HCC.53 Furthermore, promoter hypermethylation of Hexoki-
nase 2 (HK2), an aerobic glycolysis process enzyme gene, has
been demonstrated to be associated with poor survival,
compared with the hypomethylation of HK2 promoter.54 As
these studies demonstrate the importance of intertumor
heterogeneity in PLCs, more functional studies are required

Figure 1 Sources of intratumor heterogeneity of liver cancer.
Sources of intratumor heterogeneity of liver cancer include
genomic, non-genomic, stemness and microenvironment
heterogeneity. Functional heterogeneity refers to abilities of cancer
cell populations to undergo cellular proliferation, adaption and drug
resistance within a defined microenvironment linked to a specific
etiology. These abilities of functional heterogeneity are linked to
different sources, including genomic and non-genomic, stemness
and microenvironment heterogeneity.
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to further understand the association between intratumor non-
genomic heterogeneity and its related functions.

Intratumor heterogeneity and cancer stem cells
Cancer stem cells (CSCs) have been demonstrated to con-
tribute to tumor heterogeneity.55 CSCs acquire stem-like
characteristics (or stemness) similar to normal stem/progenitor
cells, which have been demonstrated to promote liver cancer
progression, relapse and intratumor heterogeneity.35,56,57

Accordingly, Fan’s group recently showed that spatial hetero-
geneity of CD13+ CSCs is associated with long non-coding
RNAs (lncRNAs), including lnc-β-Catm, lncTCF7 and
lncBRM, which have been demonstrated to promote the PLC
organoid formation.58–60 Although the spatial CSCs hetero-
geneity has been demonstrated, the functional diverse distribu-
tion of CSCs remains unclear.

Intratumor heterogeneity contributed by tumor
microenvironment
Genomic and non-genomic heterogeneity and the presence of
stemness from CSCs have provided some degrees of under-
standing of PLC. Importantly, microenvironment heterogene-
ity, which can directly interact with tumor cells and influence
therapeutic response, has been considered as a novel hallmark
of cancer.61,62 Notably, the peritumor microenvironment, from
the seed and soil concept, can foster tumor development by
reprograming the stromal with the aid of cancer-associated
fibroblasts.63,64 In vivo studies have demonstrated that tumor
cells benefit from the microenvironment, which contributes to
promoting cellular diversity by supporting the tumor vascu-
lature and reprogramming immune cell.62 Interestingly, tumor-
infiltrating lymphocytes can be recruited by HCC cells without
secreting the tumor-toxic cytokine interferon gamma (IFN-
γ).65,66 These studies suggest that PLC cells could recruit non-
toxic infiltrating lymphocytes to promote intratumor hetero-
geneity and evade from the immune system. HCC studies show
that diverse microenvironments are composed of immuno-
regulating cytokines, growth factors, immunosuppressors and
heterogenous and naturalized stromal cell types. These diverse
microenvironments functionally suppress the immune system,
by diminishing natural killer cells (NK cells) or enhancing the
immunosuppressive regulatory T cells (Treg cells).67–79

Tumor cell clonal architecture
The process of tumor initiation has not been fully understood,
as not much is known about the cellular origin of a tumor
mass. In 1976, Nowell11 proposed that most tumors arise from
a single cell which gains genetic instability within the original
clone with sequential selection of branching subclones evolving
over time. Notably, recent studies from WGS of different
lesions of a tumor mass have extended this model, further
suggesting that a tumor cell community is hierarchically
organized through a branching or paralleling evolution.80,81 It
has been shown that PLC has the propensity to develop
multiple subclones, resulting in extended intratumor
heterogeneity.48,49 A systematic analysis of PLC intratumor

heterogeneity came from a study by Xue et al.,42 in which the
authors performed somatic mutations and copy number
variations (CNVs) using a low-depth whole genome and
exome sequencing in 43 tumor lesions derived from 10
HBV-positive HCC cases and found evidence of branched
evolution linked to HCC. This comprehensive study provides
evidence of branched evolution linked to HCC and demon-
strate that while tumors from each patient have different clonal
hierarchies, satellite nodules share more than 90% of somatic
mutations with their primary tumors. Intriguingly, in a patient
with multicentric tumors, six lesions show parallel evolution
patterns that can be divided into two major subclones, each
with its own unique genomic characteristics. In contrast, PLCs
with histologically mixed HCC and ICC, satellite nodules
shared more than 100 somatic mutations, indicating that
subsequent diverse subclones are evident through the genetic
evolution of tumor nodules within each PLC. In another study,
Ling et al.41 have analyzed 286 tumor regions from one HCC
sample using whole-exome sequencing and genotyping and
discovered the evidence of high genetic diversity within a single
tumor, indicative of non-Darwinian cell evolution prevalence.41

These results suggest that the extent of intratumor hetero-
geneity varies considerably among patients with HCC.

To address the extent of PLC heterogeneity, multiple
biopsies from a single tumor is required. This can be
accomplished by collecting multiple biopsies from different
geographical regions within a tumor or patient. Such analyses
will reveal tumor cell hierarchies at the genomic and non-
genomic level, including the presence of CSCs and the
diversities within the tumor microenvironment at a given time
(Figure 2).80 In addition, longitudinal sampling from each
patient including prior and post treatment can be
implemented.44 This approach improves our understanding
of the PLC evolution during tumor progression. Notably, some
has suggested that the use of imaging techniques is sufficient
for PLC diagnosis. Given the extent of genomic and biological
heterogeneity associated with PLC, such a view is
shortsighted.82 Therefore, a comprehensive and systematic
analysis of multiple biopsies is recommended to uncover the
PLC functional heterogeneity that drives tumor evolution.

APPROACHES TO STUDY INTRATUMOR HETEROGENEITY

Several studies in recent years have begun to explore meth-
odologies to study intratumor heterogeneity. Here we outline
some of the current methodologies that have been successfully
used to characterize intratumor heterogeneity (Figure 2).

Intratumor heterogeneity from genome-wide studies
Morphological intratumor heterogeneity has long been
observed by pathologists. However, intratumor molecular
heterogeneity has only been appreciated in recent years due
to WGS technologies. The first study to address intratumor
molecular heterogeneity was based on multiregional sequen-
cing of renal carcinomas and associated metastatic sites.80

Mutational intratumor heterogeneity was observed for multiple
tumor suppressor genes and further analysis of multiple regions

Liver cancer heterogeneity
J Liu et al

3

Experimental & Molecular Medicine



of PLCs provide evidence of the trunk and branch mutational
profile.41,42 Moreover, Zhang’s group studied HCC heteroge-
neity using allelic frequency profiles of frequently mutated
genes across genomes and exomes based on deep sequencing of
two separate biopsies from each tumor.83 Among 42 HCC
cases analyzed, they found evidence of diverse modes of
genomic alteration in HCC. These studies suggest that given
the extent of intratumor mutational heterogeneity, multiple
sampling of only a few regions to determine driver mutations
may not necessarily be adequate to capture the true mutational
landscape of a tumor type.

Intratumor heterogeneity at single-cell level
The recent development of single-cell genome sequencing
technologies has generated many new insights into complex
biological systems including human cancer.84 Single-cell ana-
lysis may provide the level of sensitivity and specificity to study
tumor cell diversity in a tumor cell ecosystem.85–87 One latest
technological advance includes the development of scTrio-seq,
a single cell triple omics method developed by Hou et al.51 to
simultaneously analyze genome (CNVs), DNA methylome and
transcriptome in a single cell. While single-cell technology is
useful to study tumor cell diversity in each tumor cell
ecosystem, it lacks information about topological space within
a tumor cell community. New approaches such as single-cell
gene expression profiling with multiplexed error-robust fluor-
escence in situ hybridization may help resolving this issue.88,89

In addition, while single-cell RNA transcriptome has provided

sufficient resolution to distinguish single cells, whole genome
or exosome sequencing technologies are not sufficient to
provide a comprehensive view of global genomic landscape
of a tumor at the single-cell level. Therefore, identifying cancer
driver genes linked to single tumor cells is a challenge.

Circulating tumor cells
Circulating tumor cells (CTCs), found in blood and originated
from aggressive subclones of the primary tumor, are respon-
sible for metastasis and tumor relapse. A meta-analysis of HCC
CTC studies revealed that CTCs are positively correlated with
poor prognosis.90 However, not all CTCs are tumorigenic,
suggesting that these cells are heterogeneous.91–93 Molecular
analysis of CTCs may provide information on tumor cell
heterogeneity. A deep understanding of CTC heterogeneity
may facilitate our ability to identify key molecular targets to
improve cancer therapy. Interestingly, Miyamoto et al.94

demonstrated considerable heterogeneity among CTCs by
analyzing 77 intact CTCs from 13 prostate cancer patients by
single-cell RNA sequencing. As CTCs are rare, therefore
methods that can accurately detect and isolate them for
downstream analysis are crucial. In a study by Lohr et al.,95

the authors developed a microscope-based technology to detect
and isolate CTCs from multiple myeloma (MM) patients for
single-cell RNA-sequencing analysis. They found that CTCs
provide the same genetic information as bone marrow multiple
myeloma cells, providing a more clear overview of the tumor
itself than bone marrow biopsies thus enabling the

Figure 2 A schematic diagram of understanding, recapturing intratumor heterogeneity of PLC on best-fit models and their applications in
drug screen and prognosis. PLC heterogeneity includes intertumor and intratumor heterogeneity. The latter can be dissected by multiple
biopsies, which can catch the compositional subclones within each tumor. In situ imaging, single cell and bulk tumor sequencing can be
performed on the multiple biopsies to help determine the compositional subclones. Intratumor heterogeneity can be quantified by Shannon
diversity index and compositional subclones can be categorized by using phylogenetic relationship. In vivo PDTX, in vitro PDTC and
spheroid formation are the preclinically relevant best-fit models, which mostly recapture and preserve the compositional heterogeneity
within a tumor and can be used for drug screen. PLC, primary liver cancer; PDTC, patient-derived tumor cell; PDTX, patient-derived tumor
xenograft.
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classification of MM to improve precision medicine.95 In
addition, Kalinich et al.96 developed a high-throughput micro-
fluidic CTC-iChip, which can be used to enrich HCC CTC
while excluding hematopoietic cells from the blood. It will be
interesting in determining if these methods allow assessment of
CTC heterogeneity. Moreover, whether these methods can be
incorporated into clinical practice, especially PLC management,
remains to be determined.

Spatial organization of a tumor cell community
In situmethods are desirable techniques for understanding PLC
heterogeneity because it can address the spatial organization of
a tumor cell community. This method has been used to detect
DNA and RNA using formalin-fixed paraffin-embedded tissue
microarrays in a high-throughput manner.97,98 With the use of
high-resolution microscopy, CNVs, genetic mutation profile
and RNA quantification can be profiled at the single-cell level.
This is evident in a study by Kimura et al.99 who demonstrated
the presence of molecular heterogeneity by in situ hybridization
with a chromosome 17-specific DNA probe. The authors found
that distinct subclones in 2/25 HCC samples with chromosome
17 copy number alterations and ploidy patterns.99 Others have
also determined topological features of intratumor subclones
by in situ approaches.44 While the current in situ hybridization
method still has a poor resolution as only a few molecular
features can be assessed at one time. More sensitive methods
with higher densities of DNA/RNA probes are being developed
to help further our understanding of spatial organization of a
tumor subclone.89 Additional mathematical models such as the
Shannon diversity index method are being explored to precisely
measure the degree of intratumor heterogeneity in a tumor cell
ecosystem. New models to incorporate spatial organization
with Shannon diversity index should be exploited to measure
the true dynamic of a tumor cell community.

Preclinically relevant best-fit models to study intratumor
heterogeneity
Experimental models are very useful tools to explore molecular
mechanisms that drive tumorigenesis, and ideally used to study
intratumor heterogeneity. Appropriate models that mimic
human diseases are necessary to provide the clinical
relevance.100,101 Among various available models, patient-
derived tumor xenografts (PDTXs) and matched patient-
derived tumor cells (PDTCs) have been the preferable choices.
Accordingly, Bruna et al.102 have generated a living biobank of
human breast cancers in order to adequately capture the inter-
and intratumor heterogeneity in pre-clinical models. Remark-
ably, the intratumor genomic clonal architecture of the
originating tumors is largely preserved in PDTXs and matched
PDTCs.102 Using this resource coupled with a high-throughput
response and resistance screens, they have successfully assessed
drug responses in these models.102 In addition, in vivo PDTX
can recapture up to 82.5% of ex vivo PDTCs in terms of the
drug response. These results suggest that both PDTC and
PDTX represent a powerful resource for pre-clinical pharma-
cogenomic studies. Most recently, Gao et al.103 also observed

considerable intratumor heterogeneity and branched evolution
in HCC samples that correspond to existing pharmacologic
agents using PDTCs. These studies indicate that PDTX and
PDTC coupled with the use of their genomic information are
useful platforms for pharmacologic assessments linked to
intratumor heterogeneity. Thus, improving assessment of the
complexity of PLC intratumor heterogeneity will provide a
better understanding of functional heterogeneity, which may be
linked to therapeutic responses.

FUTURE PERSPECTIVE

Our understanding of PLC heterogeneity has been improved in
recent years, but many challenges are still ahead such as a
precision measurement to recapture and preserve the diversity
of a tumor cell community linked to patient outcomes
including treatment response. The PLC ecosystem is dynami-
cally changing during therapy as resistant clones may be
selected and expanded throughout tumor evolution. To
improve HCC therapies, understanding the impact of tumor
heterogeneity must be appreciated. First, we need to under-
stand the diversity of a given tumor cell community and to
learn their collective behaviors. By measuring the phylogenetic
relationship among different cells and using the Shannon
diversity index through subclone bulk or single-cell sequencing
(Figure 2), we may understand the complexity of a tumor cell
community and determine the degree of diversity among
individual patients. Second, to further understand the pattern
of intratumor molecular heterogeneity of a given tumor and its
relationship to other tumor types, we need to better understand
the dynamics of the molecular subtypes of PLC linked to
ethnicity, etiological factors and patient outcomes. A well-
defined patient data ecosystem including diverse patient
populations is vital step to achieve this goal.82,104 Third, given
the importance of the molecular and phenotypical intratumor
heterogeneity of PLCs, the access to a living biobank of PLCs
will help build the much-needed database to further under-
stand features of intratumor heterogeneity. Furthermore, a
drug response database from high throughput single drug and
drug–drug combination screen using in vivo PDTX and in vitro
PDTC models will prove effective for developing targeted
therapies (Figure 2). Together, these efforts will improve PLC
preclinical trial design, consequently, improving our discovery
of new and effective therapeutics for PLC. Finally, a better
understanding of the microenvironment diversity, and the
dynamic interplay between the microenvironment and tumor
ecosystem, will help improve our understanding of a patient’s
response to immune therapy or molecularly targeted
therapies.105 With the development of better molecular tech-
nologies, we may be able to ultimately find solutions to
improve outcomes of patients who suffer from this dreadful
disease once for all.
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