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Developmental changes in hematopoietic stem cell
properties

Michael R Copley1 and Connie J Eaves1,2

Hematopoietic stem cells (HSCs) comprise a rare population of cells that can regenerate and maintain lifelong blood cell

production. This functionality is achieved through their ability to undergo many divisions without activating a poised, but latent,

capacity for differentiation into multiple blood cell types. Throughout life, HSCs undergo sequential changes in several key

properties. These affect mechanisms that regulate the self-renewal, turnover and differentiation of HSCs as well as the

properties of the committed progenitors and terminally differentiated cells derived from them. Recent findings point to the

Lin28b-let-7 pathway as a master regulator of many of these changes with important implications for the clinical use of HSCs

for marrow rescue and gene therapy, as well as furthering our understanding of the different pathogenesis of childhood and

adult-onset leukemia.
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INTRODUCTION

The mammalian hematopoietic system produces a collection
of morphologically and functionally diverse mature cell types,
which together perform key physiological processes including
solute and O2 transport, immunity and hemostasis. All of
these mature blood cells are ultimately derived by a contin-
uous, multi-step process of lineage restriction and activation of
specific differentiation programs in rare self-maintaining
hematopoietic stem cells (HSCs).1

Much progress has been made recently in identifying cell-
surface markers that correlate closely with the possession of
HSC functionality, thus permitting the isolation of HSCs from
human and mouse sources at very high purities (10–50%).2

These advances, augmented by gene knockout studies, have
allowed the identification of many genes that are required for
HSCs to be generated and/or maintained at normal levels.3

Nevertheless, a molecular or phenotypic signature that permits
the direct, specific and sensitive detection of HSCs remains
elusive. Thus, the measurement and characterization of HSCs
continues to rely on clonal tracking methods that use
retrospective approaches to detect the ability of single input
cells to produce mature short-lived blood cells in vivo for
prolonged periods.4 The durability of this output potential and
the demonstration of an accompanying ability to produce

undifferentiated progeny with the same long-term blood cell
producing capacity, is now recognized to be a key aspect of the
definition of HSCs. This is particularly critical given the
extensive but inevitably constrained self-maintaining ability
of other types of long-term multipotent hematopoietic cells
that can be prospectively isolated and shown to have different
molecular features.5–7

An intriguing feature of HSCs is their high degree of
heterogeneity.8 A long recognized source of such variability
in HSC properties is their developmental stage. This has
been historically apparent in comparisons of hematopoietic
cells present in fetal and adult tissues,9–11 but also found to
continue into old age.12 Early evidence of differences between
the biological properties of primitive hematopoietic cells from
fetal and adult tissues were revealed from investigations of
mouse hematopoietic cells that form macroscopically visible
clones of differentiating blood cells in the spleen of irradiated
mice injected 9–14 days previously.13 These so-called colony-
forming units-spleen (CFU-S) were initially thought to detect
a fraction of HSCs that colonize the spleen because they could
generate all myeloid cell types (erythroid, megakaroyopoietic
and granulopoietic) as well as progeny CFU-S with similar
potentialities demonstrable in secondary transplants.14,15

However, it is now known that most CFU-S do not overlap
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with HSCs that possess lifelong repopulating ability. Rather,
they represent a type of multipotent, transient amplifying
cell.16,17 Nevertheless, the quantitative nature of the CFU-S
assay made it possible to demonstrate the high cycling activity
of fetal CFU-S, which contrasts with the very low cycling
activity characteristic of CFU-S in the unperturbed adult.9

Similarly, the rate and ultimate level of regeneration of CFU-S
from mouse fetal liver (FL) cells transplanted into irradiated
recipients was found to be much greater than that obtained
from a comparable transplant of adult bone marrow (BM)
cells.10 More recently, evidence of a similar superiority in the
regenerative pace and output of human FL and adult BM
transplants in irradiated immunodeficient (NOD/SCID) mice
has been noted.18,19

In this review, we summarize salient examples of differences
in the properties of fetal and adult hematopoietic cells with a
particular focus on those that affect or are initiated within the
HSC compartment. We also discuss recent findings pertinent
to understanding the underlying molecular mechanisms reg-
ulating these changes.

ORIGIN OF HSCS

HSCs arise in different sites and change their site of activity
during development
The first hematopoietic cells to be produced during embryogen-
esis are nucleated erythrocytes and macrophages. These cells
appear within the extra-embryonic blood islands of the yolk sac
between embryonic day 7–7.5 in the mouse20 and around day 18
of gestation in humans.21 Soon after, erythroid, granulopoietic
and multipotent progenitors with in vitro clonogenic activity
and limited in vivo repopulating activity appear, but all before
cells with long-term transplantable HSC activity can be
detected.18,22,23 In both species, current evidence suggests that
the latter arise within the aorta-gonado-mesonephros region of
the embryo proper, at E10.524–27 in mice and after 5–6 weeks of
gestation in humans.23,28 Subsequently, HSCs can also be found
in other tissues including the placenta29–31 as well as the FL.32

There is some evidence that HSCs may arise independently in
the yolk sac33 and placenta30 but those found in the FL are
thought to be derived entirely from HSCs that originate
elsewhere.34,35 HSCs then expand rapidly in the FL, which
becomes the major site of hematopoiesis until birth.11,25,36,37

Colonization of the BM begins in the mouse on E17 and in both
species, the BM becomes the major hematopoietic organ soon
after birth and throughout adulthood.38

Given the importance of environmental signals in eliciting
responses to changing body needs for different blood cell types
throughout the growth of the embryo and after birth, it seems
likely that the activity of HSCs (and their differentiating
progeny) is influenced by the dramatic changes in their
locations that take place during this period. Although the role
of such extrinsic factors have been difficult to interrogate,
evidence of intrinsic changes have been easier to infer from
comparisons of their behaviour when assessed in the same
environment either in vitro or in vivo (that is, after transplan-
tation into adult-irradiated recipients).

Do adult HSCs arise from their fetal counterparts?
A fundamental question pertaining to the developmental
origin of HSCs is the extent to which adult BM HSCs are
lineally related to those that first appear in the embryo. The
strongest evidence supporting this lineal relationship comes
from studies using inducible recombination-based marking
strategies. The first of these studies made use of floxed yellow
fluorescent protein transgenic mice that express a tamoxifen-
inducible Cre-ERT recombinase under the control of the stem
cell enhancer of the Scl gene (which encodes a transcription
factor required for the establishment of hematopoiesis).39,40

When recombination was induced at E10.5 and E11.5 by
tamoxifen injections, 17% of the Lin�Sca1þKitþ cells became
yellow fluorescent protein plus at E14.5 and subsequent
transplantation of these marked cells into irradiated adult
recipients resulted in an 8–10% contribution of their yellow
fluorescent protein plus progeny to the donor-derived hema-
topoietic cells detected 5 months post transplant—directly
demonstrating the derivation of adult HSCs from fetal cells
that express Scl. Notably, the contribution of E10.5/E11.5
marked cells to adult hematopoiesis was far from complete.
Thus some adult HSCs may be derived later in development in
a de novo fashion or from fetal cells expressing Scl that are not
HSCs, or from fetal HSCs in which Cre is not successfully
activated. Using a similar approach, but instead employing a
Runx1-dependent marking system, it has been shown that E7.5
Runx1-expressing cells, which are presumably primitive pre-
cursors of erythrocytes, give rise to a significant proportion of
fetal and adult hematopoietic cells.41 Evidence of a linear
relationship between fetal and adult hematopoietic cells is
further provided by the finding that single transplanted E14.5
FL HSCs, can give rise to long-term stable hematopoiesis
following their transplantation into adult recipients, a property
that would not be expected if fetal HSCs had only transient
output capacities.7

Early developmental changes manifested in the
differentiating progeny of HSCs
The erythroid lineage. The primitive erythrocytes that appear
first in the developing mammalian embryo are a transient
population distinguished from the later definitive erythrocytes
in their retention of a nucleus, expression of embryonic globin
genes and exclusive origin from the yolk sac.42 In contrast to
this primitive-to-definitive erythrocyte switch that occurs in all
mammals, a second type of hemoglobin switching, referred to
as the fetal-to-adult switch, occurs exclusively in humans and
old world monkeys. This latter transition involves a change
from g- to b-globin gene expression and is initiated in the
mid-gestation fetus and completed within the first year after
birth. It is thought to facilitate increased oxygen scavenging
from maternal blood, as the HbF molecule (a2g2) has a higher
oxygen affinity than the adult-type hemoglobin (a2b2).

Differences between fetal and adult erythroid-restricted
progenitors (colony-forming unit erythroid; CFU-E) in the
mouse have also been reported. For example, fetal CFU-E are
more sensitive to erythropoietin as shown by erythropoietin
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dose-response analyses of their ability to express their clono-
genic potential in vitro.43 The change in erythropoietin
sensitivity of CFU-E was reported to occur gradually
between fetal and adult life.44

Megakaryocyte progenitors. In the BM of adult humans, many
megakaryocytes undergo multiple endomitotic divisions to
produce large cells of high ploidy before platelets are released
from them by a process of fragmentation of their cytoplasm. In
contrast, the megakaryocytes produced in human fetal hema-
topoietic tissues initiate a similar process of platelet release
when the cells are smaller and lower ploidy but at an
equivalent stage of cytoplasmic maturity.45–48 Interestingly,
this difference is replicated in vitro when the outputs of
clonogenic precursors of megakaryocytes present in human
umbilical cord blood (CB) and mobilized adult peripheral
blood are compared, suggesting the operation of an underlying
cell-intrinsic mechanism.49,50

Granulopoietic cells. Human FL monocytic cells are distinct
from their adult counterparts with respect to their ability to
differentiate directly from a CD14lowCD16� precursor to
CD14highCD16þ cells, without producing a CD14highCD16�

intermediate.51 Fetal monocytic cells also differ from adult
monocytes in their display of properties characteristic of adult
M2 macrophages, including increased expression of chemokines,
scavenger receptors and tissue-degrading enzymes.51

Lymphopoiesis. It was first demonstrated in 1985 that a
subset of mouse B-cells, called B-2 B-cells, can be produced
upon transplantation of either neonatal liver or adult BM;
however, another subset, called B-1 B-cells, can be efficiently
generated only by transplants of neonatal liver.52 More
recently, it was shown that this difference applies specifically
to B-1a cells. Emerging evidence also suggests that splenic
marginal zone B-cells are of uniquely fetal origin,53,54 a notion
that is supported by a recent report of a marginal zone-
restricted embryonic progenitor.55

During mouse development, the first CD4�CD8� cells that
appear in the thymus express the Vg3 Vd1 T-cell receptor,
followed by a second wave of T-cell receptor Vg4 Vd1 cells.56,57

Like B-1a B-cells, the production of these fetal-type T-cells is
assumed to be mediated at the HSC level, as adult HSCs
produce only Vg2, Vg5 and T-cell receptor ab T-cells.57

Similarly, invariant natural killer T cells are only produced
during a short developmental window, with a peak at 2 weeks
after birth in mice.58,59 Recent evidence suggests that this
phenomenon is a consequence of a higher invariant
natural killer T cell potential for neonatal double positive
(CD4þCD8þ ) thymocytes.60

Developmental changes in the properties of HSCs
Lineage output potentialities. Historically, HSCs have been
assumed to be primed epigenetically to generate all blood cell
lineages with equal probabilities, the heterogeneity in observed
mature cell outputs being determined by poorly understood
stochastic events.5–7,61,62 Indeed, in textbook descriptions of

HSCs, self-renewal of multi-potency is typically the key
defining phraseology used. In addition, evidence exists for
self-amplifying and cross-suppressive transcription factor-
mediated mechanisms of ‘commitment’ leading to the
ultimate activation of singular differentiation ‘programs’
within initially multipotent cells, Pu.1 and Gata1 being the
classic examples.63 The more recent discovery of self-
perpetuating unique patterns of differentiation in serially
transplanted clones derived from single mouse HSCs, and a
change in their relative prevalence during ontogeny/aging, was
thus unanticipated.5,7,64

We have introduced the terms: a-, b-, g- and d-HSCs to
distinguish four subsets of mouse HSCs based on their relative
individual contributions to the myeloid (granulocyte–mono-
cyte) as compared with the lymphoid (BþT) cells present in
the peripheral blood 16 weeks post-transplant.5 The a-HSCs
and b-HSCs are of particular interest because both of these
subsets are uniquely and equivalently endowed with durable
self-renewal ability (serial transplantability). All four subtypes
are present in the mouse FL, however, the lymphoid-deficient
a-HSCs are barely detectable in contrast to the prevalent
b-HSCs. In contrast, adult BM contains approximately half
as many a-HSCs as b-HSCs. Interestingly, by 3 weeks of age,
the a-HSC content of the BM is already very similar to that of
the adult BM. However, this developmental increase in the
proportion of a-HSCs does not appear to be intrinsically
determined, as an adult-like distribution of their numbers is
seen in the newly colonized E18.5 BM, even though the
distribution in the FL is the same as at E14.5.7 These findings
suggest that the BM microenvironment, as compared with that
of the FL, is more stimulatory of a- versus b-HSC expansion,
or selectively favors seeding of the BM with a- as compared
with b-HSCs.

Transplants of FL HSCs produce, on average, an Btwofold
higher contribution of granulocytes and monocytes (Ly6gþ

and/or Mac1þ ) to their total leukocyte progeny, as compared
with adult BM HSCs.65 Intriguingly, this higher myeloid
output of fetal mouse HSCs switches to an adult pattern
between 3 and 4 weeks of age and also appears to be mediated
at the HSC level, as shown by serial transplant experiments.65

Proliferative activity. HSCs in fetal tissues show the same high
cycling activity as CFU-S and, similarly, become a largely
quiescent population in the adult (changing from an estimated
fraction of cycling cells of close to 100% in the E14.5 FL of
mice to B10% in adult BM66–68). Interestingly, the cycling
status of HSCs in mice appears to be site-independent as it
remains unchanged as the HSCs move from the FL to the BM
until 3 weeks after birth when it is abruptly altered within a 1-
week period.65,68 These features again point strongly to an
intrinsically determined mechanism. In humans, an analogous
change in HSC turnover rate is inferred from the abrupt
change in the rate of leukocyte telomere shortening that
appears to occur between 1 and 3 years after birth,69,70 and
more clearly evident between 1 and 2 years after birth in
individually tracked baboons.71 A recent study suggests that a
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developmentally regulated decrease in expression of the
transcription factor, C/EBPa, is responsible for this in vivo
switch in HSC cycling activity in the mouse.72

A number of cell-surface markers and dye-efflux phenotypes
used to isolate HSCs from adult mouse BM, show an altered
pattern of expression when cycling HSCs are studied (for
example, fetal mouse HSCs or stimulated adult mouse BM
HSCs).73 As a result, different phenotypes had to be used to
enable fetal and adult HSCs to be isolated at high purities.65,74

More recently, new mouse HSC markers have been discovered
that are not affected by the cycling status or different
developmental origin of the HSCs.73 Their use allows mouse
HSCs to be isolated at near purity from every in vivo source
thus far studied6,7,75 thereby bypassing many caveats in
historical comparisons of HSCs purified using different
phenotypes.

HSC self-renewal. In mice, it has been shown that E14.5 FL
HSCs differ from adult BM HSCs in the rate at which they
regenerate hematopoiesis, including their own numbers, in
transplanted irradiated recipients.11,65,67,76,77 This difference is
thought to be at least partly due to a greater in vivo self-
renewal of the FL HSCs, as their superior regenerative activity
is seen regardless of the number of HSCs initially transplanted
(over a 100-fold range of 10–1000).78 Intriguingly, like the
higher myeloid output of FL HSCs (noted above), this
property of HSCs, in mice, changes concomitantly with the
decrease in their proliferative activity between 3 and 4 weeks
after birth.65

Responsiveness to growth factors. Steel factor (SF) is a
transmembrane growth factor that is encoded by the Sl locus.
SF binds to Kit (CD117), a type III receptor tyrosine kinase
encoded by a gene in the W locus. Even before the products
encoded by the W and Sl loci were known to represent a
receptor-ligand pair mediating HSC responses, studies of the
defects caused by mutations at both loci had pointed to their
complementary involvement in HSC regulation. For example,
both fetal and adult hematopoietic tissues from mice carrying
mutations within the kinase domain of Kit show reduced
colony formation by CFU-S.79 Mice with a W41/W41 genotype
are of particular interest because they are viable and fertile (in
contrast to those with more severe W mutations),80 but still
have significantly reduced HSC functionality as assessed in
limiting dilution transplant assays (10- to 20-fold). As a result,
sublethally irradiated adult W41/W41 mice can be used as hosts
to enable the detection of transplanted (wild-type) HSCs with
the same sensitivity as lethally irradiated wild-type hosts given
a minimal radioprotective transplant.81 In contrast, Sl-mutant
mice, which have deletions in the SF genomic sequence,82 have
a microenvironmental niche defect that prevents the formation
of spleen colonies by CFU-S, as well as the regeneration and
maintenance of their numbers throughout adult life.79

In the mouse, HSCs from all stages of development express
the same levels of Kit on the cell surface regardless of their
cycling status or position in the cell cycle.68,83–85 However,

several lines of evidence point to differences in the
requirements and responsiveness of fetal and adult HSCs to
SF stimulation. Sl/Sl mice do not express any form of SF and
die around E15–16 due to the dependence of fetal as well as
adult erythropoiesis on this growth factor. However, their
CFU-S and ThyloLin�Sca-1þ hematopoietic stem and pro-
genitor cells increase at the same rate as their wild-type
counterparts, three- to fivefold between E13–15, thus demon-
strating that fetal HSC expansion can occur ‘normally’ in the
absence of SF.83 In vitro, fetal mouse HSCs can be shown to be
SF responsive, but stimulation of their self-renewal is sixfold
more sensitive to SF than adult HSCs.84,86–88

Fetal B-cell progenitors in the mouse also differ from their
adult counterparts with respect to their responsiveness to
growth factors. In this case, they are able to give rise to mature
progeny without interleukin-7 and thymic stromal-derived
lymphopoietin, factors that are necessary for maturation of
adult BM-derived progenitors.89 Interestingly, the timing of
this developmental transition (that is, from interleukin-7 and
thymic stromal-derived lymphopoietin independence to
dependence) occurs 1–2 weeks after birth, a time point
strikingly similar to postnatal changes affecting several other
HSC properties.65,68

Regulation of developmental changes in HSC properties
The evidence that most, if not all, adult HSCs and the blood
cells they subsequently generate, are derived from fetal HSCs
implies that HSCs undergo changes that influence the mole-
cular programs active within them and their differentiating
progeny. This possibility is further supported by the recent
discovery of specific pathways regulating the different behavior
of fetal and adult HSCs, and the associated differences in
the transcriptome of prospectively isolated fetal and adult
HSCs.75,90,91

The concept that some genes may only be required for HSC
functioning at certain developmental stages was first demon-
strated for Bmi1, a member of the polycomb-repressive
complex. When this gene is deleted, a normal HSC population
is generated in the FL; however, BM failure secondary to HSC
depletion occurs 1–2 months after birth,92 a time point which
directly follows the fetal-to-adult transition in several HSC
properties.65,89 Similarly, Gfi�/� mice develop normally, but
when their BM cells are transplanted they have a reduced
ability to repopulate irradiated recipients suggesting their adult
HSCs are impaired.93 Tel/Etv6 has also been shown to be an
essential and selective regulator of adult HSC survival.94 More
recently, the transcription factor C/EBPa was shown to be
required for acquisition of quiescence of mouse adult HSCs
but not by fetal HSCs, which are naturally cycling.72

Conversely, several gene products have recently been
demonstrated to be important for fetal but not adult HSCs.
The first of these identified was Sox17, which is expressed at a
higher level in fetal compared with adult HSCs, using both
direct measurements of gene expression and an analysis of
HSCs isolated from a Sox17 knock-in reporter mouse.95

Inducible deletion of the Sox17 gene was then used to
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demonstrate an essential role for Sox17 in maintaining HSCs
in fetal/neonatal mice. Importantly, Sox17 deletion in adult
mice had no effect on HSC numbers or functionality;95

however, forced expression of Sox17 in adult BM was found
to enhance the HSC-derived output of myeloid cells (a fetal
HSC property).96

Another central question regarding developmental changes
in HSC properties is whether the timing, onset and main-
tenance of such changes are governed by extrinsic factors (that
is, hormones, growth factors or paracrine ‘niche’ signals) or
intrinsic factors (that is, cell-intrinsic timers and epigenetics).
While it is known that FL stromal cells express factors such as
insulin-like growth factor 297 and angiopoietin-like factors98

that would be anticipated to supply a unique set of signals to
HSCs in the FL as compared with the adult BM micro-
environment, there is also evidence that HSC developmental
states and transitions are intrinsically regulated—likely a
complex interplay of both is operative.

Direct evidence for a cell-intrinsic mechanism underlying
the developmentally coordinated changes in properties of fetal
and adult HSCs has been obtained from several recent studies.
Our own work has implicated the Lin28b-let-7-Hmga2 path-
way.91 In a comparison of E14.5 FL and adult BM HSCs
purified from mice, we found that Lin28b is expressed at
higher levels in the fetal HSCs and lentivirus-mediated
overexpression of Lin28b in adult HSCs led to heightened
Hmga2 levels through inhibition of the let-7 family of
messenger RNAs(miRNAs). Moreover, lentivirus-mediated
overexpression of either Lin28b (or its homologue Lin28) in
adult HSCs enhanced the self-renewal activity of the HSCs to
mimic that typical of FL HSCs when transplanted into
irradiated hosts. In addition, this result was phenocopied by
overexpression of Hmga2 in adult HSCs. Conversely, fetal
HSCs from Hmga2-null mice display an adult-like, reduced
self-renewal activity in the same type of transplantation

experiment. Together, these findings demonstrate that Lin28b
is a master determinant of the high self-renewal of fetal HSCs
and acts by permitting a high-level of Hmga2 expression in
these cells.

Similarly to HSCs, Lin28b is expressed at higher levels in
B-cell precursors in the mouse E14.5 FL as compared with
similar subsets in the adult BM.60 Moreover, ectopic
overexpression of Lin28 in adult BM hematopoietic stem
and progenitor cells can activate many of the fetal lymphoid
phenotypes summarized above.60 Strikingly, Lin28-mediated
fetal-like reprogramming of adult BM cells also induce a fetal-
like interleukin-7 and thymic stromal-derived lymphopoietin
independence upon B progenitors.60 However, Lin28-mediated
activation of several of these fetal lymphoid phenotypes is not
mediated by Hmga2 derepression, as direct overexpression of
this gene cannot activate them.91

Let-7 miRNAs also regulate developmental differences in
megakaryopoiesis99 and control human fetal hemoglobin
expression.100 This latter let-7-mediated effect was also
shown to be a consequence of LIN28B expression, which
leads to reduced levels of BCL11A, a known repressor of
g-globin expression. Together, these findings strongly support
a role for the Lin28b-let-7 axis as a ‘master regulator’ of the
fetal HSC state (Figure 1). Intriguingly, while the Lin28b-let-7
pairing seems to be a common feature of many fetal-specific
properties of HSCs, the downstream target of this pairing
appears to be property-dependent. For example, in mice,
Hmga2 is the downstream mediator of developmental differ-
ences in HSC self-renewal, with BCL11A being identified as
downstream of LIN28B-induced HbF activation in human
erythroid cells.

Hmga2,91 Lin28b60 and let-7 miRNAs60 change their levels
gradually between fetal and adult life. This suggests that these
genes may be components of a developmental clock, in which
the timing is determined by accumulation and/or titration of

Hmga2

Fetal HSC state Adult HSC state 

Lin28b let-7

High HSC
self-renewal

Fetal-type
hematopoiesis

 

Lin28b let-7 Hmga2

Adult-type
hematopoiesis

Baseline HSC
self-renewal 

let-7

Hmga2

Lin28b

E14.5 BIRTH 3
weeks

4
weeks

Adult

Figure 1 Lin28b is a master regulator of fetal hematopoietic stem cell (HSC) identity. The higher level of Lin28b expression in fetal (as
compared with adult) HSCs leads to a correspondingly lower level of let-7 messenger RNAs (miRNAs) and thus permits a higher
expression of Hmga2. This elevated level of Hmga2 is responsible for the enhanced self-renewal activity of fetal as compared with adult
HSCs in the mouse.91 Lin28b also regulates other differences seen between fetal and adult hematopoiesis; for example, the activation of
fetal-type lymphopoiesis60 and the expression (in human erythroid cells) of fetal hemoglobin.100 These properties are not a consequence
of Lin28b-mediated derepression of Hmga2 expression.91,100 This figure is modified with permission from a previously published
version.91
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these molecules. The Lin28–let-7 pairing has been previously
implicated in the regulation of such a developmental transition
in Caenorhabditis elegans. This larval-to-adult transition,
which involves a switch from cycling to quiescence of a
stem-like population known as seam cells, is regulated by
the downregulation of Lin28, which in turn triggers an
upregulation of let-7.101 In let-7-mutant animals, the seam
cells do not exit the cell cycle but instead reiterate a larval
fate.101 Thus, the timing mechanism of this transition is
thought to involve the accumulation of let-7 miRNAs. The
findings that let-7 levels increase in HSCs between fetal and
adult life60 bear a striking resemblance to this larval-to-adult
transition of C. elegans. Thus, the developmental down-
regulation of Lin28b, which regulates the differences in the
self-renewal activities and lymphoid differentiation potential
of fetal compared with adult HSCs, may also be responsible
for the timing of this transition that occurs between 3 and
4 weeks of age. This also raises the possibility that such
cell-intrinsic development timing mechanisms represent highly
evolutionarily conserved processes.

As mentioned, developmental transitions of hematopoietic
cells not only occur in HSCs, but also in megakaryocyte
progenitors,49,50 myeloid progenitors,9,10 CFU-E,43 B-cell
progenitors52,89 and T-cells.57 Furthermore, as the differential
expression pattern of Lin28b, let-7 miRNAs and Hmga2
between fetal and adult HSCs is also apparent in populations
composed principally of hematopoietic progenitors (that is,
Lin�Sca1þKitþ cells),91 this suggests that developmental
programs active within HSCs may remain active within more
differentiated hematopoietic subsets. This is supported by the
recent evidence that let-7 miRNAs also regulate developmental
differences in B-cells, T-cells60 and megakaryocytes.99

Clinical implications
Pathogenesis of pediatric malignancies. Approximately 2% of
all cancer cases in western countries occur in children before
they reach 15 years of age.102 These include, in descending
order of prevalence, leukemia, lymphoma, CNS tumors, neuro-
blastomas, soft-tissue sarcomas, nephroblastomas (Wilms’
tumor), bone tumors, retinoblastomas, hepatoblastomas and
germ cell tumors.102 In contrast to adult leukemias, which are
most frequently myeloid diseases, the majority of those
occurring in children are acute lymphoblastic leukemias.103

Interestingly, the incidence of acute lymphoblastic leukemias
does not increase gradually throughout childhood, but
rather shows a peak at approximately 5 years of age.102 It
may, therefore, be speculated that the microenvironment
and/or leukemia-initiating cells undergo a transition in their
susceptibility to oncogenic transformation during early
childhood.

This concept is strengthened by the observation of pedia-
tric-exclusive mutations and susceptibility syndromes, and
examples of spontaneous age-associated tumor regression in
children. The TEL-AML1 fusion oncogene is the most frequent
mutation found in pediatric acute lymphoblastic leukemias,
present in B25% of all cases,104 but is rarely, if ever, found in

adult acute lymphoblastic leukemias.105 While the reasons for
this remain unknown, a possible explanation could be the
absence or presence of different protective or cooperating
factors in the hematopoietic cells of children but not adults.
This explanation could also apply to the window of early
childhood in which patients with Noonan syndrome appear to
be at an increased risk of developing leukemia, a risk that sub-
sequently decreases to a baseline level despite the persistence of
the responsible inherited genetic lesions.106 Additional
evidence of age-specific cooperating oncogenic factors can be
inferred from the observations of occasional pediatric
leukemias that resolve spontaneously. One example, although
rare, are cases of juvenile myelomonocytic leukemia that may
regress, even in the absence of treatment.107 Similarly, a
megakaryoblastic leukemia that occurs exclusively in children
with Down syndrome, known as the transient myelo-
proliferative disorder, can also spontaneously resolve within
the first 3 months of life.108 Notably, even some pediatric solid
tumors undergo a spontaneous regression.102

Lin28b and Hmga2 are oncogenes,109,110 whereas let-7
miRNAs are tumor suppressors.111 Thus, the expression
pattern of these genes in fetal and neonatal hematopoietic
cells would be anticipated to create a ‘primed’ background for
the generation of leukemia. Furthermore, these genes are cell
intrinsically programmed to switch their expression pattern
during the transition to adulthood, which might serve as a
mechanism responsible for the occasionally observed sponta-
neous regression of certain fetal/neonatal onset leukemic
disorders. In these cases, the ‘developmental hits,’ which are
cooperating with acquired or genetic lesions, would be
predicted to be downregulated during early life, thus leading
to a collapse of the molecular program driving the progression
of these diseases. The recently elucidated role of the HMGA2–
IGF2BP2 axis in the pathogenesis of NRAS-mutant embryonic
rhabdomyosarcoma112 lends strong support for this idea.

HSC transplantation. HSC transplantation is a well-estab-
lished technique that has been used to treat over 30 different
types of familial and acquired hematologic diseases.113 A major
barrier to patient access to allogeneic HSC transplantation is
the requirement to have a human leukocyte antigen-matched
donor. Currently, B30% of patients requiring allogeneic HSC
transplantation are not candidates for this life-saving
procedure due to lack of a suitable donor.113 Three general
strategies have been proposed to improve the supply of HSC
transplantation sources in order to permit more patients access
to this treatment. The first of these, sometimes referred to as
the ‘holy grail’ of translational HSC research, is the ex vivo
expansion of HSCs. As this occurs readily in vivo (that is,
following HSC transplantation or during growth and
development), it should theoretically be possible to replicate
these conditions in vitro, and thereby enable the generation of
a large supply of HSCs even using autologous sources when
these may be limiting. However, in spite of substantial efforts
to identify such conditions, the most recent protocols offer
only modest, if any, net increases in HSC numbers.114 Another
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approach has been to direct the differentiation of embryonic
stem cells or induced pluripotent stem cells to a hematopoietic
fate. This has also been met with limited success to date and
has netted only convincing evidence for the generation of
hematopoietic progenitors.115 The third of such strategies has
been the use of alternate sources of HSCs, most notably CB.
CB transplants are now routinely used in the pediatric setting;
but their utility in adults is more problematic due to the
limiting numbers of repopulating cells in individual CB
collections.116

An additional strategy is to manipulate HSCs ex vivo in a
manner that will enhance their rate of expansion in transplant
recipients. This could theoretically increase the effective cell
dose, and in turn broaden the utility of CB and/or ex vivo-
expanded HSCs. Evidence of such an effect is found in the
dominant clones containing HMGA2 insertional mutations
observed in several clinical gene therapy trials. Using
new sequencing technologies, the clonal dynamics of HSC
and progenitor cells within patients undergoing gene therapy
for hematologic conditions can be studied. In a recent report
of eight patients who were being monitored following a
transplantation of lentivirus-corrected autologous BM cells
for treatment of their X-linked severe combined immuno-
deficiency, two patients were found to harbor clones where the
viral cassette had inserted within the large third intron of
the HMGA2 gene. In both of these cases, the HMGA2
insertional mutant clone demonstrated a dominant behaviour,
with one clone representing 6% of all transduced cells.117

In both of these cases, the mutation generated a truncated
transcript lacking the let-7 miRNA binding sites, thus leading
to derepression (that is overexpression) of HMGA2. A similar
mutation and case of clonal dominance were recently reported
in a patient undergoing gene therapy treatment for b-
thalassemia. Interestingly, in this case, the clonal dominance
was responsible for the therapeutic effect, as it permitted
the pool of corrected HSCs to reach a therapeutic threshold.118

This finding suggests that deliberate overexpression of
HMGA2 in parallel with the transgene of interest might
similarly enhance the efficacy of such a therapy and be
particularly useful in cases like b-thalassemia where a large
portion of HSCs must be corrected in order to achieve a
benefit.

Conclusions and future directions
As summarized in this review, HSCs in mice and humans
undergo a multitude of developmental changes that alter the
properties of themselves and the more committed progeny
they produce. Molecular regulators of some of these processes
have recently been identified, most notably the Lin28b-let-7
axis, which regulates multiple developmentally determined
changes. Importantly, this pathway and its downstream targets,
including Hmga2 and Igf2bp2, are differentially expressed
across development and/or responsible for developmental
differences in stem cell properties of other tissue-specific stem
cells across different species.101,119–122 Thus, we predict that
this pathway will be found to be responsible for modulating

many core properties of diverse stem cell types that must
change to support organismal growth and its eventual arrest.

Future studies focused on the relevance of this pathway to
human HSC biology are also anticipated. Observations of
dominant HMGA2-activated clones in patients undergoing
gene therapy treatments117 has provided convincing evidence
that the let-7-HMGA2 pairing is active in human HSCs,
and that HMGA2 may activate a fetal-like self-renewal
potential in these cells. It is also established that Lin28b is
expressed at significantly higher levels in human FL and CB as
compared with adult hematopoietic tissues (BM, thymus
and lymph nodes).60 It will thus be particularly interesting
to discover whether LIN28 expression can influence the
susceptibility of naı̈ve human HSCs to transformation and
whether fetal-specific pathways are aberrantly activated in
adult malignancies in which LIN28, LIN28B or HMGA2
mutations are present.
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