
OPEN

ORIGINAL ARTICLE

B-cell translocation gene 2 positively regulates
GLP-1-stimulated insulin secretion via induction
of PDX-1 in pancreatic b-cells
Seung-Lark Hwang1,4, Okyun Kwon1,4, Sun-Gyun Kim2, In-Kyu Lee3 and Yong Deuk Kim1

Glucagon-like peptide-1 (GLP-1) is a potent glucoincretin hormone and an important agent for the treatment of type 2 diabetes.

Here we demonstrate that B-cell translocation gene 2 (BTG2) is a crucial regulator in GLP-1-induced insulin gene expression

and insulin secretion via upregulation of pancreatic duodenal homeobox-1 (PDX-1) in pancreatic b-cells. GLP-1 treatment

significantly increased BTG2, PDX-1 and insulin gene expression in pancreatic b-cells. Notably, adenovirus-mediated

overexpression of BTG2 significantly elevated insulin secretion, as well as insulin and PDX-1 gene expression. Physical

interaction studies showed that BTG2 is associated with increased PDX-1 occupancy on the insulin gene promoter via a direct

interaction with PDX-1. Exendin-4 (Ex-4), a GLP-1 agonist, and GLP-1 in pancreatic b-cells increased insulin secretion through

the BTG2–PDX-1–insulin pathway, which was blocked by endogenous BTG2 knockdown using a BTG2 small interfering RNA

knockdown system. Finally, we revealed that Ex-4 and GLP-1 significantly elevated insulin secretion via upregulation of the

BTG2–PDX-1 axis in pancreatic islets, and this phenomenon was abolished by endogenous BTG2 knockdown. Collectively, our

current study provides a novel molecular mechanism by which GLP-1 positively regulates insulin gene expression via BTG2,

suggesting that BTG2 has a key function in insulin secretion in pancreatic b-cells.
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INTRODUCTION

The postprandial enhancement of insulin secretion by hormo-
nal factors from the gut is called the incretin effect.1,2 The
incretin hormone, glucagon-like peptide-1 (GLP-1), is
produced from the gut endocrine L-cells in a nutrient-
dependent manner and is also secreted in pancreatic islets.3

GLP-1 induces pancreatic b-cell neogenesis, proinsulin
biosynthesis and glucose-stimulated insulin secretion, and it
inhibits food intake, gastric emptying, acid secretion and
glucagon secretion, both in normal subjects and in patients
with type 2 diabetes.2,4 The pancreatic b-cell growth-
promoting action of GLP-1 acts as its insulinotropic activity
through a G-protein-coupled receptor by interacting with a
specific receptor, the GLP-1 receptor. In addition, GLP-1
regulates a diverse set of intracellular signals, such as cyclic-
AMP-dependent protein kinase A, calcium and Epac in
pancreatic b-cells.5–7 GLP-1 activates all the steps of insulin

biosynthesis and gene expression, which enhances insulin
secretion. Previous reports have shown that the trans-
criptional activity of the insulin gene is mainly mediated by
a network of transcription factors, such as pancreatic duodenal
homeobox-1 (PDX-1), b-cell E-box transcription factor
(BETA2/NeuroD) and musculoaponeurotic fibrosarcoma
oncogene family A (MafA), which are predominantly
expressed in pancreatic b-cells.8,9

B-cell translocation gene 2 (BTG2) is a member of the BTG/
Tob gene family of antiproliferative genes that has been shown
to be a crucial factor of the cell cycle machinery and its
processes, such as cell differentiation, cell growth and survi-
val.10,11 BTG2 is predominantly expressed in the kidneys and
lungs, but it has been detected in a variety of tissues, including
liver, pancreas and intestine.12 The pleiotropic effect of BTG2
was initially reported to be induction of an immediate early
gene by growth factors and tumor promoters, as the transcript
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and protein are detected very rapidly after phorbol ester or
growth factor treatment in the various cell types.13,14 Previous
studies have shown that BTG2, a transcriptional coregulator,
regulates the transcriptional activity of several gene promoters,
such as Id3, cyclin D1 and RAR-b.11,15–17 Most of all, a
previous report has shown that pregnancy, known to cause an
increment in the proliferation of pancreatic b-cells and insulin
release, significantly upregulated the BTG2 gene expression in
rodent pancreatic islets, suggesting that BTG2 may be involved
in insulin secretion.18 However, the biological relevance of
BTG2 in insulin gene expression and the possible physiological
role have not been reported yet.

In this study we have demonstrated that GLP-1 increases
insulin gene expression and insulin secretion via the induction
of BTG2–PDX-1 axis in pancreatic b-cells, and that this
stimulatory effect of GLP-1 was markedly reduced by endo-
genous knockdown of BTG2. Thus, we reveal a transcriptional
coregulator BTG2 as a novel key factor in insulin gene
expression and insulin secretion.

MATERIALS AND METHODS

Plasmids
The reporter plasmids for human (hINS-Luc) and rat II insulin
promoter (rINS-Luc) were previously described.19,20 Expression
vectors for PDX-1, BTG2, pEBG vector (GST), and GST–BTG2 were
described previously.21,22 All plasmids were confirmed by sequencing
analysis.

Cell culture and transient transfection assays
INS-1 (rat insulinoma cells) cells were cultured in RPMI 1640 (Gibco-
BRL, Grand Island, NY, USA) supplemented with 10% fetal bovine
serum (Hyclone, Logan, UT, USA), 2-mercaptoethanol (50mM) and
antibiotics in a humidified atmosphere containing 5% CO2 at 37 1C.
Transient transfections were conducted as previously described.21,23

Preparation of recombinant adenovirus and small
interfering RNA experiments
Adenovirus encoding BTG2 (Ad-BTG2) and the small interfering
RNAs (siRNAs) for BTG2 (si Scram and si BTG2) have been prepared
according to the method described previously.22 To express the BTG2
and siRNA for BTG2, cells were infected with the indicated amounts
of Ad-BTG2 and siRNA BTG2. Each of the samples was used for
northern blot and western blot analysis. The sequences of siRNA are
as follows: scrambled siRNA, 50-ATGAGCCACGGGAAGAG-AACC-30

and BTG2 siRNA, 50-CTATCGCTTACCGCAT-CAA-30.

Northern blot analysis
Total RNA was isolated from INS-1 cells and mouse primary islets
using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) in accordance
with the manufacturer’s instructions. Briefly, aliquots of 30mg of total
RNA from each of the samples were used for northern blot analysis as
previously described.21,23 The probe labeling of each of the cDNAs
for BTG2, PDX-1, MafA, insulin and glyceraldehyde 3-phosphate
dehydrogenase with [a-32P]dCTP was performed with a random-
primer DNA labeling system (Amersham Biosciences, Little Chalfont,
UK). All transcripts were normalized with glyceraldehyde 3-phosphate
dehydrogenase expression.

Quantitative PCR
Total RNA from INS-1 cells was extracted using an RNeasy minikit
(Qiagen, Valencia, CA, USA). cDNA generation by First Strand cDNA
synthesis kit (Fermentas, Burlington, ON, Canada) was performed by
using the Power SYBR Green PCR Master Mix (Applied Biosystems,
Warrington, UK) with the StepOnePlus Real-Time PCR (Applied
Biosystems), as previously described.21,24 All data were expressed as a
ratio of the target gene to b-actin expression. The primer sequences
used for PCR are as follows: BTG2, 50-CCCCGGTGGCTGCCT
CCTATG-30 (forward) and 50-GGGTCGGGTGGCTCCTATCTA-30

(reverse); PDX-1, 50-CCGCGTTCATCTCCCTTTC-30 (forward) and
50-TGCCC-ACTGGCTTTTCCA-30 (reverse); insulin, 50-TCTTCTACA
CACAGTCCCG-30 (forward) and 50-AGTGCCAAGGTCTGAAGAT
CCC-30 (reverse); and b-actin, 50-CCC-GCGAGTACAACCTTCT-30

(forward) and 50-CGTCATCCATGGCGAACT-30 (reverse).

GST pull-down and in vivo interaction assay
GST pull-down assay and in vivo interaction assay were performed
according to the method described previously.22,25

Western blot analysis
INS-1 cells and mouse primary islets were isolated and processed
according to a method described previously.21,26 The membranes were
probed with BTG2, PDX-1 and b-actin (Santa Cruz Biotechnology,
Santa Cruz, CA, USA) and were then developed using an ECL western
blot detection kit (Amersham Bioscience).

Chromatin immunoprecipitation assay
The chromatin immunoprecipitation assay was performed as
described previously.22,26 Twenty-four hours after transfection with
BTG2 in INS-1 cells, the cells were treated with GLP-1 (10 nM). The
cells were subsequently collected and the chromatin immuno-
precipitation assay was performed with anti-PDX-1. The final DNA
extractions were quantified by PCR with two pairs of primers for the
proximal (�276/�56 bp) and distal (�461/�317 bp) regions of the
insulin promoter. The specific primers used for PCR are as follows:
proximal, 50-GACATTTGCCCCCAGCTGTG-30 (forward) and 50-TCA
ACCCCTGCCGCCTGGCC-30 (reverse); distal, 50-GTCCTGGGG
ACAGGGGTCTG-30 (forward) and 50-TAGACCAGGAGAGCTGGA
GG-30 (reverse).

Animals
Eight-week-old, male C57BL/6 mice (Daehan Biolink, Chungbuk,
Republic of Korea) were used for this experiment. For the exendin-4
(Ex-4) stimulation experiment, mice were injected intraperitoneally
with Ex-4 (20mg kg�1) for 7 days. The mice were killed and their
pancreatic islets were isolated for performing western and northern
blot analyses. All experimental procedures and protocols were
approved and conducted in accordance with the regulations of the
Institutional Animal Care and Use Committee of the Daegu Hanny
University.

Islet isolation and measurement of insulin secretion
Mouse pancreatic islets were isolated from the pancreas of C57BL/6
mice by the collagenase digestion technique, and insulin secretion was
performed according to the method previously described.21

Statistical analysis
Data are expressed as the mean (±s.e.m.). Analysis of variance was
employed to determine significant differences as detected by Student’s
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t-tests and/or one-way analysis of variance methods. Statistical
significance was considered at Po0.05.

RESULTS

GLP-1 induces insulin gene expression via BTG2 induction
in pancreatic b-cells
Previous studies have shown that GLP-1 stimulates insulin
gene transcription via a diverse network of transcription
factors, such as PDX-1, MafA and BETA2.8,9,27 On the basis
of these findings, we examined the biological relevance of
BTG2 in GLP-1-induced insulin gene expression in pancreatic
b-cells. Treatment of INS-1 with GLP-1 significantly increased
BTG2 mRNA expression in a time- and dose-dependent
manner, and subsequently elevated PDX-1 and insulin
mRNA levels in pancreatic b-cells (Figures 1a and b),
consistent with the previous reports. Next we further con-
firmed whether GLP-1 also regulates the BTG2 protein levels
in pancreatic b-cells. GLP-1 treatment significantly increased
BTG2 and, subsequently, PDX-1 protein levels in a time-
dependent manner (Figure 1c), which is consistent with the
increase in BTG2 and PDX-1 mRNA expression. Overall, these
results strongly suggest a novel crucial role of BTG2 in
regulating GLP-1-mediated insulin gene expression.

BTG2 increases insulin gene expression and secretion via
induction of PDX-1
As PDX-1 has a critical role in insulin gene expression and
insulin production, we attempted to elucidate the potential
link between BTG2 and PDX-1 in pancreatic b-cells. As shown

in Figure 2a, overexpression of BTG2 using Ad-BTG2 sig-
nificantly increased PDX-1 and insulin mRNA levels in a dose-
dependent manner, but it did not significantly change MafA
mRNA levels (Figure 2a). Next we further confirmed whether
BTG2 also regulates transcriptional activity of human and rat
insulin gene promoter in pancreatic b-cells. As expected, BTG2
significantly increased the transcriptional activity of insulin
gene promoters in a dose-dependent manner (Figures 2b and
c) and in a pattern similar to that indicated by insulin gene
expression. Finally, we examined the potential effect of BTG2
on insulin secretion in pancreatic b-cells. GLP-1 significantly
elevated insulin secretion from INS-1 cells. Interestingly,
insulin secretion was increased by Ad-BTG2 relative to the
control cells (Figure 2d). Taken together, these results show
that BTG2 has a key function in insulin gene expression and
secretion through PDX-1 induction in pancreatic b-cells.

BTG2 physically interacts with PDX-1 and mediates PDX-1
occupancy on the insulin gene promoter
As in addition to PDX-1 abundance, PDX-1 binding to the
insulin gene promoter is a major determinant of insulin gene
expression and production, we elucidated the physical inter-
action between BTG2 and PDX-1 using in vitro and in vivo
GST pull-down assays. The results of the GST pull-down
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Figure 1 GLP-1 induces the BTG2 gene expression. (a) INS-1 cells
were treated with GLP-1 (10 nM) for various time periods up to
24h. (b) INS-1 cells were treated with GLP-1 for 1 h at the
indicated concentrations. The levels of BTG2, PDX-1 and insulin
mRNA were measured by northern blot analysis and then
normalized to glyceraldehyde 3-phosphate dehydrogenase
(GAPDH). (c) INS-1 cells were treated with GLP-1 (10 nM) for
various time periods up to 24h. Whole-cell extracts were isolated
and analyzed using western blot analysis with the indicated
antibodies. Protein level was normalized to b-actin.
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Figure 2 BTG2 elevates insulin secretion. (a) INS-1 cells were
infected with Ad-BTG2 at a multiplicity of infection (MOI) of 30 or
60 for 24h. Total RNA was extracted from pancreatic b-cells and
utilized for northern blot analysis. BTG2, PDX-1, MafA and insulin
mRNA levels were normalized to glyceraldehyde 3-phosphate
dehydrogenase (GAPDH). (b and c) INS-1 cells were transfected
with BTG2 in the indicated reporter genes. Luciferase activity was
measured after 36h and normalized to b-galactosidase activity.
(d) Insulin secretion was performed from INS-1 cells infected with
Ad-GFP and Ad-BTG2 for 24h at the indicated concentrations,
using a radioimmunoassay kit. GLP-1 (10nM) was used as a positive
control. All data are representative of at least three independent
experiments. *Po0.05 when compared with untreated control.
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assays demonstrated that labeled PDX-1 interacted with GST–
BTG2 (Figure 3a) and, subsequently, PDX-1 bound to GST–
BTG2, but not to GST alone (Figure 3b). Collectively, these
results demonstrate that BTG2 physically interacts with PDX-1
in vitro and in vivo. To further confirm whether BTG2 and
PDX-1 interaction affects PDX-1 occupancy on the insulin
gene promoter, we performed the chromatin immunoprecipi-
tation assay in pancreatic b-cells. The endogenous PDX-1
recruitment to the proximal region of the insulin gene
promoter by GLP-1 treatment was significantly enhanced in
BTG2-overexpressing cells when compared with the control
cells (Figure 3c, top panel). However, the nonspecific distal
region of the insulin gene promoter was unable to recruit this

protein under all conditions (Figure 3c, bottom panel). Over-
all, these findings strongly suggest that BTG2 has a key
function in PDX-1 occupancy on the insulin gene promoter
via a physical interaction.

Ex-4-induced insulin secretion is mediated by BTG2
To confirm the transduction efficiency of BTG2 siRNA, we
performed western blot analysis on pancreatic b-cell extracts.
As expected, successful transduction of endogenous BTG2
siRNA was confirmed by western blot analysis conducted with
the indicated antibodies in INS-1 cells (Figure 4a). Moreover,
we determined the crucial role of BTG2 in the regulation of
insulin and PDX-1 gene expression following GLP-1 treatment.
Ex-4, a GLP-1 agonist, and GLP-1 significantly increased
BTG2, PDX-1 and insulin mRNA levels, and this stimulatory
effect of GLP-1 was abolished by endogenous BTG2 knock-
down using BTG2 siRNA. Overall, these results show that
BTG2 has a critical function in the regulation of GLP-1-
induced insulin gene expression. To investigate whether Ex-4-
mediated insulin secretion is altered by BTG2, we performed a
knockdown of endogenous BTG2 using BTG2 siRNA in INS-1
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Figure 3 Interaction between BTG2 and PDX-1. (a) In vitro GST
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expression levels of GST–BTG2 and the GST control. (c) Chromatin
immunoprecipitation assay shows PDX-1 occupancy on the insulin
gene promoter. INS-1 cells were transfected with BTG2 for 24h
and then treated with GLP-1 (10 nM) for 1 h. Soluble chromatin
was immunoprecipitated with anti-PDX-1 antibody or IgG as
indicated. Purified DNA samples were employed for PCR with
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input.
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Figure 4 GLP-1-stimulated insulin secretion is mediated by BTG2.
(a) INS-1 cells were transfected with scrambled siRNA or BTG2
siRNA for 36h. Whole-cell extracts were isolated and analyzed
using western blot analysis with the indicated antibodies. (b) INS-1
cells were transfected with scrambled siRNA and BTG2 siRNA for
36h, and then treated with or without GLP-1 (10 nM) and Ex-4
(100 nM). Total RNA was isolated and analyzed using quantitative
PCR analysis with observed primers. (c and d) INS-1 cells were
transfected with BTG2 siRNA (si BTG2) and Scrambled siRNA (si
Scram) for 36 h. After knockdown for 36h, insulin secretion was
performed from INS-1 cells treated with or without GLP-1 (10 nM)
and Ex-4 treatment (100nM) for 1�6 h using a radioimmunoassay
kit. *Po0.05 and **Po0.05 compared with untreated control and
GLP-1- and Ex-4-treated cells.
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cells. As shown in Figures 4c and d, insulin secretion was
significantly elevated upon Ex-4 treatment, in a manner
similar to that of the elevation of insulin gene expression
(Figure 4b), whereas this stimulatory effect of GLP-1 and/or
Ex-4 was markedly reduced by endogenous BTG2 knockdown.
Overall, these results strongly suggest that the stimulatory
effect of GLP-1 on insulin secretion was altered by BTG2.

Ex-4 induces insulin gene expression via BTG2 induction in
pancreatic islets
Previous studies have shown that GLP-1 and Ex-4, a GLP-1
agonist, elevate insulin gene expression and subsequently
increase insulin secretion in rodent and human subjects.4,8,28,29

On the basis of these findings, we confirmed the biological
relevance between Ex-4-mediated insulin gene expression and
BTG2 in animal experiments. In agreement with in vitro
experiments, Ex-4 treatment significantly increased protein
production and mRNA levels of BTG2 and PDX-1, and
subsequently elevated insulin gene expression in pancreatic
islets (Figures 5a and b). Taken together, these findings suggest
that Ex-4 has an important function in the regulation of the
PDX-1–insulin pathway via BTG2 induction in pancreatic
islets. Finally, we confirmed the crucial role of BTG2 on Ex-4-
and GLP-1-stimulated insulin secretion in pancreatic islets. As
expected, Ex-4 and GLP-1 significantly elevated insulin secre-
tion, consistent with the previous results (Figures 4c and d),
and this stimulation was markedly abolished by BTG2 knock-
down (Figure 5c). Overall, these results suggest that BTG2 has
an important role in the positive regulation of Ex-4-stimulated
insulin secretion in pancreatic islets.

DISCUSSION

In this study we have demonstrated that GLP-1 significantly
elevated the BTG2 gene expression and that the overexpression
of BTG2 using an adenoviral system (Ad-BTG2)-upregulated
insulin gene expression and secretion via PDX-1 induction.
Finally, this stimulatory effect of GLP-1 on insulin gene
expression and secretion under both in vitro and in vivo
conditions was effectively abolished by endogenous BTG2
knockdown. On the basis of these findings, we propose that
the GLP-1–BTG2–PDX-1 network may provide a novel
molecular mechanism in controlling insulin gene expression
and may serve as a crucial factor in regulating insulin
secretion.

A recent report suggests that pregnancy, known to cause an
increment in the proliferation of pancreatic b-cells and insulin
release, significantly upregulated the BTG2 gene expression in
rodent pancreatic islets, suggesting that BTG2 may be involved
in insulin secretion.18 However, there is no evidence showing a
strong link between the GLP-1-mediated regulation of the
BTG2 gene expression and its role in insulin secretion. Here we
reveal that induction of BTG2 by GLP-1 mediates insulin
release by upregulating PDX-1 via two major findings: First,
we have verified a critical role of BTG2 in the GLP-1-
dependent pathway in pancreatic b-cells. As expected, GLP-1
significantly elevated the BTG2, PDX-1 and subsequent insulin
gene expression in pancreatic b-cells (Figure 1), and this
phenomenon was abrogated by endogenous BTG2 knockdown
(Figure 4). Second, overexpression of BTG2 significantly
increased insulin secretion via the specificity of PDX-1
induction, in a manner similar to that observed by GLP-1
treatment in pancreatic b-cells (Figure 1). Collectively, our
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Figure 5 Ex-4 increases insulin gene expression via BTG2 induction. (a and b) C57BL/6 mice were injected intraperitoneally with Ex-4
(20mg kg�1 of body weight) for 7 days, and pancreatic islets were obtained for protein extracts to perform western blot analysis with
various antibodies (a) and total RNA isolation for northern blot analysis using BTG2, PDX-1 and insulin probes (b). Protein and mRNA
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were transfected with BTG2 siRNA (si BTG2) and Scrambled siRNA (si Scram) for 36 h. After knockdown for 36h, insulin secretion was
performed from pancreatic islets and treated with or without GLP-1 (10 nM) and Ex-4 (100nM) using a radioimmunoassay kit. All mice
were separated into experimental groups (n¼4–6 mice per group). *Po0.05 and **Po0.05 compared with untreated control and
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current findings suggest that BTG2 has a crucial function in
controlling GLP-1-stimulated insulin release by PDX-1
induction.

As mentioned previously, PDX-1 acts as a member of
transcriptional factors, such as MafA and BETA2/NeuroD,
and subsequently enhances insulin gene expression.8,9,21,27

Indeed, we observed that BTG2, a transcriptional cofactor,
downregulated the promoters of Id3 and cyclin D1, and
upregulated the RAR-b transcriptional activity.11,15–17 These
findings suggest that BTG2 may have some function in
controlling both insulin gene expression and insulin release;
however, the biological relationship between BTG2 and several
transcription factors with respect to regulating insulin gene
expression and insulin release has yet to be fully elucidated. In
the present study we elucidated a novel transcriptional
coregulator responsive to insulin gene expression following
induction of the GLP-1–BTG2–PDX-1 network under in vitro
and in vivo conditions, such as gain- and loss-of-function
experiments, physical interaction assays and GLP-1 agonist
injection (Figures 2–4). Overall, these findings suggest that
BTG2 is a crucial cofactor in controlling insulin secretion and/
or production in pancreatic b-cells. However, we cannot rule
out the possibility that the detailed molecular mechanism of a
link between the GLP-1–BTG2/PDX-1 network and insulin
gene transcription may also rely on other unknown transcrip-
tion factors that regulate the stimulation pattern of insulin
gene expression.

Previous reports from our group demonstrated that the
induction of the BTG2 gene expression by the glucagon–
CREB-dependent pathway led to increase of glucose produc-
tion, which was abolished by insulin treatment in hepato-
cytes.22 Moreover, Cui et al.30 showed that growth hormone,
which is a stimulator of hepatic gluconeogenesis, significantly
increases BTG2 via the C/EBP-CREB pathway in adipocytes,
suggesting that BTG2 may be involved in hepatic
gluconeogenesis, consistent with a previous report. A recent
report suggests that liraglutide, a GLP-1 agonist, increases the
ATP/AMP ratio, which in turn inhibits AMP-activated protein
kinase. Inhibition of the AMP-activated protein kinase
by liraglutide prevents pancreatic b-cell glucolipotoxicity
by activating the mammalian target of rapamycin and its
downstream effectors P70S6K and 4E-BP1, thereby promoting
pancreatic b-cell proliferation and apoptosis.31 Interestingly,
our current findings demonstrate that GLP-1 increases insulin
gene expression and insulin secretion via the induction of
BTG2–PDX-1 axis in pancreatic b-cells, and this stimulatory
effect of GLP-1 was abolished by endogenous knockdown of
BTG2. On the basis of these findings, our current study
provides a novel insight into the mechanism by which BTG2
affects insulin secretion, following the upregulation of the
PDX-1-dependent pathway. However, we cannot rule out the
possibility that BTG2 may also rely on unknown mechanisms
of protein stability, degradation, other unknown transcription
factors and other signaling pathways to regulate the induction
of insulin gene expression. Therefore, a further detailed
explanation of the GLP-1–BTG2 axis and insulin secretion is

required in an animal model, such as BTG2-null mice and an
insulin-resistant mouse model in the future.

In conclusion, our current study demonstrates that BTG2
acts as a novel cofactor to regulate insulin gene transcription
and/or secretion. These results suggest that the induction of
BTG2 by GLP-1 upregulates insulin release via PDX-1 induc-
tion both in vitro and in vivo. We suggest that BTG2 has
another pleiotropic effect on insulin secretion in pancreatic
b-cells. Therefore, a novel molecular mechanism involved in
PDX-1 induction by BTG2 may provide new insights into the
beneficial role of insulin resistance and development of novel
therapeutic agents to treat metabolic diseases.
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