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Abstract

Arginase competitively inhibits nitric oxide synthase 
(NOS) via use of the common substrate L-arginine. 
Arginase II has recently reported as a novel therapeutic 
target for the treatment of cardiovascular diseases 
such as atherosclerosis.  Here, we demonstrate that pi-
ceatannol-3'-O-β-D-glucopyranoside (PG), a potent 
component of stilbenes, inhibits the activity of argi-
nase I and II prepared from mouse liver and kidney ly-
sates, respectively,  in a dose-dependent manner. In 
human umbilical vein endothelial cells, incubation of 
PG markedly blocked arginase activity and increased 
NOx production, as measured by Griess assay. The PG 
effect was associated with increase of eNOS dimer ra-
tio, although the protein levels of arginase II or eNOS 
were not changed. Furthermore, isolated mice aortic 
rings treated with PG showed inhibited arginase activ-
ity that resulted in increased nitric oxide (NO) pro-
duction upto 78%, as measured using 4-amino-5-meth-
ylamino-2',7'-difluorescein (DAF-FM) and a decreased 
superoxide anions up to 63%, as measured using dihy-

droethidine (DHE) in the intact endothelium. PG 
showed IC50 value of 11.22 μM and 11.06 μM against ar-
ginase I and II, respectively. PG as an arginase in-
hibitor, therefore, represents a novel molecule for the 
therapy of cardiovascular diseases derived from endo-
thelial dysfunction and may be used for the design of 
pharmaceutical compounds.

Keywords: arginase; endothelium, vascular; nitric 
oxide synthase type III; superoxides; 3,3',4,5'-tetrahy-
droxystilbene

Introduction

The endothelium plays a central role in overall 
vascular homeostasis by regulating vasoreactivity, 
platelet activation, leukocyte adhesion, and smooth 
muscle cell proliferation and migration. Endothelial 
nitric oxide (NO), an important vasoprotective mole-
cule, is a major modulator of these effects, and 
impaired NO signaling associated with endothelial 
function is considered an early marker of the 
atherogenic process. Arginase competitively inhibits 
nitric oxide synthase (NOS) via use of the common 
substrate L-arginine (Morris et al., 1998; Berkowitz 
et al., 2003; Simon et al., 2003; Holowatz et al., 
2006; Steppan et al., 2006; Peyton et al., 2009). 
Arginase is present in 2 isoforms: arginase I, the 
hepatic isoform; and arginase II, the extrahepatic 
isoform; each of which is encoded by a distinct 
gene. The expression and function of arginase I in 
macrophages, hepatocytes, and vascular smooth 
muscle cells, is stimulated by lipopolysaccharide 
(LPS), IL-13, altered oxygen tension, and balloon 
dilatation of coronary arteries (Modolell et al., 1995; 
Louis et al., 1998; Que et al 1998; Klasen et al., 
2001; Chicoine et al., 2004; Morris et al., 2004; 
Ryoo et al., 2006; Nelin et al., 2007). The activa-
tion and expression of endothelial arginase II can 
also be induced by a variety of vascular insults, 
including OxLDL, LPS, TNF-α, IFN-β, 8-bro-
mo-cGMP, and hypoxia (Morris et al., 1998; Que et 
al., 1998; Chicoine et al., 2004; Ryoo et al., 2006; 
Nelin et al., 2007). Arginase inhibition actively 
augments NO production and reportedly has 
beneficial effects on normal cardiac function and 
on vascular dysfunction typical of atherogenesis, 
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Figure 1. Structure of piceatannol-3'-O-β-D-glucopyranoside (PG).

Figure 2. PG decreases the activities of arginase I and II. Arginase solutions prepared from liver (L) and kidney (K) were confirmed to express arginase I 
or II by Western blot analysis (A). Arginase I was predominantly expressed in liver while arginase II was in kidney. Incubation of different concentrations 
PG significantly decreased arginase I (B, liver lysate) and II (C, kidney lysate) activities. DMSO (10 μM) was used as a control. * vs. untreated, P ＜ 0.01, 
n = 12. 

aging, and erectile dysfunction, and sickle cell 
disease (Bivalacqua et al., 2001; Berkowitz et al., 
2003; Morris et al., 2004; Steppan et al., 2006; 
White et al., 2006; Bivalacqua et al., 2007; Hsu et 
al., 2007; Xu et al., 2007). 
    Rhubarb is an important medicinal original plant 
that has been used in traditional medicine as a 
remedy for the blood stagnation and a purgative 

agent. Rhubarb is the rhizome of Rheum undu-
latum L. commonly distributed in Asia and many 
components of rhizome has been demonstrated as 
anthraquinone derivatives or stilbenes such as 
emodin, chrysophanol, physcion, resveratrol, rha-
pontigenin, rhaponticin, and piceatannol (Xu et al., 
2007; Ngoc et al., 2008). These compounds repor-
tedly possess diverse biological activities such as 
anti-allergic (Matsuda et al., 2004), anti-diabetic 
(Choi et al., 2005), antioxidant (Matsuda et al., 
2001), and vasorelaxant activities (Moon et al., 
2006). Piceatannol is an important component in 
rhubarb extract and was recently found to possess 
various activities such as inhibition of C-jun 
N-terminal kinase activation (Jang et al., 2009), 
anti-carcinogenic activity (Vo et al., 2009), and 
inhibition of PDGF-BB-induced VSMC proliferation 
and migration (Choi et al., 2009). However, the 
biological activity and the molecular target for 
piceatannol-3'-O-β-D-glucopyranoside (PG) have 
not been investigated. 
    Thus, we tested whether piceatannol-3'-O-β-D- 
glucopyranoside(PG) has an inhibitory effect on 
arginase activity and whether this effect is asso-
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Figure 3. Inhibition of arginase activity is associated with a reciprocal increase in endothelial NOx production in HUVECs. HUVECs were incubated with 
different concentrations of PG for 12 h. PG inhibited arginase activity in HUVECs in a dose-dependent manner (A, * vs. untreated, P＜ 0.01, n = 4) and 
reciprocally increased NOx production (B, * vs. untreated, P＜ 0.01, n = 4). Protein levels of arginase II and eNOS were analyzed after overnight in-
cubation with PG (10 μM).  Arginase II and eNOS protein levels were not significantly changed by PG treatment (C, n = 4). PG incubation (10 μM, 6 h), 
however, induced eNOS dimerization in low-temperature SDS-PAGE and western blot analysis. Boiled samples were used as a control.

ciated with reciprocally regulation of NOx and ROS 
production in the endothelium. 

Results 

Arginase activity was decreased with treatment of 

piceatannol-3'-O-β-D-glucopyranoside (PG) 
treatment

We first prepared arginase enzyme solutions for 
arginase I and arginase II from the lysates of 
mouse livers and kidneys, respectively, and the 
presence of specific arginase isoforms was detec-
ted by Western blot analysis. As shown in Figure 
1A, arginase I was predominantly expressed in 
liver lysates while arginase II was in the kidney. In 
liver lysates, incubation of different concentrations 
of PG significantly decreased arginase I activity 
(Figure 2B, 75 ± 5% at 1 μM, 72 ± 7% at 3 μM, 62
± 1% at 10 μM) compared to untreated control 
(100±9%). In kidney lysates, the residual arginase 
activities after incubation of 1, 3 and 10 μM PG 

were 75 ± 6, 74 ± 5, and 53 ± 8%, respectively 
(Figure 2C). These data indicated that PG has a 
strong and specific inhibitory effect on both argi-
nase I and II even if PG has no selectivity for a 
specific arginase isoform. 

PG treatment reciprocally increased NOx production  

Given recent data suggesting that arginase reci-
procally regulates NOS activity by limiting bioa-
vailability of L-arginine (Ryoo et al 2006), we tested 
whether the PG-mediated decrease in arginase 
activity is associated with increased NOx produc-
tion in HUVECs. As demonstrated in Figure 3, 
incubation of HUVECs with PG for 12 h markedly 
decreased arginase activity (A, PG vs. untreated, 
60 ± 3% at 1 μM, 56 ± 1% at 3 μM, 37 ± 9% at 10 
μM vs. 100 ± 9%, P ＜ 0.01) and increased NOx 
production (B, PG vs. untreated, 9.99 ± 0.42% at 1 
μM, 10.08 ± 0.43% at 3 μM, 11.55 ± 1.07 at 10 
μM vs. 8.73 ± 0.3 μmol/mg protein, P ＜ 0.01). 
    To further test the effect of PG on the protein 
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levels of arginase II and eNOS, Western blot ana-
lysis was performed with PG-treated HUVECs. As 
demonstrated in Figure 3C, PG had no significant 
effect on the protein levels of arginase II or eNOS. 
Next, we tested eNOS dimerization to elucidate a 
mechanism associated with increased NOx pro-
duction by PG treatment. Interestingly, PG treat-
ment (6 h) resulted in increased ratio of eNOS 

dimer/monomer from 0.70 ± 0.15 to 1.02 ± 0.09 
(Figure 3D). Therefore, these data indicate that 
increased NOx production upon PG treatment was 
dependent on the increased bioavailability of 
L-arginine resulting from the inhibition of arginase 
activity, which itself is associated with eNOS 
dimerization (Ryoo et al., 2008).

Figure 4. Arginase inhibition by PG increases NO production and de-
creases ROS generation in mouse aorta. Incubation of mice aortic 
rings with PG (40 μM, overnight≒16 h) resulted in significant de-
crease in arginase activity (A, * vs. untreated, P ＜ 0.01, n = 4). (B) 
The pretreated aorta were loaded with DAF (5 μM) followed by meas-
urement of fluorescence (endothelial side up). The graph shows rep-
resentative traces of DAF fluorescence in PG- or PG plus L-NAME 
(10 μM)-treated aorta. (C) The slope of DAF fluorescence was moni-
tored and then determined (* vs. untreated, P ＜ 0.01; # vs. PG, P ＜
0.01; n = 4). (D) ROS production from the aorta was traced after pre-
loading with DHE (5 μM). MnTBAP (10 μM) was used as a super-
oxide scavenger. (E) The slope of DHE fluorescence was determined 
based on cumulative data (* vs. untreated, P ＜ 0.01; # vs. PG, P ＜
0.01; n = 4 mice).
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Figure 5. PG inhibits the activities of arginase I and II in a dose-dependent manner. Arginase I (A) and II (B) activities were measured with increasing 
doses of PG. IC50 values of PG were 11.22 μM and 11.06 μM against arginase I and II, respectively. Relative enzyme activity is an average from 3 differ-
ent experiments. 

PG inhibits arginase activity, increases NO 
production, and decreases ROS production in mice 
aorta

We next wished to determine whether or not 
increased NOx production in HUVECs translates 
into redox regulation in the endothelium of aortic 
tissue. Therefore, we measured the intensity of 
DAF-AM and DHE fluorescence at different time 
intervals. At first, PG treatment for overnight 
decreased arginase activity in aorta isolated from 
anethesized mice (Figure 4A, untreated vs. PG, 
704 ±49 vs. 445 ±14 pmol Urea/mg protein/min, P 
＜ 0.01). We next tested whether PG-dependent 
arginase inhibition increased in NO production 
using an NO-sensitive fluorescence dye, DAF-FM 
diacetate (see materials and methods). Incubation 
of aorta with PG markedly increased the average 
slope of DAF fluorescence (Figure 4C; untreated 
vs. PG, 0.51 ± 0.02 vs. 0.91 ± 0.07). On the other 
hand, incubation of NG-Nitro-L-arginine methyl 
ester (L-NAME) acutely decreased the slope of 
DAF fluorescence (slope = 0.23 ± 0.01). This is 
consistent with previous observations in HUVECs. 
The representative traces of DAF fluorescence in 
the aortic endothelium were shown in Figure 4B.
    To determine whether increased NO production 
upon arginase inhibition contributes to ROS 
reduction, we measured O2ㆍ- generation using the 
O2ㆍ--sensitive dye DHE in the endothelia of 
PG-treated aorta. The time-dependent intensity of 
DHE fluorescence was decreased by incubation of 
PG compared to untreated control (Figure 4E. 
slope of DHE fluorescence; * vs. untreated, 0.14 ±
0.01 vs. 0.22 ± 0.01). The DHE signal was com-

pletely quenched with MnTBAP (slope ＜0.01). The 
representative traces of DHE fluorescence are 
shown in Figure 4D.

PG inhibits arginase activity in a dose-dependent 
manner

Given that PG inhibited the arginase activity of 
both isoforms, we wished to determine the efficacy 
of PG on arginase isoforms. Arginase activity was 
measured in the presence of different concen-
tration of PG (from 0 to 120 μM) using liver lysate 
and kidney lysate. The 50% inhibitory concen-
trations (IC50) were 11.22 μM for the liver lysate 
and 11.06 μM for kidney lysate. The values were 
obtained using the software of Graphpad prizm 4.0 
(Figure 5). 

Discussion

With the idea that arginase modulates NOx pro-
duction by NOS through limiting L-arginine subs-
trate is emerging as a general mechanism for NOS 
regulation and appear to contribute to the 
pathobiology of a number of disease processes in 
which NO is dysregulated, we here demonstrate 
for the first time that PG, as an active component 
of Rhubarb, inhibits arginase activity and recipro-
cally increases NOx production.
    PG-dependent inhibition of arginase activity 
contributed to increase of NO production in both 
HUVECs and endothelium of isolated mice aorta 
(Figures 3 and 4). These results are consistent 



Piceatannol-3’-O-β-D-glucopyranoside inhibits arginase activity     529

with previous observations that arginase inhibition 
accentuates NO release in rat aortic endothelium 
(Berkowitz et al., 2003), bovine pulmonary endo-
thelial cells (Chicoine et al., 2004), and a porcine 
coronary artery model (Zhang et al., 2001). The 
PG-mediated increase in NO production may result 
in eNOS coupling through increased L-arginine 
availability. During eNOS uncoupling, electrons 
flowing from the reductase domain in the heme to 
molecular oxygen rather than L-arginine, resulting 
in production of O2ㆍ- instead of NO. There are 
number of circumstances in which this may occur 
specifically tetrahydrobiopterin cofactor deficiency 
and relative L-arginine deficiency. As shown in 
Figures 3 and 4, the availability of substrate, 
cofactors as well as local eNOS microdomain 
concentration of L-arginine, rather than the expre-
ssion level and abundance of the eNOS enzyme 
were critical to NO production. Regarding the 
physiological role of arginase in reciprocal NO 
regulation, arginase isoforms play important roles  
in regulating the synthesis of polyamines and 
proline (Li et al., 2001, 2002) and arginase 
inhibition blocked HUVECs proliferation, which is 
an emerging phenomenon associated with angio-
genesis (Faffe et al., 2005). Furthermore, reci-
procal regulation of NOS by arginase has been 
demonstrated in cells and organs in which NO is 
an important signaling molecule including the 
endothelium, cardiac myocytes, penis, airway, skin, 
and inflammatory cells(Bivalacqua et al., 2001; 
Berkowitz et al., 2003; Morris et al., 2004; Steppan 
et al., 2006; White et al., 2006; Bivalacqua et al., 
2007; Hsu et al., 2007; Xu et al., 2007; Kim et al., 
2008). It was demonstrated that arginase II activity 
is upregulated in atherosclerosis-prone mice and is 
associated with impaired endothelial NO produc-
tion, endothelial dysfunction, vascular stiffness, and 
ultimately, aortic plaque development. Conversely, 
inhibition of endothelial arginase or deletion of the 
arginase II gene enhances NO production, restores 
endothelial function and aortic compliance, and 
reduces plaque burden. Therefore, arginase II 
representes a novel target for the prevention and 
treatment of atherosclerotic vascular disease (Ryoo 
et al., 2008). Furthermore, upregulation of arginase 
activity contributes to endothelial dysfunction in 
systematic and pulmonary hypertension, aging, 
diabetes and erectile dysfunction and to broncho-
dilatory dysfunction in asthma. 
    With together arginase inhibitory activity as 
presented in this report, Ngoc et al. (2008) also 
showed other biological activities of PG. PG 
inhibited lipoxygenase activity upto 66% at the 
concentration of 100 μM and IC50 value was 69 
μM, although resveratrol had much potent activity, 

such that 92% inhibition at the same concentration 
and 12 μM at IC50 value. Furthermore, they 
showed that PG had a potency as a radical 
scavenger in ABTSㆍ- radical scavenging assay in 
which resveratrol exhibited the most potent 
scavenging activity. 
    In summary, we present a novel molecule, pi-
ceatannol-3'-O-β-D-glucopyranoside (PG), that inhi-
bited arginase activity and increased NO produc-
tion in HUVECs. PG showed an IC50 of about 11 
μM against arginase I and II. Furthermore, PG 
increased NO production and decreased ROS 
production in isolated mice aorta. Although the 
inhibitory potency of PG against arginase activity 
was a little higher compared to boronic acid 
analogues, identification of a new moiety that 
inhibits arginase activity would be very useful for 
the development of a new pharmaceutical com-
pound. The continued development of the deriva-
tives with increased specificity and selectivity 
against arginase isoforms may lead to novel 
therapies for the treatment of various diseases 
from NO dysregulation.

Methods

Materials

Arginase lysates were prepared from livers and kidneys of 
anesthetized C57BL/6 mice. MnTBAP (Mn(III) Tetra 
(4-benzoic acid) porphyrin chloride) and L-NAME (NG- 
nitro-L-arginine methyl ester) were obtained from 
Calbiochem. All reagents were purchased from Sigma 
unless otherwise stated. 

PG preparation

PG was prepared as previously described (Ngoc et al., 
2008). Briefly, the dried and milled rhizomes of rhubarb 
were extracted with ethanol. The extract was dried and 
then resolved again in ethylacetate. The ethylacetate-so-
luble fraction was diluted with acetone and subjected to 
silica gel column chromatography. The active fraction 
eluted with the mixture of chloroform and methanol was 
further purified with ODS column, eluting with methanol 
and water (1:2 to 3:1) to afford PG.

Cell culture 

HUVECs were purchased from Cascade Biologics and 
maintained as supplier's protocol in Medium230 plus 
low-serum growth supplement (LSGS) at 37oC in 5% CO2. 

Arginase activity assay

Tissue lysates were prepared using lysis buffer (50 mM 
Tris-HCl, pH7.5, 0.1 mM EDTA and protease inhibitors) by 
homogenization at 4oC followed by centrifugation for 20 
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min at 14,000 × g at 4oC. The supernatants were used to 
assay for arginase activity as previously described (Ryoo 
et al., 2006). 

NOx measurement

NO was estimated by Griess reaction based upon the 
concentration of nitrate/nitrite (NOx) after conversion of 
nitrate to nitrite by nitrate reductase using the Nitric oxide 
assay kit (Calbiochem). The concentration of NOx in 
HUVECs was expressed as μmol/mg protein. 

Western blot analysis

The livers or kidneys from C57BL/6 mice (10 weeks) were 
homogenized in the buffer (50 mM Tris-HCl, 150 mM NaCl, 
1% Nonidet P-40, 1 mM EDTA, 1 μg/ml of leupeptin, 1 μg/ml 
of pepstatin, 1 μg/ml of aprotinin, 1 mM phenylmethylsul-
fonylflouride, 1 mM sodium orthovanadate, and 1 mM NaF) 
and centrifuged for 30 min at 14,000 × g. The protein 
amount of the supernatant was analyzed by the Bradford 
method. Protein (100 μg) were separated in a 10% 
SDS-PAGE and then transferred to a nitrocellulose 
membrane (Bio-Rad). The blots were incubated with a 
monoclonal anti-arginase I (Santa Cruz), anti-arginase II 
(Santa Cruz), anti-endothelial nitric oxide synthase(eNOS, 
BD Bioscience), or anti-β-tubulin (BD bioscience) antibo-
dies followed by the secondary antibody (Amersham). The 
signals were detected using an enhanced chemilumine-
scence detection reagent with X-ray films.  

Determination of eNOS dimerization

Dimers and monomers of eNOS were separated using 
low-temperature SDS-PAGE as previously described 
(Takimoto et al., 2005). Band intensities were analyzed 
using NIH ImageJ Software.

Estimation of NO or ROS generation in isolated mice 
aorta using DAF-FM or DHE

Mice aortic rings were isolated and incubated overnight at 
37oC, 5% CO2 in Dulbecco's modified Eagle's medium   
(DMEM) medium containing 2% FBS and antibiotics (1×) 
in the presence of picaetannol-3’-O-β-D-glucopyranoside 
(50 μmol/L) (White et al., 2006). The aorta cut longitu-
dinally and pinned to the bottom of a silgard-coated 
chamber (endothelial layer on top) filled with HEPES buffer 
(NaCl 120 mM, KH2PO4 2.6 mM, KCl 4 mM, CaCl2 2 mM, 
MgCl2 0.6 mM, HEPES 25 mM, glucose 14 mM, pH7.4). 
The chamber was allowed to equilibrate into the heating 
stage for 30 min at 37oC. The chamber allowed for static 
bath conditions during fluorescence measurements. Tissue 
background along with DAF-FM (4-Amino-5-me-
thylamino-2',7'-difluorofluorescein) diacetate or DHE (dihy-
droethidine) fluorescence were measured using an Olympus 
10× objective with optimized excitation and emission 
wavelength (DAF-FM, 470/525 nm; or DHE, 470/580), an 
intensified camera (Luca 658M-TL), and a custom image 
acquisition program (Cell software, Olympus). Following 
initial equilibrium, background fluorescence was recorded 

and aorta was allowed to return to room temperature for 15 
min. The aorta were then loaded with 5 μM DAF-FM or 5 
μM DHE (molecular Probes) in HEPES buffer for 45 min 
followed by washout of DAF-FM or DHE and a 20 min 
equilibrium period at 37oC. Fluorescence intensity was 
averaged (5 frames, 2 × 2 binning) from the entire field of 
view and recorded by the acquisition program. Changes in 
DAF-FM or DHE fluorescence were recorded once after 
washout of DAF-FM or DHE in order to establish baseline 
changes in intensity and then again following treatment 
with L-NAME (10-5 mol/L) or MnTBAP (10-5 mol/L). The 
slopes of changes in fluorescence over time were 
determined by linear regression in Origin (version 7.5, 
OrignLab Corp, Northampton, MA) and used for statistical 
comparison.

Statistics

All data are represented as mean ± S.D. of at least four 
independent experiments. An unpaired Student's t-test or 
1-way ANOVA was used to assess significant differences. 
A value of P ＜ 0.05 was accepted as significant. 
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