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Abstract

MicroRNAs (miRNAs) are a class of small RNAs of 
19-23 nucleotides that regulate gene expression 
through target mRNA degradation or translational 
gene silencing. The miRNAs are reported to be in-
volved in many biological processes, and the discov-
ery of miRNAs has been provided great impacts on 
computational biology as well as traditional biology. 
Most miRNA-associated computational methods 
comprise the prediction of miRNA genes and their tar-
gets, and increasing numbers of computational algo-
rithms and web-based resources are being developed 
to fulfill the need of scientists performing miRNA 
research. Here we summarize the rules to predict 
miRNA targets and introduce some computational al-
gorithms that have been developed for miRNA target 
prediction and the application of the methods. In addi-
tion, the issue of target gene validation in an ex-
perimental way will be discussed. 

Keywords: algorithms; computational biology; 
microRNAs; RNA interference; RNA, small interfer-
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Introduction

MicroRNAs (miRNAs) are a class of small, 
non-coding regulatory RNAs that are important in 
post-transcriptional gene silencing (Bartel, 2004). 
They regulate gene expression by binding to 3' 
untranslated region (UTR) of their target mRNAs 
for cleavage or translational repression and play 
important roles in many biological processes 
including cell proliferation, cell death, hemato-
poiesis, and oncogenesis.
    In the canonical pathway of miRNA biogenesis, 
mature miRNAs arise from long primary miRNA 
transcripts (pri-miRNAs) that are transcribed from 
non-protein-coding genes in the nucleus (Figure 1; 
Lodish et al., 2008). The pri-miRNAs are then 
cleaved by the RNase III enzyme Drosha to 
liberate ~70 nucleotide (nt) precursor miRNAs 
(pre-mRNAs) which are subsequently transported 
into the cytoplasm by Exportin-5, a Ran-GTP-de-
pendent nuclear export factor. In the cytoplasm, 
the pre-miRNAs are processed by RNase III-like 
nuclease Dicer (animals) or DICER-LIKE1 (DCL1 
[plants]) to generate ~21 to 22 nucleotide 
duplexes. The functional mature miRNA strand is 
then selectively incorporated into RISC (RNA-indu-
ced silencing complex) effector complex to 
regulate specific target mRNAs. In general, plant 
miRNAs interact with their targets through 
near-perfect base-paring, resulting in target degra-
dation, whereas animal miRNAs form imprecise 
base-pairing and cause translational repression.
    Since the discovery of the very first miRNAs, com-
putational approaches have been invaluable tools in 
understanding the biology of miRNAs (Bentwich, 
2005; Rajewsky, 2006). Web-based-miRNA data-
bases have been constructed and provided not 
only thousands of published miRNA sequences 
and annotation (e.g. miRBase Sequences database; 
Griffiths-Jones et al., 2008) but also potential 
miRNA target genes (e.g. miRBase Targets 
database; Griffiths-Jones et al., 2008). Many 
pri-miRNA transcripts are computationally predicted 
to undergo folding into elaborate stem-loop struc-
tures. In addition, computational algorithms have 
been developed to predict pre-miRNAs (Huang et 
al., 2007) and to search for homologous conserved 
miRNA genes in several animal species. However, 
most computational approaches associated with 
miRNA research are about miRNA gene detection 
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Figure 1. MicroRNA biogenesis and 
function in animal cells (Lodish et 
al., 2008). miRNAs are transcribed 
as long primary transcripts 
(pri-miRNAs) in the nucleus. The 
pri-miRNAs are then processed by 
the RNase III-type Drosha, yielding 
pre-miRNAs of ∼70 nucleotide (nt). 
Subsequently, the pre-miRNAs are 
exported to the cytoplasm by ex-
portin-5, and further cleaved into ∼21 to 22 nucleotide miRNA du-
plex by another RNase III enzyme 
Dicer. The less stable strand of the 
miRNA duplex is then incorporated 
into a multiple protein nuclease 
complex, the RISC, and regulates 
protein expression.

and miRNA target prediction. 
    Researchers initially determined miRNA targets 
through experiments. The first miRNAs and their 
target genes were identified through classical 
genetic techniques (Lee et al., 1993). However, 
due to the laborious nature of experiments and the 
absence of high-throughput experimental methods, 
it is inevitable to develop computational techniques 
to determine miRNA targets. In this review, we 
summarize the principles to predict miRNA targets 
and discuss some currently available compu-
tational methods that have been developed for 
miRNA targets prediction and the application of 

these methods.

Principles of miRNA target recognition

Target prediction and its biological validation have 
been major obstacles to miRNA researchers. 
Because miRNAs are short, and animal miRNAs 
have limited sequence complementarity to their 
targets, it is a challenging task to predict animal 
miRNA targets with high specificity. However, target 
prediction in plants is relatively uncomplicated, 
because plant miRNAs bind to their target mRNAs 
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Figure 2. Approximate secondary 
structures of the three main types of 
target site duplex. (A) Canonical 
sites have perfect base paring in 
seed region, a bulge in the middle 
and extensive base pairing in the 3' 
end of the miRNA. (B) Dominant 
seed sites form perfect comple-
mentarity in the seed, but poor com-
plementarity in the 3' end of the 
miRNA. (C) Compensatory sites 
have a mismatch or G:U wobble in 
the seed region, but have extensive 
base pairing to the 3' end of the 
miRNA (Maziere and Enright, 2007).

with perfect or nearly perfect complementarity for 
target cleavage.
    In order to develop computational algorithms 
identifying miRNA target genes, principles of 
miRNA target recognition are often established 
based on empirical evidences. For example, the 
importance of base pairing between miRNAs and 
their targets was suspected according to the 
observation that the 'target site' of the lin-14 UTR is 
complementary to the 5' region of the lin-4 miRNA 
(Lee et al., 1993). Some features used by the 
mammalian target prediction programs are descri-
bed below.
    1) Base pairing pattern
    2) Thermodynamic stability of miRNA-mRNA 

hybrid
    3) Comparative sequence analysis to check 

conservation
    4) Examination of the presence of multiple 

target sites

Base pairing pattern

In the first step, target prediction programs identify 
potential binding sites according to specific pairing 
patterns. The binding sites can be classified into 3 
categories (Maziere and Enright, 2007): (i) 
5'-dominant canonical, (ii) 5'-dominant seed only 
and (iii) 3'-compensatory (Figure 2). MiRNA seed is 
defined as the consecutive 7 to 8-nucleotide 
sequence starting from either the first or second 
base at the 5' end of an miRNA (Lewis et al., 

2003). The 5'-dominant canonical sites have 
perfect base paring to the 5' end seed region and 
extensive base pairing to the 3' end of the miRNA 
with a characteristic bulge in the middle. The 
seed-only sites have perfect base pairing to the 
seed region and imperfect base pairing to the 3' 
end of the miRNA. The 3'-compensatory sites have 
a mismatch or wobble in the seed region of the 
miRNA, but have long stretch of base pairing to the 
3' end of the miRNA to make up for the weak 
binding at the 5' seed (Brennecke et al., 2005).

Thermodynamic analysis of miRNA-mRNA hybrid

The thermodynamic properties of miRNA-mRNA 
duplexes are assessed by calculating free-energy 
(ΔG) of the putative binding. The approximate free 
energy and secondary structure of the 
miRNA-mRNA duplex can be calculated by RNA 
folding program such as the Vienna package 
(Wuchty et al., 1999), RNAfold  (Hofacker, 2003) 
and Mfold  (Mathews et al., 1999). A threshold of 
free-energy of binding is then calculated in accor-
dance with specificity and sensitivity. However, 
since data sets of identified miRNA-mRNA duplexes 
are very restricted, and a low free energy of 
hybridization does not guarantee accurate predic-
tion of miRNA target genes (Watanabe et al., 
2007), it is complicated to resolve appropriate 
thresholds of free energy. Thus, it is inevitable to 
consider additional features such as conservation 
analysis for reliable prediction of target transcripts. 
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Name URL Reference
DIANA-microT http://diana.pcbi.upenn.edu/cgi-bin/micro_t.cgi Kiriakidou et al., 2004
ElMMo http://www.mirz.unibas.ch/ElMMo Gaidatzis et al., 2007 
miRanda http://www.microrna.org Enright et al., 2003
MirTarget2 http://mirdb.org Wang and El Naqa, 2008
miTarget http://cbit.snu.ac.kr/~miTarget Kim et al., 2006
PicTar http://pictar.mdc-berlin.de Grün et al., 2005
rna22 http://cbcsrv.watson.ibm.com/rna22.html Miranda et al., 2006
RNAhybrid http://bibiserv.techfak.uni-bielefeld.de/rnahybrid Rehmsmeier et al., 2004
TargetScan http://genes.mit.edu/targetscan Lewis et al., 2003
TargetScanS http://genes.mit.edu/targetscan Lewis et al., 2005

Table 1. Computational methods for miRNA target prediction.

For example, a recent study by Lewis et al. (2005) 
has shown that thermodynamics can be removed 
without lowering the specificity of the algorithm by 
incorporating evolutionary conservation derived 
from multiple sequence alignments.

Comparative sequence analysis 

Comparative sequence analysis within related 
species is performed to check if target sequences 
are evolutionarily conserved across species 
(Watanabe et al., 2007). In order to reduce the 
number of false positives, many target prediction 
algorithms identify orthologous 3' UTR sequences 
and then perform conservation analysis across 
related species. However, there are issues related 
to conservation analysis. For instance, given that 
transcripts between humans and chimpanzees are 
highly conserved, it might not be meaningful to 
search for conserved targets between humans and 
chimpanzees (Maziere and Enright, 2007). Instead, 
other organisms such as rats and dogs might be 
more appropriate for conservation analysis with 
human transcripts, but genomes might not be 
sequenced along with their evolutionary distance. 
As a result, the use of conservation filter has a risk 
of increasing false negatives while it decreases 
false positives.

Examination of multiple target sites per target 
transcript

Previous studies have shown that multiple miRNAs 
are co-expressed and are likely to regulate the 
same mRNA coordinately (Rajewsky, 2006). Multiple 
target sites in the same 3' UTR can potentially 
increase the degree of translational suppression 
and enhance specificity of gene regulation. Thus, 
some algorithms check the presence of multiple 
target sites and take the number of target sites into 
account for prediction (Stark et al., 2005).

Programs for miRNA target recognition

Tens of different methods have been developed for 
computational target prediction. The programs 
based on base pairing pattern (Lewis et al., 2003) 
are most common, and other features including 
evolutionary conservation (Lewis et al., 2003; Gru ̈n 
et al., 2005), secondary structure of target trans-
cript (Kertesz et al., 2007; Long et al., 2007), and 
nucleotide composition of target sequences 
(Grimson et al., 2007) are often added to increase 
accuracy. Currently available target production 
methods are described in Table 1, and some of 
them are reviewed below in more detail. 

TargetScan  and TargetScanS

TargetScan is an algorithm developed by Lewis et al. 
(2003) to identify the targets of vertebrate miRNAs. 
The program integrates thermodynamics-based 
modeling of miRNA-mRNA interactions and com-
parative sequence analysis to predict miRNA 
targets conserved across multiple genomes such 
as human, mouse, rat, and pufferfish.
    The 'miRNA seed' is a 7-nucleotide sequence at 
base 2 to 8 in the 5' end of the miRNAs. It forms 
perfect Watson-Crick base pairing complementary 
to 'seed matches' which refers to the 3' UTR 
heptamer in the target mRNA. TargetScan 
searches for seed matches in the first organism 
such as human and expand each seed match with 
additional base pairings to the miRNA. The 
algorithm then calculates the thermodynamic free 
energy of the binding between the putative miRNA 
target and extended seed sequences by using the 
RNAFold package (Hofacker, 2003) and assigns a 
score to each UTR. Then, it repeats the process 
for the sets of UTRs from other organisms 
including mouse, rat, and pufferfish for phylogenic 
analysis. The estimated false-positive rate varies 
between 22 % and 31%, and the method was 
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shown to predict not only known miRNA binding 
sites but also 451 novel potential sites. In addition, 
by using luciferase reporter constructs, 11 out of 
the 15 tested sites were experimentally validated.
    TargetScanS simplified the TargetScan method 
and improved the target prediction fidelity (Lewis et 
al., 2005). TargetScanS requires a six-nucleotide 
seed (position 2 to 7) followed by an additional 3' 
match of adenosines surrounding the miRNA seed 
(It was found that the immediate downstream 
position of the seed match is highly conserved and 
is often an adenosine). The method is independent 
of thermodynamic stability or multiple target sites, 
but two more species (dog and chicken) were 
added for conservation analysis. As a result, the 
estimated false-positive rate was reduced to 22% 
in mammals, and all known miRNA-target interac-
tions were successfully predicted.
    Although TargetScan and TargetScanS efficiently 
reduced false positive rates, there is a concern 
about using conservation analysis and complem-
entarity in the seed region. As shown in Figure 2C, 
the 3' compensatory site has a mismatch or GU 
wobble in the seed region and does not form a 
perfect Watson-Crick base pairing. Therefore, 
some targets having the 3' compensatory site 
cannot be detected. In addition, as mentioned 
earlier, if targets are loosely conserved, they will 
not be picked by TargetScan and TargetScanS 
resulting in an increase of false negatives.

PicTar

Contrary to TargetScan and TargetScanS that 
require a seed match at exactly corresponding 
positions in a cross-species UTR alignment, PicTar 
requires binding sites that are coregulated by 
multiple miRNAs across species (Gru ̈n et al., 
2005). PicTar checks the alignments of 3' UTRs for 
those displaying seed matches to miRNAs, filters 
the retained alignments based on their thermody-
namic stability, and computes a hidden Markov 
model (HMM) maximum likelihood score (PicTar 
score) for each predicted target. To filter out false 
positives, PicTar used statistical tests based on 
genome-wide alignments of eight vertebrate geno-
mes, and considered clustering co-expressed 
miRNAs and matching miRNAs with putative 
targets that are expressed in the same context 
(Yoon and De Micheli, 2006). This algorithm was 
able to correctly identify some known miRNA 
targets and its false positive rate was estimated to 
be around 30%.  
    By using PicTar, Krek et al. (2005) suggested 
that each vertebrate miRNA has approximately 200 
target transcripts on average. In addition, they 

experimentally validated 7 out of 13 predicted 
targets and 8 out of 9 previously known targets, 
demonstrating the efficiency of the algorithm.  
Furthermore, Gru ̈n et al. (2005) performed 
cross-species comparison and predicted that about 
54 genes are regulated by a given miRNA. PicTar 
was also used for genome-wide search of miRNA 
targets in C. elegans (Lall et al., 2006). By using a 
new version of PicTar and sequence alignments of 
three nematodes, the authors reported that at least 
10% of C. elegans genes are predicted miRNA 
targets, and a number of nematode miRNAs are 
likely to control biological processes by targeting 
functionally related genes.

miRanda

This method was originally developed to predict 
miRNA target genes in D. melanogaster (Enright et 
al., 2003), but was also used to predict human 
miRNA targets. For each miRNA, miRanda selected 
target genes on the basis of three properties: 
sequence complementarity using a position-weigh-
ted local alignment algorithm, free energies of 
RNA-RNA duplexes, and conservation of target 
sites in related genomes. miRanda was able to 
correctly identify 9 out of 10 currently characterized 
target genes, and its false-positive rate was around 
24%. When targets of all miRNAs were analyzed 
for the distribution of functional annotation using 
GO terms, the functions of the predicted target 
genes were found to be enriched in the com-
ponents of the ubiquitin machinery, transcription 
factors, components of miRNA machinery, and 
translational regulation.
    John et al. (2004) improved the method by 
implementing a strict model for the binding sites 
that require almost perfect complementarity in the 
seed region allowing a single wobble pairing. The 
authors reported about 2000 human genes with 
miRNA target sites conserved in mammals and 
about 250 human genes conserved between 
mammals and fish. Their analysis also suggests 
that miRNA genes, which comprise around 1% of 
the human genome, control the production of 
protein for 10% or more of all human genes.

DIANA-microT/DIANA-micro T web server

Kiriakidou et al. (2004) developed DIANA-microT 
by combining computational and experimental 
approaches. In order to identify putative miRNA-re-
cognition elements (MREs), this method uses a 
window of 38 nucleotide that progressively goes 
through a 3' UTR of potential target. Using dynamic 
programming, the minimum binding energy between 
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Name Target speciesa Algorithms Performance Distinguishing feature
DIANA-microT Any Thermodynamics Precision: 66%b Target structure comes before 

 seed complementarity 
ElMMo Humans, mice, Bayesian method Sensitivity: 0.8; Infers the phylogenetic 

 fishes, flies, worms  specificity: 0.95c  distribution of functional target
 sites for each miRNA

miRanda Flies, vertebrates Complementarity FPR: 24-39%(Fly) Also provides the expression
 profile of miRNA in various tissues.

MirTarget2 Humans, mice, SVM classifier FPR: 22-31%; precision Microarray transcriptional 
 rats, dogs,  rate is 80% when the  profiling dataset is used for
 chickens  recall rate is below 20%  algorithm training

miTarget Any SVM classifier An area under the ROC Training data is derived from vali
 curve of 88.7% with  dated miRNA targets from
 the complete feature set  literature survey

PicTar Vertebrates, flies, Thermodynamics FPR: 30% Uses cross-species comparisons 
 worms  to filter out false positives

rna22 Any Pattern recognition FPR: 19-25.7% Eliminates the use of cross-
Sensitivity: 83%  species conservation filtering,

 and leads to putative targets
 sites in 5’ UTRs and ORF

RNAhybrid Any Thermodynamics, SNR: 2.9:1 (vs 3.2:1d); An extension of the classical 
 statistical model  run-time: 13-181 times RNA secondary structure 

 faster than RNAfolde  prediction algorithmf

TargetScan Vertebrates Seed complementarity FPR: 31% (human, Mainly searches for the presence 
 mouse, rat), 22%  of conserved 8- and 7-nt seed
 (pufferfish, mammal)  matches

TargetScanS Vertebrates Seed complementarity FPR: 22% (mammal); Requires 6-nt seed match and
 conserved Adenosine

aOrganism(s) for which the program is best suited; bSelbach et al., 2008; cRepresentative values (For the full ROC curve, refer to the reference); dLewis et 
al., 2003; eHofacker, 2003; fZuker and Stiegler, 1981.

Table 2. Summary for miRNA target prediction.

the miRNAs and sequences in the human 3' UTR 
database is calculated at each step and is com-
pared with the outcomes obtained from scrambled 
sequences with the same dinucleotide content as 
real 3' UTRs. In contrast to TargetScan/TargetScanS 
or PicTar, DIANA-microT method allows a weak 
binding at 5' seed, involving six consecutively 
paired nucleotides or G:U wobble pairs, if there 
exists additional base paring between the miRNA 
3' end and target gene. 
    This algorithm successfully identified all currently 
known C. elegans miRNA target sites, and 7 
predicted mammalian miRNA target genes were 
experimentally validated. Moreover, this method 
was reported to show the precision levels of 66%, 
which is the highest among several prediction 
programs, when their performance were assessed 
through microarray and the pulsed stable isotope 
labeling with amino acids in cell culture (pSILAC) 
method that measures changes in the synthesis of 
thousands of protein in response to miRNA trans-
fection or endogenous miRNA knockdown (Selbach 
et al., 2008).

    The DIANA-microT web server (Maragkakis et 
al., 2009) is the user interface to DIANA-microT, 
providing extensive connectivity to online biological 
resources as well as information on predicted 
miRNA:target gene interactions. The server contains 
links to UniProt for protein information, iHOP for 
functional and bibliographic information (iHOP), 
miRBase for miRNA information, and KEGG 
pathway for pathway analysis. 

RNAHybrid

RNAHybrid is an extension of classical RNA 
secondary structure prediction software tools such 
as RNAfold (Hofacker, 2003) and Mfold (Mathews 
et al., 1999). The classical methods were designed 
for single-sequence folding, and therefore require 
an artificial linker between an miRNA and its 
potential binding site. However, there are some 
issues about using these methods (Stark et al., 
2003). The short artificial linker sequence might 
lead to artifacts in the prediction, and intramo-
lecular hybridizations (hybridization between target 
nucleotides or between miRNA sequences), or 



Computational prediction of microRNA targets    239

Name URL Reference
GOmir http://www.bioacademy.gr/bioinformatics/projects/GOmir Roubelakis et al., 2009
miRDB http://mirdb.org Wang, 2008
miRecords http://miRecords.umn.edu/miRecords Xiao et al., 2009
miRGator http://genome.ewha.ac.kr/miRGator Nam et al., 2007
miRNAMap http://miRNAMap.mbc.nctu.edu.tw Hsu et al., 2008
mirZ http://www.mirz.unibas.ch Hausser et al., 2009
MMIA http://129.79.233.81/~MMIA Nam et al., 2009
TarBase5.0 http://diana.cslab.ece.ntua.gr/tarbase Papadopoulos et al., 2009

Table 3. Target prediction methods with extended features.

Name Target species Target prediction methods Distinguishing feature
GOmir Human TargetScan, miRanda, Gene ontology clustering

  RNAhybrid, PicTar, TarBase
miRDB Human, mouse, MirTarget2 Wiki interface for miRNA functional

  rat, dog, chicken   annotations
miRecords Human, mouse, rat, DIANA-microT, MicroInspector, The most complete integration 

  worm, fly, fish, chicken,   miRanda, MirTarget2, miTarget,   (11 methods) of predicted miRNA 
  dog, sheep   NBmiRTar, PicTar, PITA,   targets + validated targets

  RNA22, RNAhybrid,
  TargetScan/TargertScanS

miRGator Human, mouse miRanda, PicTar, TargetScanS Providing expression correlation
  coefficients for all miRNA-target pairs

miRNAMap Two insects, miRanda, RNAhybrid, TargetScan Genomic maps for miRNA genes and 
  nine vertebrates and   targets (No pathway or GO information)
  one worm

mirZ Human, mouse, rat, ElMMo Combination of miRNA expression
  fish, worm, fly   atlas with miRNA target prediction

MMIA Human TargetScan, PicTar, PITA Exhaustive human genome coverage
TarBase5.0 Human, mouse, rat, - Database of miRNA targets with

  fish, worm, fly, plant, virus   experimental support

Table 4. Summary for target prediction methods with extended features.

hybridization of the target and miRNA with the 
linker, can happen. An additional problem is that 
the prospective binding sites should be excised 
and folded separately for prediction of multiple 
bindings in one target. However, RNAHybrid finds 
the energetically most favorable hybridization sites 
of a small RNA within a large target RNA 
sequence, and base pairings between target 
nucleotides or between miRNA nucleotides are not 
allowed (Rehmsmeier et al., 2004).

Beyond prediction: extension of target 
prediction resources

While algorithms for target prediction remain 
mainstream, many web-based servers have been 
developed by combining new features to existing 
prediction programs. These servers mostly integrate 
multiple established prediction programs and 

include functional annotations that are exhaustively 
linked to many miRNA, gene, protein or biological 
pathway resources such as miRBase, Ensembl, 
Swiss-Prot, UCSC genome browser, KEGG pathway, 
and other databases. For target prediction, 
TargetScan, miRanda, and PicTar are the most 
frequently adopted, and RNAhybrid, DIANA-micro 
T, and TarBase are also widely used. A list of the 
web servers is shown in Table 2, and some of 
them are described in more detail as follows:

TarBase and miRecords

TarBase5.0 (Sethupathy et al., 2006; Papadopoulos 
et al., 2009) is a database that is built by extracting 
miRNA targets that are experimentally validated 
from 203 scientific reports. In 2008, the database 
included over 1300 records with information on 
miRNAs, target genes, and experimental conditions 
used for target support. It is also functionally linked 
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to other databases including Ensembl, Swiss-Prot, 
Hugo and HGNC to extend information about 
miRNAs and their target genes. 
    MiRecords (Xiao et al., 2009) is another database 
curating predicted targets generated by 11 miRNA 
target prediction programs as well as 1135 entries 
of validated targets (as of August, 2008). For each 
query of miRNA-target interaction, miRecords 
presents validated targets plus prediction results 
from different prediction programs, which meets 
the need of researchers who want to run several 
programs and find their intersections at a time. 
Especially, the predicted targets component of 
miRecords integrates putative targets produced by 
11 programs providing thorough prediction results, 
while most other miRNA target resources integrate 
3-4 prediction programs. 
    With the expansion of knowledge on miRNAs 
and target interactions, construction of centralized 
archive that holds experimentally confirmed, com-
prehensive, and up-to-date information is of nece-
ssity, and in that sense, TarBase and miRecords 
are welcome to the miRNA research community. 

miRGator 

miRGator (Nam et al., 2008) is a database that 
integrates target prediction, functional analysis, 
gene expression data and genome annotation.  For 
target prediction, it uses TargetScan, miRanda, 
and PicTar and combines their results in a Boolean 
logic.
    Given that functional relationships between target 
genes may provide a critical clue for elucidating 
functional significance of each miRNA, it imple-
ments a number of functional categories such as 
the GO, KEGG/GenMAPP/BioCarta pathways, and 
disease classification by using Ingenuity pathway 
analysis. Furthermore, in order to assess the 
quality of target prediction, expression correlation 
analysis between miRNA and target mRNA or 
target protein is performed. Since reciprocal expre-
ssion pattern is expected for genuine miRNA:target 
pairs, and proportional expression with high corre-
lation represents miRNA: non-target pairs, corre-
lation coefficients can be informative for evaluating 
candidate target genes. It also contains an miRNA 
expression profiling module from the gene expre-
ssion omnibus (GEO) database supporting diffe-
rentially regulated miRNAs in 24 tissues/organs 
and 28 cell types.

GOmir

GOmir (Roubelakis et al., 2009) was established 
for human miRNA target prediction and ontology 

clustering. It consists of two JAVA modules, namely 
JTarget and TAGGO. JTarget integrates putative 
targets obtained by 4 prediction softwares 
(TargetScan, miRanda, RNAHybrid, PicTar-4 way, 
PicTar-5 way) and an experimental database 
TarBase to find common targets and provides 
detailed information about gene description and 
function. TAGGO then performs GO clustering with 
the common genes obtained from JTarget and 
analyzes how many target proteins share a 
common GO category.

MirZ

Hausser et al. from M. Zavolan group developed a 
web-server called mirZ (Hausser et al., 2009), 
incorporating the smiRNAdb miRNA expression 
atlas (Landgraf et al., 2007) and the ElMMo miRNA 
target prediction algorithm (Gaidatzis et al., 2007) 
that were both developed by the Zavolan group. 
The smiRNAdb is a web-accessible resource of 
miRNA profiles determined by sequencing 250 
small RNA libraries from 26 different organ systems 
and cell types in human and rodents. It also has 
features of an extended repertoire of on-line 
analyses such as visualization and hierarchical 
clustering of miRNA expression profiles, principal 
component analysis, and comparison of miRNA 
expression between two samples. The ElMMo is a 
miRNA target prediction method based on a Baye-
sian probabilistic model that uses comparative 
genomics information. The prediction results are 
composed of two sections: 1) an miRNA-centric 
summary showing the smiRNAdb tissues where 
the selected miRNA is mostly expressed, and 2) a 
target mRNA-centric summary with the putative 
target site locations in the 3'-UTR region. With the 
idea that miRNAs that are most strongly expressed 
within a given tissue have the largest impact on 
mRNA targets, MirZ tries to find the mRNA that is 
most likely to be affected by the changes in miRNA 
expression.

MMIA (miRNA and mRNA integrated analysis)

MMIA (Nam et al., 2009) is a web-server deve-
loped to integrate miRNA and mRNA expression 
data for target prediction. Based on the fact that 
the expressions of miRNA and its target mRNA are 
reciprocal, the MMIA finds target mRNAs by com-
bining computational prediction results and expre-
ssion data analysis. In more detail, the MMIA selects 
up- or down-regulated miRNAs from input data and 
predicts their target mRNAs using TargetScan, 
PicTar or Probability of Interaction by Target Acce-
ssibility (PITA; Kertesz et al., 2007). It then iden-
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tifies the mRNAs whose expressions are inversely 
correlated from microarray input and performs 
gene set analysis to find intersection of predicted 
mRNA and inversely correlated mRNA. The final 
output includes optional information about diseases 
associated with miRNAs, transcription factors 
enriched in the promoters of miRNAs as well as 
resources from GO, KEGG pathways and MIT 
MSigDB (Subramanian et al., 2005).

miRDB

This is an online database system for target 
prediction and functional annotation (Wang, 2008). 
What is unique for miRDB is that it uses a wiki 
interface for community editing, which has been 
proven to be successful as shown from an example 
of Wikipedia, and thus, anyone with internet access 
can freely write miRNA functional annotations. In 
addition to wiki annotations, it also has uneditable 
sections containing officially adopted information 
such as miRNA names, Sanger accessions, 
sequences and genomic locations, and target 
predictions are made through its own algorithm 
named MirTarget2 (Wang and El Naqa, 2008)

What to choose?: comparison of target 
prediction algorithms

Tens of target prediction programs have been 
developed and they are all freely available. Now an 
issue to the researchers is to choose the appro-
priate tool for each one’s unique situation. For that 
purpose, groups of researchers tried to evaluate 
the performance of target prediction programs 
experimentally (Baek et al., 2008; Selbach et al., 
2008) or computationally with an experimentally- 
verified miRNA target dataset (Alexiou et al., 2009). 
Selbach et al. (2008) reported that 3 programs 
such as TargetScanS, Pictar and DIANA-microT 
have precision levels (the fraction of the predicted 
targets that were actually downregulated) 
＞60%, and Alexiou et al. found that 5 programs 
(DIANA-microT, TargetScan, TargetScanS, Pictar, 
and ElMMO) have a precision ∼50% with a 
sensitivity raging from 6 to 12%. Accordingly, these 
3-5 programs would be the good ones to start with 
if your target organisms are vertebrates, flies or 
worms. However, if your model system is virus, 
slim mold or some unique organisms, you have a 
choice of DIANA-microT among the five popular 
ones plus miTarget, rna22, and RNAhybrid.
    For the researchers who want to run multiple 
algorithms and choose all possible union or 
intersection of the combinations, the methods that 

provide prediction by using multiple algorithms 
might be attracting. In fact, several methods such 
as GOmir, miRecords, and miTarget employ the 
integration of as many as 11 algorithms to meet 
such a need. However, it turns out that many of the 
combinatorial predictions perform worse than the 
prediction by one accurate algorithm, because of 
the trade-off between specificity and sensitivity 
(Alexiou et al., 2009). 
    Since existing target prediction algorithms rely 
on different assumptions and models for prediction, 
it would be wise to check the underlying assump-
tions and limitations first before employing a target 
prediction tool. Combining results from multiple 
tools seems to be a common practice and is often 
encouraged in order to reduce the probability of 
introducing false positives and/or negatives as 
much as possible.

Discussion

Most computational algorithms for target prediction 
combine 5' seed matches, thermodynamic stability 
and conservation analysis in order to maximize 
specificity. However, there exist some exceptions 
to these generalized rules, and target selection 
mechanisms need to be adjusted in a species 
specific manner (Watanabe et al., 2007).
    Although the rule of seed pairing has been 
successfully used to predict target sites with statis-
tical support, the seed matches are not always 
sufficient for repression, implying that additional 
features would require for reliable target selection 
(Grimson et al., 2007). Through the combination of 
computational and experimental approaches, 
Grimson et al. (2007) revealed five general cha-
racteristics of site milieu that increase effecti-
veness: 1) high local density of AU nucleotides, 2) 
closeness of sites for co-expression of multiple 
miRNAs leading to synergistic activity, 3) additional 
base-paring at the 12-17 nucleotide region of 
miRNA, most especially at the 13-16, 4) site 
location in the 3' UTR at least 15 nucleotide away 
from the stop codon, and 5) extensive and 
contiguous 3' pairing. Thus, in designing an algori-
thm, those five features as well as the rule of seed 
match should be considered. 
    Another problem of using 5’ dominant site is that 
3' compensatory site containing a mismatch or 
wobble in the seed region cannot be detected by 
most target prediction methods. Although miRanda 
is sensitive for such targets (Sethupathy et al., 
2006), it is of necessity to develop more computa-
tional algorithms to identify those 3' compensatory 
target sites with accuracy.
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    Evolutionary conservation is another important 
factor to filter out false positive targets and 
increase specificity. It helps to predict only the 
target sites which are under selective pressure to 
preserve their sequence and presumably functio-
nality, across evolution (Sethupathy et al., 2006). 
However, Farh et al. (2005) demonstrated that 
many of the non-conserved target sites, which 
outnumber the conserved sites 10 to 1, are also 
functional and mediate repression. Thus, the 
presence of those non-conserved target sites 
should not be overlooked when designing an 
algorithm for target prediction.
    Once miRNA targets are predicted with a fair 
degree of accuracy, the next step is to validate the 
miRNA-target interaction experimentally. Since com-
putational methods are not perfect, and there is a 
risk of false-positive prediction, target validation in 
biological system is inevitable to complete the 
study of target prediction. A reporter assay is the 
most common method to check the interaction 
between miRNA and its target mRNA directly. In a 
standard reporter assay, the putative target sites 
are fused to a reporter construct (e.g. luciferase, 
green fluorescence protein or yellow fluorescence 
protein), and reporter expression is measured in 
the absence and presence of the cognate miRNA. 
Additionally, northern blot analysis, quantitative 
real-time PCR (qRT-PCR), ribonuclease protection 
assay, or in situ hybridization is often performed to 
examine the reciprocal expression of predicted 
miRNA and mRNA target genes. Levels of protein 
are often measured by western blot or immunocy-
tochemistry to compare protein expression given 
the presence and absence of the miRNA. 
    For comprehensive study, biological function can 
be examined through miRNA overexpression or 
knockout experiment under in vitro or in vivo 
conditions. Overexpression of miRNA can be 
accomplished by constructing an expression vector 
containing mature miRNA, precursor (hairpin) 
miRNA, or the pri-miRNA sequence followed by 
transfection. miRNA overexpression may also be 
indirectly induced by using the DNA methylating 
agent 5-aza-deoxycytidine (Lujambio et al., 2007) 
or histone deacetylase inhibitor phenylbutyrate 
(Saito et al., 2006), while these methods are not 
miRNA sequence specific and are not common. To 
silence a specific miRNA, chemically modified 
oligonucleotides that are perfectly complimentary 
to the mature miRNA are introduced. Such anti-
sense modified oligonucleotides are morpholinos, 
antagomir, locked nucleic acids (LNA), or 2'-O-me-
thyl oligonucleotides. The technique of siRNAs is 
also applied to knock-down miRNA gene as it has 
been done for silencing regular genes (Kim et al., 

2008).
    Although much work has been done on target 
validation, and even a couple of databases of 
validated targets have been constructed, those wet 
lab experiments (even the reporter assay) are still 
too lengthy and laborious to simultaneously deal 
with many pairs of miRNA and its targets. Worse, it 
is more difficult to catch up with the expanding 
numbers of new miRNAs and their targets that are 
computationally predicted. Therefore, the develop-
ment of high-throughput experimental strategies is 
inevitable for large-scale analysis of miRNA targets 
and their biological function. Microarrays and 
pSILAC are greatly useful to measure global 
changes in the transcriptome (Lim et al., 2005) or 
proteome (Selbach et al., 2008) following over-
expression or silencing of miRNA. However, these 
methods cannot distinguish direct targets from indi-
rect targets and only give indirect evidence about 
miRNA-target interactions. Degradome analysis 
(Addo-Quaye et al., 2008; German et al., 2008) is 
also available, but it only works in a system where 
a miRNA induces RISC-mediated mRNA cleavage, 
and thus, its usage is limited mostly in plants.
    Since the discovery of the first miRNAs and their 
target genes in 1993, there has been a dramatic 
growth in the number of annotated miRNAs and 
their validated or putative targets which are su-
pported by a number of computational algorithms. 
Although these algorithms are still lack sensitivity 
and specificity, they are able to provide valuable 
help to researchers investigating new miRNA 
targets. In addition, ample web-based resources 
on miRNA expression profiles, gene function, gene 
ontology, transcriptional regulatory interactions, 
signaling pathways, and other functional genomic 
data are easily accessible for the study of 
miRNA-target interactions at a system-wide level. 
By integrating such genome-wide computational 
and experimental approaches, research on miRNA 
will be prosperous than ever.
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