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Abstract

The largest subunit of eukaryotic RNA polymerase II 

contains a unique domain at its carboxy-terminus, 

which is referred to as the carboxy-terminal domain  

(CTD). The CTD is made up of an evolutionarily  

conserved heptapeptide repeat (YSPTSPS). Over the  

past decade, there has been increasing attention on  

the role of the CTD in transcription regulation in the  

view of mRNA processing and chromatin remo-

deling. This paper provides a brief overview of the  

recent progress in the dynamic changes in CTD  

phosphorylation and its role in integrating multiple  

nuclear events.
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Introduction

The largest subunit of eukaryotic RNA polymerase II 
(pol II) carboxy-terminal domain (CTD) consists of 
conserved heptapeptide repeats (Y

1
S

2
P

3
T
4
S

5
P

6
S

7
) 

(Dahmus, 1996). Mammalian pol II CTD contains 52 
repeats, whereas the yeast Saccharomyces 

cerevisiae CTD has 26-27. A deletion of the mouse, 
Drosophila, or yeast CTD is lethal. Therefore, the 
CTD is essential for the viability of an organism, 
even though the number of repeats can be reduced. 

Partial deletions of the CTD result in reduced 
transcription in vivo, and defective responses to 
various activators. The CTD acts as a platform to 
couple the mRNA metabolism and chromatin func-
tion to the transcription as it recruits various RNA 
processing/export and histone modifying factors to 
the transcription complex (Bentley, 2005; Bura-
towski, 2005; Phatnani and Greenleaf, 2006). This 
means that the CTD is very important for organizing 
various nuclear functions to acquire the proper 
regulation of gene expression. Those functions often 
depend on the CTD modification such as pho-
sphorylation. Indeed, the CTD is rich in phospho- 
acceptor amino acid residues and undergoes re-
versible phosphorylation during the transcription 
cycle. Two forms of RNA pol II, which differ in the 
level of phosphorylation of the CTD, can be di-
stinguished and are believed to have distinct 
functions in the transcription cycle; RNA pol IIa, with 
a hypophosphorylated CTD, is the form that assem-
bles into the transcription initiation complexes, 
whereas pol IIo, with a hyperphosphorylated CTD is 
associated with the transcription elongation com-
plexes. Phosphorylation occurs mainly at discrete 
serines (S) within the CTD repeats (S2, S5), which is 
then recognized by different proteins that inter-
connect the transcription to various nuclear metabo-
lisms. Accordingly, serine phosphorylation is known 
as the ‘CTD code’, in a similar way that the ‘histone 
code’ refers to the histone modification (Buratowski, 
2003).

CTD with the phosphorylation code

Earlier models based on a two-step transcription 
cycle, in which pol IIa was assembled at the 
promoter and pol IIo carried out transcription elonga-
tion, have evolved to one with a more complex CTD 
phosphorylation cycle. Different modified forms of 
pol II dominate different stages of transcription 
(Komarnisky et al., 2000). Pol II assembled at the 
promoter is phosphorylated at the S5 of the CTD 
repeat through transcription factor IIH (TFIIH). The 
CTD is partially dephosphorylated at this position 
after it escapes into the elongation phase. As 
elongation proceeds, the level of phosphorylation of 
the CTD at the S2 increases and peaks near the 3' 
end of a gene (Figure 1). In accordance with the 
different locations and the timing of the modification, 
the serines in positions 2 and 5 are functionally 

RNA polymerase II carboxy-terminal domain with multiple  
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different (Phatnani and Greenleaf, 2006). CTD is 
phosphorylated by members of the cyclin-dependent 
kinase (CDK) family, which typically consists of a 
catalytic subunit and a regulatory cyclin subunit. 
These kinases phosphorylate distinct positions with-
in the repeat to exert distinct functions (reviewed in 
Meinhart et al., 2005). 
   The kinase subunit (Kin28) of yeast TFIIH, asso-
ciated with Ccl1 cyclin, is a major S5 kinase. The 
TFIIH is essential for the efficient coupling of the 
mRNA 5' modification because the cotranscriptional 
recruitment of the capping enzyme and the place-
ment of the 7-methyl guanosine cap on pre-mRNA is 
dependent on S5 phsophorylation (See below) 
(Komarnitsky et al., 2000; Rodriguez et al., 2000; 
Schroeder et al., 2000). Whereas, the yeast kinase 
subunit (Ctk1) of the CTD kinase 1 complex (CTDK1) 
is a major S2 kinase. Ctk1 efficiently phosphorylates 
the CTD during a processive elongation phase (Cho 
et al., 2001). The Cdk9 subunit of the mammalian 
elongation factor P-TEFb is functionally similar to 
Ctk1 (Price, 2000). Cdk9 has been shown to phos-
phorylate S2, which emphasizes the functional coun-

terpart of Ctk1. However, its substrate specificity can 
be modified to favor S5 through an interaction with 
Tat in vitro (Zhou et al., 2000). The temporal and 
spatial regulation of the kinase activity and the 
outcome of a specific combination of the phosphory-
lated serines all play important roles in regulating the 
function of the CTD.

Isomerization even multiplies the CTD  

code

Peptidyl-prolyl cis/trans isomerase (PPIase) cata-
lyzes the rotation of the peptide bond on the amino- 
terminal side of proline residues, a step known to 
modulate the proper folding of newly synthesized 
proteins (Schiene and Fischer, 2000). Mammalian 
Pin1 and its yeast homolog, Ess1, are the most 
interesting PPIase implicated in the transcription. 
Pin1/Ess1 plays a role in cell cycle and has been 
implicated in transcription through the direct and 
preferential binding to the phosphorylated CTD 
(Morris et al., 1999; Verdecia et al., 2000). Pin1/Ess1 

Figure 1. RNA polymerase II CTD phosphorylation cycle. RNA pol II with a heptapeptide repeat (Y
1
S
2
P
3
T
4
S
5
P
6
S
7
) 

interacts with the DNA to initiate transcription. Upon phosphorylation by TFIIH at S5, the capping enzyme 
associates and waits until the 5' RNA is long enough to become exposed. Transition into the elongation phase 
by S5 phosphorylation might be inhibited by S5 phosphatase such as SCPs. As pol II travels downstream, Ctk1 
(PTEF-b in human) starts to phosphorylate S2. In the meanwhile, S5 phosphatase, such as Ssu72, 
dephosphorylates S5, leaving S2 phosphorylated pol II during the processive elongation phase. S2 
phosphatase such as Fcp1 counteracts Ctk1/P-TEFb to balance S2 phosphorylation. Phosphorylated S2 is 
recognized by 3' processing, splicing, termination, and exporting factors. Different serines with different levels 
of phosphorylation (along the repeats) might serve as a binding platform for various nuclear factors. As soon as 
pol II passes the poly(A) sites, Fcp1 removes S2 phosphorylation completely with the aid of Ssu72, which allow 
pol II to initiate another cycle. See the details in the text. 
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contains an N-terminal WW domain and a C-terminal 
PPIase domain. The WW domain is a small struc-
tural motif that functions as an interaction module to 
bind the proline-rich domains of a variety of signaling 
proteins (Sudol and Hunter, 2000). The same domain 
of Pin1/Ess1 is responsible for its interaction with the 
phosphorylated CTD. Genetic and biochemical stu-
dies in yeast have shown a possible linkage between 
the PPIase activity and transcription that brings Ess1 
to be a secondary regulator to remodel the CTD 
code (Wu et al., 2000; Wilcox et al., 2004). In the 
present model, Ess1 with PPIase activity would bind 
the phosphorylated CTD through the WW domain in 
order to reconfigure the structure of the CTD through 
isomerization of the proline peptide bond (Buratowski, 
2003). Because highly phosphorylated pol II is cor-
related with the transcript elongation, the binding of 
Ess1 may affect the function of the elongating pol II. 
In this scenario, the conformational change can 
affect the association and disassociation or the 
activity of many CTD-interacting proteins such as 
the 3' processing factors. Isomerization of the CTD 
can also provide a better substrate for Fcp1 CTD 
phosphatase to facilitate the recycling of pol II (Kops 
et al., 2002). Therefore, Pin1/Ess1 has a potential to 
regulate the transcription by changing the CTD code.

Deciphering the CTD code

It is important to know what reads the CTD 
phosphorylation code in order to understand how it 
operates. This can be best answered by reviewing 
the proposed coupling mechanism between trans-
cription and RNA processing. Over the past few 
years, many observations have contributed to the 
idea of the cotranscriptional processing of nascent 
RNA through the direct coupling to the transcription. 
The CTD has always played an important role in 
both targeting the RNA processing machinery and 
regulating their catalytic activity.
    The cap structure is a characteristic of all RNA pol 
II transcripts and consists of an inverted 7-methyl 
guanosine cap that is linked to the first RNA residue 
by a 5'-5' triphosphate bridge. Capping is performed 
by a series of three enzymes; RNA 5'-triphospha-
tase, guanylyltransferase, and RNA (guanine-7) me-
thyltransferase. The capping enzyme binds directly 
and specifically to the CTD of pol II through the 
Ceg1 subunit (yeast) or guanylyltransferase domain 
(in metazoan, as it is synthesized together with the 
RNA 5'-triphosphatase as a bifunctional polypeptide) 
when S5 is phosphorylated by TFIIH (Komarnitsky et 
al., 2000; Schroeder et al., 2000). Furthermore, the 
capping enzyme activity is stimulated by an inter-
action with the phosphorylated CTD, and in return, 

enhances early transcription. This is considered to 
be a mechanism that stimulates the extension of the 
capped RNA only, by coupling capping and the early 
transcription (Cho et al., 1998; Ho and Shuman, 
1999; Kim et al., 2004a; Schroeder et al., 2004). 
    In contrast to the capping, the splicing machin-
eries contain consensus binding sites on the nascent 
RNA. Therefore, there is some controversy as to 
whether co-transcriptional splicing (splicing while 
transcription is ongoing) is required functionally or is 
simply linked mechanically (i.e. RNA is spliced in-
dependently of transcription) (Kornblihtt et al., 2004). 
Chromatin immunoprecipitation analysis shows that 
the direct binding of the splicing machinery to the 
nascent RNA is responsible in a large part for the 
co-transcriptional splicing in yeast and mammals 
(Listerman et al., 2006; Moore et al., 2006; Tardiff et 
al., 2006). However, CTD might also play a role by 
providing a platform for the splicing machinery and 
even regulate the choice of alternative exons by 
increasing the local concentration of proteins (de la 
Mata and Kornblihtt, 2006). Splicing factors including 
small nuclear ribonucleoprotein particles (snRNPs) 
and non-snRNP proteins such as the serine/arginine- 
rich (SR) protein family are associated with pol IIo 
but not with pol IIa (Mortillaro et al., 1996; Kim et al., 
1997). The arginine-serine rich (RS) domain of the 
SR family protein is essential for recruitment to the 
phosphorylated CTD (Misteli and Spector, 1999). In 
yeast, the splicing factor, Prp40, has been reported 
to bind to the phosphorylated CTD (Morris and 
Greenleaf, 2000). In particular, mammalian Spt6 
binds selectively to the phosphorylated S2 through 
the SH2 domain and couples hIws1 dependent 
mRNA splicing (Yoh et al., 2007). Indeed, a pho-
sphorylated CTD is required for the efficient splicing 
reaction (Bird et al., 2004; Millhouse and Manley, 
2005). RNA pol IIo stimulates the in vitro recon-
stituted splicing reaction of pre-mRNAs, while the 
addition of the phosphorylated CTD peptides inhibits 
this reaction (Du and Warren, 1997; Hirose et al., 
1999). This indicates that an elongating pol II with 
phosphorylated CTD is an active component of the 
splicing reaction. Like capping, pol II CTD can play 
an important role in splicing by regulating the ef-
ficiency and specificity of splicing as well as re-
cruiting the machinery. However, the functional spec-
ificity of the two different serines is unknown.
    Similar to splicing, the 3'-end processing of mRNA 
is affected in cells through a deletion of the pol II 
CTD or a loss of CTD phosphorylation, even though 
nascent RNA carries the consensus recognition 
sites (Fong and Bentley, 2001; Proudfoot et al., 
2002; Skaar and Greenleaf, 2002; Ahn et al., 2004). 
3'-end modifications of the pre-mRNA proceeds 
through two steps; endonucleolytic cleavage of the 
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mRNA precursor followed by poly(A) addition to the 
cleavage product. CF1A, CF1B, and CFII in yeast, 
and the similar complexes, CstF, CPSF, CF1, and 
CF2 in higher eukaryotes, perform this function while 
polyadenylation is mediated by poly(A) polymerase 
in both. The 3'-end processing factors can bind to 
the CTD affinity column (McCracken et al., 1997). 
Furthermore, several factors, including Pcf11, Pta1, 
and Rna14 show an apparent preference for binding 
to the phosphorylated CTD (Rodriguez et al., 2000; 
Barilla et al., 2001; Licatalosi et al., 2002; Meinhart 
and Cramer, 2004). In particular, the yeast 3'-end 
processing factors appear to be recruited in time 
through the phosphorylation of S2 of the CTD when 
pol II approaches the 3'-end of a gene. Ctk1 is 
responsible for S2 phosphorylation and is in turn 
responsible for the selective binding of the 3'-end 
processing factors (Ahn et al., 2004). Therefore, the 
S2-phosphorylated CTD can act as a platform for 
these factors. In addition to serving as a binding 
surface, both phosphorylated and non-phosphory-
lated CTD activate the cleavage reaction in vitro. 
The CTD might not be essential for the reaction but 
it certainly enhances the efficiency by coupling the 
two pathways (Hirose and Manley, 1998). 
    The 3'-processing signal elements in turn affect 
the efficiency of transcription termination. 3'-cleavage/ 
polyadenylation and termination must be closely cou-
pled because the poly(A) signals are required for 
proper transcription termination in mammals and 
yeast (Bauren et al., 1998; Birse et al., 1998). The 
connections among 3'-end processing, CTD pho-
sphorylation, and termination were recently resolved 
by identification of the Rtt103 protein, which is a 
3'-end mRNA processing factor that contains a CTD 
interacting domain. Rtt103 interacts with the CTD in 
a S2-phosphorylation dependent manner and recruits 

the 5'→3' RNA exonuclease that is responsible for 
the release of pol II from the DNA template (Kim et 
al., 2004b; West et al., 2004). In yeast, mRNA export 
is also linked to transcription via the TREX (trans-
cription export) complex (reviewed in Aguilera, 2005). 
TREX is composed of the four-subunit complex, 
THO (Tho2, Hpr1, Mft1, and Thp2) and the evolu-
tionally conserved RNA export proteins, Sub2 (UAP56 
in human) and Yra1 (REF/Aly in human). Deletions 
of individual THO components lead to impaired trans-
cription, transcription-dependent hyper-recombination, 
and mRNA export defect (Jimeno et al., 2002; 
Strasser et al., 2002). In addition, SUB2 and YRA1 
mutants are synthetic lethal with THO mutants and 
over-expressed Sub2 suppresses the THO mutant 
phenotype (Fan et al., 2001), which all supports the 
potential linkage of transcription elongation to mRNA 
export. In addition to genetic interaction with THO, 
Sub2/Yra1 are directly recruited to the actively 

transcribed regions via physical interaction with THO 
(Strasser et al., 2002; Zenklusen et al., 2002), sug-
gesting a one-step biogenesis of export-competent 
mRNP while transcription is ongoing. However, the 
potential role of the pol II CTD and CTD phosphory-
lation in this process remains unclear. Recruitment 
of the TREX complex to transcribed genes is not 
dependent on the S2 kinase, Ctk1 in yeast (Ahn et 
al., 2004), and the association of the human TREX 
complex to mRNA might be coupled to transcription 
indirectly through splicing (Masuda et al., 2005). On 
the other hand, interestingly, Jones and colleagues 
show that mammalian Spt6 that selectively asso-
ciates S2-phosphorylated CTD concomitantly re-
cruits REF/Aly and UAP56 via Iws1 (Yoh et al., 
2007), suggesting an alternative mechanism of 
cotranscriptional coupling of mRNA export in mam-
malian system independently of THO or splicing, but 
depends on CTD phosphorylation. In summary, 
many aspects of the mRNA metabolism from the 5' 
capping to the export occur cotranscriptionally and 
are coordinated through transcription with the 
keyword of the pol II CTD or CTD phosphorylation.

The CTD code translated into the histone 

code

The transcription states are intimately linked to the 
chromatin states (Figure 2) (Gerber and Shilatifard 
2003; Hampsey and Reinberg 2003; Saunders et al., 
2006). The basic element of chromatin, the nucleo-
some, consists of a 146 bp DNA wrapped around a 
histone octamer that is composed of two copies of 
H2A, H2B, H3, and H4 (Luger, 2003). The post- 
translational modification of the histones, including 
acetylation, methylation, phosphorylation, ubiquitina-
tion, and sumoylation regulate gene expression by 
controlling the accessibility of various transcription 
factors (Cheung et al., 2000; Nathan et al., 2003; 
Martin and Zhang, 2005). Among them, the histone 
H3 lysine (K) 4 and K36 are the most characterized 
methylation sites that have been implicated in active 
transcription. H3 K4 is methylated by the proteins of 
the Set1 family, while K36 is methylated by the 
proteins of Set2 (Gerber and Shilatifard, 2003). The 
profile of H3 K4 tri-methylation is strongly correlated 
to the distribution pattern of the pol II phosphorylated 
at S5 (Figure 2). This usually peaks at the promoter 
and 5' region of a gene, indicating a role in an early 
phase of transcription (Pokholok et al., 2005; Millar 
and Grunstein, 2006). As expected from the distri-
bution profile, the Set1 complex is associated with 
the S5 phosphorylated pol II (Ng et al., 2003). H3 K4 
mono- and di-methylation tend to spread out com-
pared with the tri-methylation. On the other hand, H3 
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K36 tri-methylation has been observed throughout 
the coding region with an increase toward the 3' 
region of an actively transcribed gene. In contrast to 
Set1, the recruitment of Set2 depends on S2 
phosphorylation (Krogan et al., 2003a; Xiao et al., 
2003). Therefore, differently phosphorylated CTD by 
TFIIH and Ctk1 is responsible for the characteristic 
distribution of H3 K4 and K36 methylation. In 
addition to direct recruitment of Set2, Ctk1 restricts 
the spread of H3 K4 tri-methylation in the coding 
region (Xiao et al., 2007). The extent of methylation 
on each residue is further regulated by the elonga-
tion complex, Paf1 (Krogan et al., 2003b). In addi-
tion, the Rad6/Bre1 complex dependent mono-ubiqui-
tination of H2B on K123 or the BUR kinase complex 
is important for the di- and tri-methylation of histone 
H3 K4 (Shahbazian et al., 2005; Laribee et al., 2005; 
Wood et al., 2005). Overall, the nature of the RNA 
polymerase II complex engaged in various stages of 
transcription is reflected onto the chromatin through 
the histone code, which is translated cotranscri-
ptionally from the CTD code. Although the molecular 
consequences linking transcription and chromatin 
modification are unclear, the pol II CTD and trans-
cription factors play an important role in coupling 
these pathways.

Conclusion

The phosphorylation of the CTD at S5 by TFIIH or at 
S2 by Ctk1 is essential for the coupling of RNA 
processing or the chromatin function to the trans-
cription. The phosphorylation of serine sites of the 
CTD in various combinations is one way of creating 
multiple connections that make transcription as a 
center of gene expression and chromatin function. 
Further insight into the coupled nuclear events as 
well as the role of these connections will be possible 
when a full list of the proteins that read and write the 
CTD code is revealed.  
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Figure 2. The CTD code translated onto the histone code. As polymerase transcribes DNA, the transcription 
states reflected by the CTD code leave a mark on the chromatin by changing the histone N-termini. The 
chromatin of an actively transcribed gene is methylated at histone H3 K4 (tri-CH3) with the typical pattern of 
a peak around the promoter and the 5' of a coding region, while H3 K36 (tri-CH3) is methylated with an 
opposite pattern of a peak toward the 3' of a coding region. Mono- and di-methylated H3 K4 or K36 (mono-, 
di-CH3) are linked evenly along a gene compared with the tri-methylated form. Phosphorylated S5 and S2 
play important roles in coupling of histone methylation through a specific interaction with Set1 and Set2, re-
spectively. The CTD phosphorylation states are determined by the relative prevalence of the different 
kinases and phosphatases.
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