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Abstract
Rac1 and Rac2 are essential for the control of 
oxidative burst catalyzed by NADPH oxidase. It was  
also documented that Rho is associated with the  
superoxide burst reaction during phagocytosis of 
serum- (SOZ) and IgG-opsonized zymosan particles  

(IOZ). In this study, we attempted to reveal the signal 
pathway components in the superoxide formation  
regulated by Rho GTPase. Tat-C3 blocked superoxide 
production, suggesting that RhoA is essentially  
involved in superoxide formation during phagocytosis  
of SOZ. Conversely SOZ activated both RhoA and  
Rac1/2. Inhibition of RhoA-activated kinase (ROCK), an  
important downstream effector of RhoA, by Y27632 and  
myosin light chain kinase (MLCK) by ML-7 abrogated  
superoxide production by SOZ. Extracellular sig -
naling-regulated kinase (ERK)1/2 and p38 mitogen- 
activated protein kinase (MAPK) were activated during  
phagocytosis of SOZ, and Tat-C3 and SB203580 
reduced ERK1/2 and p38 MAPK activation, suggesting  
that RhoA and p38 MAPK may be upstream regulators 
of ERK1/2. Inhibition of ERK1/2, p38  MAPK, phos-
phatidyl inositol 3-kinase did not block translocation  
of RhoA to membranes, suggesting that RhoA is  
upstream to these kinases. Inhibition of RhoA by Tat-C3 
blocked phosphorylation of p47PHOX. Taken together, 
RhoA, ROCK, p38MAPK, ERK1/2, and p47PHOX may be  
subsequently activated, leading to activation of 
NADPH oxidase to produce superoxide. 

Keywords: extracellular signal-regulated MAP kin-
ases; macrophages; NADPH oxidase; P38 mito-
gen-activated protein kinases; rhoA GTP-binding pro-
tein; superoxides

Introduction
Phagocytosis of pathogens and apoptotic cells by 
macrophages triggers the immune response and is 
important to host defense mechanisms. Phago-
cytosis is performed through the receptors such as 
complement receptor type 3 (CR3, referred also as 
CD11b/CD18, Mac-1, and integrin αMβ2), Fcγ rece-
ptors (FcγRs), and mannose receptor. CR3 reco-
gnizes the C3b/C3bi fragments coating particles like 
pathogens, FcγRs recognize the Fcγ domain of im-
munoglobulin G (IgG), and mannose receptor reco-
gnizes mannose and fucose in the capsule or on the 
lipopolysaccharide of invading bacteria (Brown, 
1995; Chimini and Chavrier, 2000).
  Subsequently, macrophage induces the abrupt in-
crease of superoxide formation, referred to as oxi-
dative burst, which is mediated by NADPH oxidase. 

Downstream components of RhoA required for signal pathway of
superoxide formation during phagocytosis of serum opsonized  
zymosans in macrophages
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The phagocyte NADPH oxidase is a membrane- 
associated enzyme complex that generates super-
oxide (O2

-) by the one-electron reduction of oxygen, 
using NADPH as the electron donor (Babior, 1999). 
The core enzyme of NADPH oxidase is composed of 
five components. Among them, p22PHOX and gp91PHOX 
exist in the membranes of the secretory granular 
vesicles, which form a heterodimeric flavohemo-
protein known as cytochrom b558 (Rotrosen et al., 
1993). The other components, p40PHOX, p47PHOX, and 
p67PHOX are located in the cytosol as a complex form 
(Wientjes et al., 1996). p47PHOX becomes highly 
phosphorylated by protein kinases (Park and Babior, 
1997; Park et al., 1997), and the entire cytosolic 
complex of p40PHOX, p47PHOX, and p67PHOX translo-
cates to the membrane, where it associates with 
cytochrome b558 to assemble the active NADPH 
oxidase (Heyworth et al., 1991; Sathyamoorthy et al., 
1997). In addition to the core subunits, Ras- related 
small GTP-binding proteins, Rac1 or Rac2 is required 
for the activation of NADPH oxidase (Mizuno et al., 
1992; Kreck et al., 1994; Kim et al., 2001). In resting 
state Rac is localized in the cytoplasm in a dimeric 
complex with Rho GDP dissociation inhibitor (GDI), 
while GTP-bound Rac translocates to the membrane 
along with core cytosolic complex during activation 
(Knaus et al., 1992; Quinn et al., 1993; Bokoch, 1994). 
  Rho family proteins in actin dynamics are essential 
for the phagocytosis and engulfment (Chimini and 
Chavrier, 2000). It was found that Cdc42/Rac re-
gulated the phagocytosis mediated through FcR and 
the subsequent superoxide formation through FcγR 
activation is regulated by Rac, whereas Rho regu-
lated phagocytosis mediated through CR3 (Caron 
and Hall, 1998; Massol et al., 1998). Besides Rac, 
RhoA was reported to be also involved in the 
production of H2O2 in other cell lines such as swiss 
3T3 fibroblast (Koo et al., 1999) and Rat-2 fibroblast 
(Lee et al., 2000), when TGF and EGF stimulated 
them, respectively. In addition to FcR, the stimulation 
of CR3 by anti-CR3 antibody-coated particles (Ser-
rander et al., 1999), by Staphylococcus particles with 
anti-CD18 antibodies (Lofgren et al., 1999), and by 
zymosan ingestion through CR3 (Le Cabec et al., 
2000) induces superoxide production. Recently, it has 
been documented that Rho is essentially involved in 
superoxide formation during phagocytosis of opsoni-
zed zymosans (Kim et al., 2004). In this study, we 
elucidated the components required for signal path-
way regulating superoxide formation mediated by Rho. 

Materials and Methods
Materials
Zymosan A particles, FITC, BSA, isopropylthio- 

β-D-galactoside (IPTG), NAD+, GDP, triethanola-
mine/HCl, DTT, PMSF, Y-27632, 5-amino-2,3-di-
hydro-1,4-phtalazinedione (luminol), 6-amino-2,3-di-
hydro-1,4-phtalazinedione (isoluminol), 2’-amino-3’- 
methoxyflavone (PD98059), 4-(4-fluorophenyl)-2-(4- 
methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole 
(SB203580), 2-(4-morpholinyl)-8-phenyl-4H-1-benzo-
pyran-4-one (LY294002), PMA, dimyristoylphos-
phatidyl choline (DMPC), Triton X-100, and gluta-
thione (GSH) were purchased from Sigma che-
micals. PBS without calcium or magnesium was 
purchased from Bio-Whittaker. Catalase, horse-radi-
sh peroxidase (HRP), and superoxide dismutase 
(SOD) were purchased from Roche Molecular Bio-
chemicals. FBS, DMEM, and penicillin- streptomy-
cin were purchased from GibcoBRL. C3bi was from 
Calbiochem, and IgG against zymosan was from 
Molecular Probe. GSH-Sepharose bead was pur-
chased from Pharmacia. Anti-RhoA, anti-His anti-
bodies were purchased from Santa Cruz, and anti- 
phospho-extracellular signal-regulated kinase (ERK), 
-phospho-JNK, and -phospho-p38 antibodies and anti- 
p38 antibody were from Cell Signaling. Anti-p47PHOX 
antibody and pGEX-1λT plasmid containing GSH 
S-transferase (GST)-p47PHOX fused gene were kindly 
given from Dr. J. W. Park of Kyoungbuk National 
University. Tat-C3 exoenzyme was expressed in 
E.coli DH5α and purified through Ni2+-IDA gel 
column (Novagen). 

Expression and purification of the Tat-C3
For the preparation of Tat-C3 exoenzyme, E. coli 
BL21 (Pharmacia) transformed with pC3 or pTat-C3 
constructs were grown overnight at 37oC in LB broth 
supplemented with 100 µg/ml ampicillin. The purifi-
cation of the proteins was performed following the 
methods described in previous reports (Park et al., 
2003; Kim et al., 2004). 

Cell culture and transduction of Tat-C3 fusion protein
Macrophage J774 cell line was cultured in DMEM 
containing 20 mM Hepes/NaOH (pH 7.4), 5 mM 
NaHCO3, 10% FBS and antibiotics (100 U/ml strep-
tomycin and 100 U/ml penicillin) at 37oC in 5% CO2. 
For the transduction of Tat-C3, macrophage cells 
were grown to confluence on 6-well plate for 4-6 h. 
And then culture medium was replaced with 1 ml of 
fresh solution without FBS. J774 cells were treated 
with various concentrations of Tat-C3 for 30 min, and 
then were performed the assays for the phago-
cytosis and association of particles. For the assay of 
RhoA modification by Tat-C3, the cell lysates pre-
treated with Tat-C3 were run on SDS- PAGE and 
RhoA protein was analyzed by Western blot by using 
anti-RhoA antibody.
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Preparation of FITC-zymosan
Zymosan A particles were labeled with FITC without 
addition of gelatin (Gelfand et al., 1976). The zymo-
san particles were then pelleted by centrifugation, 
washed more than 7 times, and resuspended in PBS 
(adjusted to 5 × 108 zymosan particles/ml). Aliquots 
were stored at -70oC and thawed immediately before 
use (Gelfand et al., 1976). Zymosans were opsoni-
zed with 1 mg/ml mouse serum (SOZ), C3bi, and 
IgG (Allen and Aderem, 1996). C3b in the serum 
was found to rapidly fix onto zymosan, and about 
80% of the C3b to be converted to C3bi when 
zymosan was opsonized with fresh FBS at 37oC 
(Newmans and Mikus, 1985).

Assay of phagocytosis and association of zymosan  
on the surface of macrophages
Cells were plated onto 35-mm dishes at a density of 
2 × 105 cells and grown overnight, and the cells 
were incubated in DMEM media without FBS for 16 
h at 37oC in CO2 incubator. Cells were incubated for 
30 min with 5 × 105 of FITC-conjugated zymosan 
particles previously resuspended in fresh mouse 
serum to 1/4 dilution. The cells were washed with 
PBS three times to clear the unbound zymosan 
particles and detached from dishes with 2 ml PBS. 
The phagocytosis was assayed by measuring the 
intensity of FITC engulfed into the cells. FITC was 
excited at 490 nm and the emission fluorescence of 
it was immediately measured at 520 nm by fluo-
rescence spectrophotometer (Kontron SFM25). The 
fluorescence of adherent FITC-zymosan on the 
surface of the cells was quenched by addition of 
crystal violet to 10 µM of final concentration (Hed et 
al., 1987). The association of FITC-zymosans on the 
cell surface was evaluated by subtracting the value 
of net translocated fluorescence intensity from total 
fluorescence intensity (Kim et al., 2003).

Determination of superoxide
For the measurement of extracellular superoxide, 
J774 cells (2 × 103) were harvested and washed 3 
times with PBS. And then the cells were resus-
pended in 1 ml of modified Krebs-Ringer buffer 
(KRG: 120 mM NaCl, 5 mM KCl, 1.7 mM KH2PO4, 
8.3 mM Na2HPO4, 10 mM glucose, 1 mM CaCl2, and 
1.5 mM MgCl2) containing 4 U/ml HRP and 0.05 mM 
isoluminol (Dahlgren and Karlsson, 1999). For the 
measurement of intracellular superoxide, J774 cells 
(2 × 103) were harvested and washed 3 times with 
PBS, and resuspended in 1 ml of KRG buffer 
containing 50 U/ml SOD, 2000 U/ml catalase and 
0.05 mM luminol (Dahlgren and Karlsson, 1999). In 
both cases, the reaction of superoxide formation was 

started by addition of opsonized zymosan particles 
(2 × 104), and the subsequent chemiluminiscence 
was measured by Luminometer (Lumat LB 9507, EG 
& G, Berthold, Germany). To examine the effect of 
Tat-C3 on the formation of superoxide, purified Tat- 
C3 (10 µg/ml) was pretreated to the J774 cell for 30 
min at 37oC (Kim et al., 2003).

Expression and purification of GST-RhoA and  
GST-Rac1 fusion proteins, and measurement of 
GTP-binding to the fusion proteins, and of super-
oxide formation induced by GST-RhoA-GTP
For the preparation of GST-RhoA and GST-Rac1, 
pGEX4T1-RhoA, and pGEX4T1-Rac1 plasmids were 
transformed into E. coli DH5α and grown. And then 
the expressions of proteins were induced by the 
addition of 0.1 mM IPTG as the preparation of Tat- 
C3. GST-RhoA and GST-Rac1 proteins were puri-
fied using affinity of GSH-Sepharose beads to GST- 
fusion proteins. The proteins were eluted with 5 mM 
GSH and the GSH was eluted out by dialysis against 
a buffer (50 mM Hepes, pH 7.4, 1 mM DTT, 2 µg/ml 
aprotinin and 2 µg/ml leupeptin). For the binding of 
GTP to the fusion proteins, 1 µg GST-RhoA and 
GST-Rac1 were incubated with 0.1 µM [γ-35S] GTP 
in 50 µl of GTP-binding buffer (10 mM Hepes, pH 
7.4, 0.5 µM MgCl2, 1 mM DTT, and 1 mM DMPC) 
containing 30 µg BSA as a carrier protein for 10 min 
at 30oC following Kikuchi’s method with a little 
modification (Kikuchi et al., 1988). The GTP-binding 
activities were stopped by addition of 1 ml of ice-cold 
stop buffer (20 mM Hepes, pH 7.4, 100 mM NaCl, 
and 25 mM MgCl2). The reaction mixtures were 
filtered immediately on a BA85 membrane (Sch-
leicher & Schuell) and the membranes were washed 
5 times with 1 ml of cold stop buffer. Radioactivity of 
dried membranes in 5 ml cocktail (Beckman, Ready 
Safe) was measured by using a liquid scintillation 
counter (Beckman LS5000TD). For the measure-
ment of superoxide formation induced by RhoA in 
vitro, various concentration of GST-RhoA was 
incubated in the presence of 0.1 mM GDP or GTP in 
1 ml KRG buffer containing 50 µM luminol with cell 
lysates which were prepared by sonication. The 
reaction of superoxide formation was started by 
addition of 0.1 mM NADPH, and the subsequent 
chemiluminiscence was measured using Lumino-
meter.

Translocation of RhoA and p47PHOX proteins
J774 macrophages (2 × 106 cells) were treated with 
50 µM LY294002, 50 µM PD98059, 30 µM SB203580, 
and 10 µg/ml Tat-C3 for 30 min at 37oC. The cells 
were harvested and lysed with a sonication in 50 µl 
lysis buffer (20 mM Hepes, pH 7.4, 150 mM NaF, 2 
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mM NaVO4, 20 mM Na4P2O7, 50 µg/ml PMSF, 2 
µg/ml aprotinine, 2 µg/ml leupeptin, 2 µg/ml pep-
statin A, and 0.05% Triton-X 100) (Hippenstiel et al., 
1998). The cell membranes were harvested by a 
table-top ultracentrifuge for 30 min at 100,000 × g, 
4oC, and the membranes were resuspended in 50 µl 
the lysis buffer. For the measurement of translo-
cation of p47PHOX, both the membrane and the su-
pernatant solution were run on 14% SDS-PAGE, and 
Western blot was performed by using anti-p47PHOX 
antibody. 

GST pull-down assay for activated RhoA, Rac1, and  
Rac2
Briefly, a total of 2 × 106 cells cultured in 100-mm 
plates were washed in ice-cold PBS and harvested. 
The cells were lysed in lysis buffer (50 mM Tris-HCl, 
pH 7.2, 1% Triton X-100, 0.1% SDS, 0.5% sodium 
deoxycholate, 500 mM NaCl, 10 mM MgCl2, 5 µg/ml 
each of leupeptin and aprotinin, and 1 mM PMSF). 
After centrifugation (15,000 rpm, 15 min, 4oC), ali-
quots of the supernatant were added to GST-Rho 
binding domain of Rhotekin (GST-RBD), or GST- 
GTPase binding domain of p21-activated kinase-1 
(PAK-1) (GST-PBD), which was previously incu-
bated for 1 h with 50 µg of GSH-Sepharose beads 
for GST-fusion protein or Ni-NTA His-Bind resins for 
His-fusion protein. The beads were incubated with 
cell lysates and washed, and the proteins on the 
beads were run on SDS-PAGE. RhoA, Rac1, and 

Rac2 were determined by Western blotting using 
each antibody (Ren et al., 2000; Kim et al., 2004).

Scanning electron microscopy (SEM)
Control J774 cells were collected from the Petri 
dishes, centrifuged (1,000 × g for 5 min) and fixed in 
suspension with 2.5% glutaraldehyde in 0.1 M 
cacodylate buffer (pH 7.4) at room temperature for 
20 min. After washing twice with the same buffer, the 
cells were seeded on glass coverslips coated with 
fibrinogen for 1 h at room temperature. Cells were 
challenged with SOZ or IOZ on glass coverslips for 
30 min and also fixed with 2.5% glutaradehyde for 
20 min at room temperature and washed twice with 
the 0.1 M cacodylate buffer. All samples were 
post-fixed in 1% osmium tetroxide for 30 min at 
room temperature, dehydrated through graded etha-
nols, critically dried in CO2 and gold coated by 
sputtering. The samples were examined with a Cam-
bridge 360 scanning electron microscope.

Expression and purification of GST-p47PHOX, and kinase
assay of recombinant GST-p47PHOX fusion protein
Recombinant GST- p47PHOX fusion protein as a sub-
strate for kinase was prepared following the pro-
cedure described by Park and Babior (Park and 
Babior, 1997). Briefly, E. coli transformed with pGEX- 
1λT containing an insert of p47PHOX cDNA were 
grown in the presence of 1 mM IPTG and lysed. The 

Figure 1. Involvement of Rho in the superoxide formation during phagocytosis of SOZ particles in macrophages. J774 cells (2 × 105) were treated with 
50 µM lovastatin, 50 µg/ml of C3, 10 µg/ml Tat-C3 for 1 hr at 37oC. For the phagocytosis, the cells were incubated with 5 x 105 of FITC-conjugated zy-
mosan particles previously opsonized in fresh serum for 30 min. The phagocytosis was assayed by measuring the intensity of fluorescence of FITC 
bound to zymosan by using a fluorescence spectrophotometer. The fluorescence of adherent FITC-zymosan on the surface of the cells was quenched 
by adding crystal violet to 10 µM of final concentration. The values were means ± SE (n = 3, **P＜ 0.01) (A). For the measurement of intracellular su-
peroxide, J774 cells (2 × 103) were resuspended in 1 ml of KRG buffer containing 50 U/ml SOD, 2000 U/ml catalase and 50 µM luminol. The reaction 
of superoxide formation was started by addition of opsonized zymosan particles (2 × 104), and the subsequent chemiluminiscence was measured by 
using Luminometer. 50 µg/ml of C3 (●), 10 µg/ml purified Tat-C3 exoenzyme (○), 50 µM lovastatin (■), and none (□) were pretreated to the J774 
cells for 30 min at 37oC (B). 
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GST-p47PHOX fusion protein in the cell lysate was 
purified on GSH-Sepharose. The purity and identity 
of the fusion protein were assayed by 10% SDS- 
PAGE and immunoblotting. Kinase assay of recom-
binant GST-p47PHOX fusion protein was performed 
following Yammamori’s method (Yammamori et al., 
2000). Briefly, macrophages (2 × 107) in Hanks’ 
balanced salt solution containing 0.5 mM CaCl2 and 
1 mM MgCl2 (HBSS+) were incubated for 5 min at 
37oC and then stimulated with 1 mg/ml of SOZ for 15 
min at 37oC. The reaction was stopped by centri-
fugation and the cells were suspended in 50 µl of 
ice-cold lysis buffer (20 mM Hepes, pH 7.7, 75 mM 
NaCl, 2.5 mM MgCl2, 0.1 mM EDTA, 0.05% Triton 
X-100, 0.5 mM DTT, 20 mM L-glycerophosphate, 0.1 
mM Na3VO4, 2 µg/ml of leupeptin, and 100 µg/ml 
PMSF). Cells were then lysed by sonication and the 
extracts were obtained by centrifugation. The ex-
tracts were mixed with 75 µl of GSH-sepharose sus-
pension to which 15 µg of GST-p47PHOX was bound, 
and rotated for 3 h at 4oC. After the sepharose 
beads were washed four times with Hepes binding 
buffer (20 mM Hepes, pH 7.7, 50 mM NaCl, 2.5 mM 
MgCl2, 0.1 mM EDTA, and 0.05% Triton X-100), they 
were resuspended in 30 µl of kinase buffer (20 mM 
Hepes, pH 7.6, 20 mM MgCl2, 20 mM L-gly-
cerophosphate, 0.1 mM Na3VO4, and 2 mM DTT) 
containing 20 µM ATP and 10 µCi of [γ-32P]ATP. After 
incubation for 20 min at 30oC, the beads were 
washed with Hepes binding buffer for stopping 
kinase reaction. Laemmli sample buffer was added 
to the beads, which were boiled to separate GST- 
p47PHOX from them. The separated GST-p47PHOX 
was subjected to 10% SDS-PAGE. After drying the 
gel, autoradiography of phosphorylated GST-p47PHOX 
was performed.

Results
Intracellular formation of superoxide during phago-
cytosis of SOZ reached maximal extent level in 30 
min when it was measured with luminol (Figure 1B). 
However, the formation of extracellular superoxide, 
which was measured with isoluminol, was delayed in 
comparison with that of intracellular superoxide 
(data not shown). To attempt to confirm whether Rho 
is involved in the superoxide formation, the effect of 
the inhibition of Rho activity of J774 macrophages 
on superoxide formation was examined. First the 
macrophages were treated with C3 that specifically 
inhibit Rho, and with Tat-C3 that was readily trans-
duced into cells resulting in specific inhibition of Rho. 
Both C3 and Tat-C3 inhibited superoxide formation 
in macrophages induced by SOZ particles, but 
Tat-C3 much more efficiently inhibited it (Figure 1A) 

since C3 may have a limitation for the translocation 
into the cells (Park et al., 2003). Tat-peptide itself did 
not inhibit the superoxide formation (data not 

Figure 2. Inhibition of RhoA by Tat-C3 and expression of Rho GTPases 
in the leukocytes cell types. For ADP-ribosylation of GST-fusion pro-
teins, 10 µg/ml of Tat-C3 (□) or none (■), 3 µM NAD+, 6 µM GDP, 1 
µg/ml GST-RhoA or GST-Rac1 in 50 µl buffer were premixed on ice. 
ADP-ribosylation reaction was started with the addition of the 
GST-RhoA protein or -Rac1 and incubated for 1 h at 37oC. For the bind-
ing of GTP, GST-RhoA and -Rac1 were incubated with 0.1 µM [γ-35S]- 
GTP or in 50 µl of GTP-binding buffer at 30 oC for 10 min. The 
GTP-binding activities were assayed by membrane filtering methods. 
The values were means ± SE (n = 3, ***P＜ 0.01) (A). Immunoblot 
was performed with extracts prepared from freshly isolated neutrophils 
(human), macrophage (peritoneal or J774A.1 cell line), and microglia 
(BV2 cell line), by using anti-Rac1, anti-Rac2, anti-RhoA, anti-Cdc42 or 
anti-Actin antibody, as indicated (B).
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shown). Moreover, lovastatin that inhibits the syn-
thesis of prenyl group also inhibited superoxide 
formation. It has been known that RhoA GTPase has 
a geranygeranyl group at Cys residue of C-terminus 
(Glomst and Farnsworth, 1994). These results indi-
cate that Rho is essential in the superoxide for-
mation induced by SOZ particles. 
  To eliminate the possibility that Tat-C3 inhibits 
Rac1, the GTP-binding activity of RhoA and Rac1 
was assayed with or without pretratment of Tat-C3. 
Tat-C3 completely inhibited GTP-binding to GST- 
RhoA, whereas it did not abrogate GTP-binding to 
Rac1, suggesting that Tat-C3 specifically inhibits 
RhoA activity. In addition to the evidence that Tat-C3 
did not inhibit Rac1, we compared the relative 
amounts of Rac1 and Rac2 in several cells and cell 
lines. Apparent Rac1 amount seems to be higher in 
J774 cells than in neutrophils, whereas Rac2, RhoA 
and Cdc42 seem to be higher in neutrophils than in 
J774 cells, peritoneal macrophages, and BV2 cells 
(Figure 2). 
  To confirm directly whether Rho is involved in the 
formation of superoxide in vitro, macrophage cell 
lysates were incubated with the purified recombinant 

GST-RhoA in the presence of GDP or GTP. It was 
found that GST-RhoA stimulated the superoxide 
formation in the concentration-dependent manner in 
the presence of GTP, whereas it did not in the 
presence of GDP (data not shown). In addition, 
RhoA was translocated to the membranes during 
phagocytosis of SOZ particles (Figure 3A), sugge-
sting that RhoA may be involved in the superoxide 
formation and be activated during phagocytosis of 
SOZ particles. As controls, localization of RalA and 
caveolin on cell membranes was not changed in 
response to phagocytosis of SOZ or treatments of 
Tat-C3 in contrast to RhoA (Figure 3B). Both SOZ 
and IOZ activated RhoA, Rac1, and Rac2, and the 
time courses of their activation were a little different: 
active RhoA and Rac1 were continuously increased, 
whereas Rac2 was trended to be activated in early 
time, and sustained (Figure 3C). We assessed the 
morphology of macrophages by scanning electric 
microscope to test the relevance of RhoA to an 
interaction of macrophages with SOZ particles. SOZ 
induced well-developed dorsal membrane ruffles, 
whereas Tat-C3 blocked it and induced spreading of 
cells resulting in attachment of peripheral mem-

Figure 3. Activation of Rho GTPases during phagocytosis of SOZ or IOZ particles in macrophages. To measure the translocation of RhoA, the cells of 
phagocytosis were ruptured by using a sonicator, and the membrane and cytosolic fractions were separated using ultracentrifugation at 100,000 × g, 
4oC for 30 min. RhoA of the membranes and the cytosol were detected by Western blot by using anti-RhoA (A). RalA and caveolin of membrane fraction 
were measured by using anti-RalA and anti-caveolin antibodies after phagocytosis of SOZ for 30 min in macrophages pretreated with or without 10 
µg/ml Tat-C3 for 30 min (B). Macrophages (2 × 105 cells) were challenged with SOZ or IOZ particles (5 × 105) for indicated times. Cells were har-
vested and lysed with a buffer containing 1% Triton X-100. Activated Rho GTPases levels were detected by GST pull down assay and Western blot (C). 
SEM picture of microphages were challenged with SOZ or IOZ. 10 µg/ml Tat-C3 were pretreated to the J774A.1 cells for 30 min (D).
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branes to substratum. On the other hand, IOZ did 
not induce membrane ruffles, and Tat-C3 induced 
more number of membrane protrusions (Figure 3D). 
  Next, we tried to reveal the downstream component 
to Rho A in the regulation of superoxide production. 
It was well known that RhoA-activated kinase 
(ROCK) is a typical effector protein of RhoA and 
Y-27632 is a specific inhibitor of ROCK. Y-27632 
inhibited supeoxide formation, which was stimulated 
by both SOZ and IOZ, by about 50 and 75%, 
respectively (Figure 4A). In addition, ML7, a specific 
inhibitor of myosin light chain kinase (MLCK) also 
inhibited superoxide formation, which was stimulated 
by both SOZ and IOZ particles, by about 85% 
(Figure 4B). Both ROCK and MLCK phosphorylate 
myosin light chain, leading to actomyosin assembly 
and contraction of cells. Thus we assessed effects of 
Y-27632 and ML-7 on phagocytosis to reveal the 
correlation of phagocytosis with superoxide produc-
tion. Y-27632 and ML-7 inhibited phagocytosis of 
SOZ by about 30 and 35%, respectively. This 
suggests that the reduction of superoxide by 
Y-27632 and ML-7 is partially dependent on the 
reduction of phagocytosis. ROCK and MLCK may be 
also involved in direct regulation of superoxide 

generation in that the inhibition extent of superoxide 
production by the inhibitors was greater than 
inhibition of phagocytosis. 
  Thus we attempted to elucidate how Rho is im-
plicated with the superoxide formation during pha-
gocytosis. PMA [an activator of protein kinase C 
(PKC)] stimulated the phagocytosis and superoxide 
formation, whereas PD98059 [an inhibitor of MAP 
kinase kinase (MEK)], SB203580 [an inhibitor of p38 
mitogen-activated protein kinase (MAPK)], and 
LY294002 [an inhibitor of phosphatidyl inositol-3 
kinase (PI3K)] significantly inhibited the phago-
cytosis (Figure 5A). Additionally, the superoxide for-
mation was seriously inhibited at the same concen-
tration of inhibitors as the phagocytosis experiments 
were performed (Figure 5B), which is in accord with 
previous report (Yamamori et al., 2000). These 
indicate that PKC, extracellular signaling-regulated 
kinase (ERK1/2), PI3K, and p38 MAPK are relevant 
to the superoxide formation during phagocytosis. 
Thus, we attempted to elucidate which MAPK 
among ERK1/2, p38 MAPK, and c-Jun N-terminal 
kinase (JNK) was critical for the superoxide for-
mation concerning the linkage of Rho to these 
intermediate molecules. It was found that Tat-C3 
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Figure 4. Rho-dependent kinase (ROCK) and myosin light chain kinase 
(MLCK) is involved in superoxide formatiom. J774 cells (2 × 103) were 
pretreated with 30 µM Y27632 (A) and 30 µM ML-7 (B) for 30 min. 
Macrophages were challenged with SOZ or IOZ for 30 min, and then 
phagocytosis (C) and Intracellular superoxide was measured as described 
in Figure 1. The values were means ± SE (n = 3, **P＜ 0.01).
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strongly inhibited the phosphorylation of p38 MAPK, 
and slightly that of ERK1/2, but not JNK (Figure 5C), 
suggesting that p38 MAPK may be mainly involved 
in the superoxide formation mediated through Rho 
during phagocytosis of SOZ particles. It was found 
that the mobility of RhoA from the cells treated with 
Tat-C3 was retarded on SDS-PAGE, indicating that 
Tat-C3 modified the RhoA (Figure 5C), whereas 
Tat-C3 did not change mobility of RalA and caveolin 
as controls (Figure 3B). In addition, Y-27632 blocked 
the activation of both ERK1/2 and p38 MARK, 
indicating that ROCK is upstream to ERK1/2 and 
p38 MARP (Figure 5D). 
  Since p38 MAPK and ERK have been reported to 
regulate superoxide formation by phosphorylating 
p47PHOX, a cytosolic component of NADPH oxidase 

(El Benna et al., 1996), we attempted to reveal a 
hierarchy of RhoA and other kinases tested in the 
superoxide formation mediated through RhoA. SOZ 
induced translocation of RhoA from cytosol to mem-
brane, suggesting that SOZ activates RhoA. Consis-
tently, Tat-C3 blocked the translocation of RhoA, 
whereas SB203580 and PD98059 and LY294002did 
not significantly block it (Figure 6A), indicating that 
RhoA may be an upstream component of p38MAPK, 
ERK1/2, and PI3K. However, Tat-C3 did not affect 
the translocation of Rac1 (Figure 6B). Then the 
phosphorylation of p47PHOX was assayed by incu-
bating GST-p47PHOX, [γ-32P]ATP, and the lysates 
from the J774 cells performing phagocytosis. The 
lysates from the cells excuting phagocytosis of SOZ 
stimulated the phosphorylation of p47PHOX, whereas 

Figure 5. Implication of p38 MAPK and ERK1/2 to superoxide formation induced by RhoA. J774A.1 cells were pretreated with 10 nM PMA, 50 µM 
PD98059, 30 µM SB203580, and 50 µM LY294002 for 30 min, and phagocytosis was performed. The phagocytosis of SOZ particles was measured as 
in Figure 1. The values were means ± SE (n = 3, *P＜ 0.05) (A). The superoxide formation during phagocytosis was measured from the cells pre-
treated with the same concentration as in (A) of PMA (∆), PD98059 (▲), SB203580 (●), LY294002 (○), and none (■) (B). J774 cells were pre-
treated with 10 µg/ml of Tat-C3 exoenzyme or 30 µM SB203580 for 30 min, and then phagocytosis was performed. The cell lysates (20 µg protein) 
were run on SDS-PAGE and Western blots were performed by using anti-p38, -phospho-p38, -phospho-ERK, -phospho-JNK, and -RhoA antibodies. It 
was observed that Tat-C3 exoenzyme retarded the mobility of RhoA on SDS-PAGE (C). J774 cells were pretreated with 50 µM Y-27632 for 30 min, and 
then phagocytosis was performed. The cell lysates (20 µg protein) were run on SDS-PAGE and Western blots were performed by using, anti-phos-
pho-ERK, -ERK1/2, -phospho-p38 MAPK antibodies (D).
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the lysates from the cells pretreated with Tat-C3 
heavily inhibited the phosphorylation p47PHOX (Figure 
6C). 

Discussion
Rho is essential for the superoxide formation in  
macrophages
Rho proteins are Ras-related GTP-binding proteins 
that have been shown to regulate a variety of cellular 
functions such as cytoskeleton organization, mem-
brane trafficking, transcriptional activation, cell grow-
th control, and development (Hall A, 1998). Although 
Rac has been known to be essential for the 
superoxide formation in macrophage during phago-
cytosis (Kleinberg et al., 1990), there was a report 
supporting a possibility that RhoA exerts regulatory 
function in superoxide formation through NADPH 
oxidase during phagocytosis of SOZ (Kim et al., 
2004). In this study, we attempted to reveal the 
downstream components of RhoA in signaling of 
superoxide generation, and observed that ROCK, 
MLCK, ERK1/2, p38MAPK were relevant to this 
process. 
  For this purpose, we used Tat peptide fused C3 
exoenzyme (Tat-C3) to block RhoA. There was 
another possibility that Tat-C3 might also inhibit the 

Rac (Kreck et al., 1994), which has been reported to 
be a stimulatory factor for NADPH oxidase. To 
exclude this possibility, we compared the GTP- 
binding activities of RhoA and Rac1 when they were 
treated with Tat-C3 in the presence of NAD+ in vitro, 
and found that Tat-C3 completely abolished the 
GTP-binding activity of only RhoA, but not that of 
Rac1 (Figure 2).
  We found that Tat-C3, which inhibits specifically the 
activity of Rho, moderately inhibited the phagocy-
tosis, but extensively suppressed the superoxide 
formation induced by sOZ particles (Figure 1). 
These results suggest that Rho is esentially required 
for superoxide formation in CR3-mediated process 
(Figure 1). This indicates that the inhibition of su-
peroxide formation is not a consequence of the 
reduction of phagocytosis. Rho may regulate the 
superoxide formation at least partially independently 
of phagocytosis. However, it is also true that 
phagocytosis stimulates the superoxide formation in 
macrophages in that the stimulation of the receptors 
by C3bi protein ligands alone in macrophages did 
not induce the oxidative burst to full extent (Kim et 
al., 2004).
  Additionally, it was shown that GST-RhoA sti-
mulated the formation superoxide in the cell lysates 
and GTP (data not shown) although the stimulation 
extent was not high probably because of using 

Figure 6. Inactivation of GST-p47PHOX by Tat-C3 exoenzyme. J774 macrophages (2 × 106 cells) were treated with 50 µM LY294002, 
50 µM PD98059, 30 µM SB203580, and 10 µg/ml Tat-C3 exoenzyme for 30 min at 37oC. The cells were harvested and lysed with a 
sonication in 50 µl buffer. The cell membranes were harvested and the membranes were resuspended in 50 µl buffer. Both the mem-
brane and the supernatant solution were run on 14% SDS-PAGE, and Western blot was performed by using anti-RhoA (A) and an-
ti-Rac1 antibodies (B). Macrophages (2 × 106 cells) were stimulated with or without SOZ (5 × 106) after cells were treated with or 
without 10 µg/ml Tat-C3. The cells were then ruptured by sonication, and the cell extracts were mixed with GSH-Sepharose suspension 
to which GST-p47PHOX was bound. The mixture was rotated for binding of GST-p47PHOX and GSH-beads, and the washed beads were in 
30 µl of kinase buffer containing 10 µCi of [γ-32P]ATP. The phosphorylated GST-p47PHOX was analyzed on 10% SDS-PAGE and auto-
radiography (C). 
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recombinant RhoA instead of prenylated RhoA. This 
suggests that RhoA may be in fact involved in the 
superoxide formation in vitro. However, it cannot be 
excluded to consider a possible role of RhoB and C 
for the involvement in superoxide formation, be-
cause C3 was also found to modify and inhibit both 
Rho B and C (Chardin et al., 1989; Just et al., 1995). 
  Conversely, RhoA was activated by the stimulation 
of SOZ: RhoA was translocated from cytosol to 
membrane, GTP-bound form of RhoA was well as 
both Rac1 and Rac2 was increased (Figure 3C). 
Furthermore, SOZ heavily induced dorsal membrane 
ruffles that might enclose and engulf the particles 
into inside of the cells (Figure 3D) (Park, 2003).
  Next, we clarify whether superoxide produced by 
SOZ could increase control phagocytosis, since it 
was reported that reactive oxygen species (ROS), 
perhaps H2O2, acts as an intracellular signal medi-
ator for NGF-induced neuronal differentiation and 
that NGF-stimulated ROS production is regulated by 
Rac1 and a flavoprotein-binding protein similar to the 
phagocytic NADPH oxidase (Suzukawa et al., 2000). 
In macrophages, superoxide scavenger or generator 
did not change the phagocytosis (data not shown; 
Kim et al., 2004), suggesting that superoxide does 
not act as an intracellular signal mediator for the 
phagocytosis. 

Mechanism for the superoxide formation mediated  
through Rho in macrophages
To get a clue how RhoA is implicated in the 
superoxide formation during phagocytosis in macro-
phages, we examined the effects of the reagents 
that activate or inhibit specific steps in signal path-
ways. PKC was involved in stimulation of phago-
cytosis and association of SOZ particles in ac-
cordance with a previous report (Yamamori et al., 
2000). Moreover, we found that p38 MAPK, ERK1/2, 
and PI3K were slightly involved in the phagocytosis 
process. In addition, the stimulation of PKC in-
creased the superoxide formation, whereas the 
inhibition of ERK1/2 significantly reduced the su-
peroxide formation, furthermore the inhibition of p38 
MAPK and PI3K almost abolished it (Figure 5B). It 
could be suggested that p38 MAPK and PI3K are 
essential for the superoxide formation, and that 
phagocytosis and superoxide formation are per-
formed through different signal-pathways. Further-
more, Tat-C3 heavily inhibited the phosphorylation of 
p38 MAPK and slightly that of ERK1/2, suggesting 
that p38 MAPK and ERK1/2 may be involved in the 
formation of superoxide mediated though Rho 
(Figure 5C). 
  It was found that the onset of respiratory burst 
during phagocytosis was linked to the phsophor-

ylation of p47PHOX and its trnaslocation to the 
phagosome (DeLeo et al., 1999). p38 MAPK was 
known to activate p47PHOX by phosphorylation (Ya-
mamori et al., 2000; Herlaar and Brown, 1999). The 
lysates from the cells executing phagocytosis of 
SOZ stimulated the phosphorylation of GST- 
p47PHOX, and those from the cells treated by Tat-C3 
blocked phosphorylation of GST-p47PHOX (Figure 
6C), suggesting that Rho is related to the phos-
phorylation of p47PHOX. The inhibition of p47PHOX 
through Tat-C3 appears to subsequently diminish 
the superoxide formation. Consequently, the se-
quence of ‘Rho → ROCK → p38 MAPK → ERK1/2 
(→ ?) p47PHOX → superoxide’ can be considered as 
a signal pathway of the activation of superoxide 
formation. 
  Cytoskeleton reorganization may be involved in the 
superoxide formation. Inhibition of superoxide forma-
tion by cytochalasin D (data not shown) suggests a 
necessary role of cytoskeleton in the signaling 
pathway that activates the oxidase (Serrander et al., 
1999). RhoA has been known as an activator for 
ROCK, which phosphorylates myosin light chain 
(MLC) phosphatase to be inactive (Kawano et al., 
2000), resulting in the formation of stress fiber. ML7, 
an inhibitor of MLCK, inhibited that superoxide for-
mation and phagocytosis in our system (Figure 4) 
and in other laboratories (Kimura et al., 1996; 
Mansfield et al., 2000), suggesting that cytoskeleton 
reorganization is important for the superoxide for-
mation, although it has to be also considered that 
the inhibition of superoxide formation by ML7 may 
arise from the reduction of the phagocytosis. More-
over, ML7 was known to reduce the phosphorylation 
and the translocation of p47PHOX to the membranes 
(Heyworth et al., 1995). 
  RhoA has been also known to be an activator of 
phospholipase D (PLD) (Malcolm et al., 1994). Thus, 
the possibility of the formation of phosphatidic acid 
(PA) formation in the membranes could be a re-
gulator of superoxide formation, for example, a 
regulator of translocation of NADPH oxidase. It was 
reported that Rac/RhoGDI complex can be disrupted 
in the presence of various lipids like arachidonic 
acid, PA, and phosphatidylinositol (Chuang et al., 
1993). We found that the addition of exogenous PLD 
to the macrophages induced the enhancement of the 
superoxide formation (results not shown), sug-
gesting that PLD activity is required for the super-
oxide formation. It has been shown that p22PHOX can 
be phosphorylated through PLD, suggesting that 
PLD activity is required for the superoxide formation 
(Regier et al., 2000). Moreover, the activation of PLD 
is tightly coupled to the phagocytosis of opsonized 
zymosan by human macrophages (Fallman et al., 
1993; Kusner et al., 1996). 
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  Despite of such multiple events associated to 
superoxide formation, it remains to be studied in 
detail how Rho regulates the processes including 
the activations of p38 MAPK and ERK1/2, and the 
phosphorylation of p47PHOX. 
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