Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

COX-2 inhibits anoikis by activation of the PI-3K/Akt pathway in human bladder cancer cells

Abstract

Cyclooxygenase-2 (COX-2) has been reported to be associated with tumor development and progression as well as to protect cells from apoptosis induced by various cellular stresses. Through a tetracycline-regulated COX-2 overexpression system, we found that COX-2 inhibits detachment-induced apoptosis (anoikis) in a human bladder cancer cell line, EJ. We also found that the inhibition of anoikis by COX-2 results from activation of the PI-3K/Akt pathway as evidenced by suppression of the COX-2 effect on anoikis by a PI-3K inhibitor, LY294002. Furthermore, COX-2 enhanced Mcl-1 expression in the anoikis process, implying that Mcl-1 also may be involved in mediating the survival function of COX-2. Together, these results suggest that COX-2 inhibits anoikis by activation of the PI-3K/Akt pathway and probably by enhancement of Mcl-1 expression in human bladder cancer cells. This anti- anoikis effect of COX-2 may be a part of mechanisms to promote tumor development and progression.

Author information

Affiliations

Authors

Rights and permissions

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Choi, EM., Kwak, SJ., Kim, YM. et al. COX-2 inhibits anoikis by activation of the PI-3K/Akt pathway in human bladder cancer cells. Exp Mol Med 37, 199–203 (2005). https://doi.org/10.1038/emm.2005.27

Download citation

Keywords

  • anoikis
  • bladder
  • cancer
  • COX-2
  • Mcl-1
  • PI-3K/Akt

Further reading

Search

Quick links