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Abstract

Vibrio vulnificus cytolysin (VVC) has been implicated
as one of the important virulence determinants of V.
vulnificus that causes serious septicemia and wound
infection. An attempt was made to investigate that
VVC could act as a ligand which stimulates intracel-
lular signaling systems. Cholesterol dose-depen-
dently blocked VVC hemolytic activity through oli-
gomerization of cytolysin. Among cholesterol deriv-
atives including 7-dehydrocholesterol, cholesteryl
esters, deoxycholate, and cholestane tested, only 7-
dehydrocholesterol induced oligomerization as well
as inactivation of VVC. These results show that oli-
gomerization of VVC is completely dependent on
three-dimensional structure of cholesterol where
specific interaction of cholesterol at oligomerization
sites of VVC is very selective. These findings support
the idea that cholesterol which constitute many of
cellular plasma membrane could be a receptor of
VVC on plasma membrane of target cells.
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Introduction

The halophilic bacterium Vibrio vulnificus is known to
be a life-threatening pathogen that causes septicemia
and serious wound infection in human. V. vulnificus
infection is characterized by a high fatality rate of 70%
and the primary attack against people who are
immunocom-promised or have underlying diseases

such as liver cirrhosis or hemochromatosis (Hollis et al.,
1976; Blake et al., 1979; Park et al., 1991; Oliver et al.,
1995). A variety of factors, including an extracellular
cytolysin (Gray and Kreger, 1985), an elastolytic protease
(Miyoshi et al., 1992), and resistance to phagocytosis
(Yoshida et al., 1985) have all been implicated as possible
virulence determinants for V. vulnificus septicemia in
animal models. Kreger and Lockwood (1981)
demonstrated that V. vulnificus cytolysin (VVC) showed
hemolytic and lethal activity, and acted as vascular
permeability factor. Although a definitive role of VVC in V.
vulnificus infection is controversial (Oliver et al., 1986;
Wright and Morris, 1991; Fan et al., 2001), VVC has still
been focused because of its pore-forming nature.

VVC shows a high affinity to mammalian cell
membranes, indicating that it has a broad spectrum of
cytotoxicity against a variety of cells including ery-
throcytes, neutrophils, mast cells, endothelial cells, and
macrophages (Kreger and Lockwood, 1981; Yamanaka
et al., 1990; Kim et al., 1993; Park et al., 1994; Chae et
al., 1996; Kim, 1997; Kim et al., 1998; Kwon et al., 2001;
Kang et al., 2002). Furthermore, recent data de-
monstrated that VVC induce mammalian cell activation
through production of intracellular signaling molecules
such as hydrogen peroxide (H2O2) or nitric oxide (NO)
(Kwon et al., 2001; Kang et al., 2002). These reports
supported that VVC could act as a ligand which
stimulates intracellular signaling systems. With respect
to the understanding VVC mediated signal transduction
and toxic mechanism, it will be of great interest to
identify a membrane receptor of VVC. 

It has been known that the lysis of erythrocytes caused
by VVC is colloid-osmotic in nature and that VVC, after
binding to the erythrocyte membrane, oligomerize to
form small pores in the membrane resulting in cell lysis
(Kim et al., 1993). In addition, cholesterol inactivates
VVC by converting active monomer cytolysin into
inactive oligomer, suggesting that the cytolysin lyses
erythrocytes through the formation of small pores on
erythrocyte membrane by cholesterol-mediated oli-
gomerization of the cytolysin (Kim et al., 1993). These
results indicate that cholesterol might be a possible
receptor for VVC on mammalian cells. 

The aim of this study was to investigate the
specificity of VVC binding to cholesterol and to
propose that cholesterol could be a possible receptor
for VVC. This paper shows that VVC recognize only 7-
dehydrocholesterol among cholesterol derivatives,
suggesting that VVC binds cholesterol with defined
structural specificity. 
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Materials and Methods

Materials 

Dulbecco's phosphate buffered saline, BSA, chole-
sterol derivatives, and DEAE cellulose were
purchased from Sigma. (St. Louis. MO). Dulbeccos
modified Eagles medium (DMEM), fetal bovine serum
(FBS), and heart infusion broth were purchased from
Gibco Laboratories (Grand Island, NY). Cytotoxicity
detection kit of LDH was purchased from Boehringer
Mannheim (Mannheim, Germany). All other reagents
were of the highest purity grade available.

Bacterial strain and culture 

A virulent strain of V. vulnificus E4125 was kindly supplied
by Dr. M. H. Kothary (Department of Microbiology,
Virulence Assessment Branch, Center for Food Safety
and Applied Nutrition, Food and Drug Administration,
Washington D.C.). The strain was cultured in the heart
infusion diffusate broth as described by Kreger et al.
(1988).

Assay of hemolytic activity 

The hemolytic activity of VVC against mouse
erythrocytes was determined by the method of
Bernheimer and Schwarz (1963). VVC was diluted with
phosphate-buffered saline (67 mM Na2HPO4, 77 mM
NaCl, pH 7.4) containing 1 mg of BSA per ml (PBS-
BSA). One milliliter of VVC was mixed with the same
volume of 0.7% mouse erythrocyte suspensions in PBS-
BSA. After incubation at 37oC for 30 min and brief
centrifugation, A545 of hemoglobin in the supernatant
was measured. One hemolytic unit (HU) is defined as
that amount which liberates half of the hemoglobin in
the erythrocyte suspensions.

Preparation of VVC

VVC was purified to homogeneity from the culture
supernatant by ammonium sulfate fractionation, calcium
phosphate gel adsorption, quaternary methylamine
anion-exchange chromatography and octyl-Sepharose
CL-4B chromatography as described by Kim et al.
(1993). VVC found to be homogenous on a SDS-
polyacrylamide gel. The purified VVC had a specific
hemolytic activity of 80,000 HU per mg of protein with
30% recovery.

SDS-PAGE for the detection of VVC oligomer 

The oligomer of VVC was detected by a modification of
the method developed by Walev et al. (1993). Samples
were prepared with the same volume of 0.5 M Tris
buffer (pH 6.8) containing 4% SDS, 20% glycerol and
0.05% bromophenol blue at room temperature. SDS-
PAGE was performed in 7.5% slab gel according to

Laemmli (1970). Proteins were detected by staining with
Coomassie brilliant blue R 250.

Results and Discussion

Previous data have demonstrated that VVC is
inactivated by cholesterol that might be the binding site
of VVC (Kim et al., 1993). Many papers indicate that a
few of bacterial toxins are also inactivated by various
lipids such as phospholipids, gangliosides, and
cholesterol (Takeda et al., 1975; Prigent et al., 1976;
Shinoda et al., 1985). However, clear structural
relationship between lipids and toxins are still unknown.

In order to determine the effect of cholesterol on
hemolytic activity of VVC, VVC was incubated with

Figure 1. Effect of cholesterol on the hemolytic activity of VVC. VVC (1.0
HU) was incubated with a various concentrations of cholesterol at 37oC for
30 min in a total volume of 1 ml of phosphate-buffered saline containing 1
mg of BSA. The residual hemolytic activity was determined as described in
the Materials and Methods. The control activity of VVC without preincubation
under these conditions was arbitrarily set at 100 %. The each value denotes
the mean ±SE obtained from five experiments.

Figure 2. The detection of cholesterol-induced oligomerization of VVC by
SDS-PAGE. VVC (1 µg) was incubated with the indicated concentrations of
cholesterol at 37oC for 5 min. After separation by SDS-PAGE, proteins were
stained with Coomassie brilliant blue. Lane 1, VVC alone; Lane 2, VVC with
cholesterol (0.5 µg); Lane 3, VVC with cholesterol (1 µg).
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various concentrations of cholesterol at 37oC. After
incubation for 30 min, the residual hemolytic activity of
VVC was measured (Figure 1). Cholesterol inactivated
VVC in a concentration-dependent manner, approximately
90% of total activity being disappeared by incubating
with 1 µg of cholesterol. Cholesterol treated-VVC was
revealed as oligomer when analyzed by SDS-PAGE
(Figure 2). The inactivation of VVC with concomitant
formation of oligomer induced by cholesterol indicates
that the cholesterol-induced inactivation is due to the
consumption of active monomers by oligomerizatioon
occurred prior to membrane binding. Accordingly, VVC
seems to directly bind to plasma membrane cholesterol,
oligomerize and forms a pore. 

Thiol-activated toxins such as streptolysin O,
tetanolysin, or pneumolysin are known to be inactivated
by cholesterol and certain related sterols (Prigent et al.,

1976; Johnson et al., 1980). But VVC is different from
those thiol-activated cytolysins because of being stable
to oxygen and sulfhydryl blocking agents (Shinoda et
al., 1985). This study was designed to demonstrate that
VVC might uniquely interact with cholesterol molecules
on plasma membranes of target mammalian cells. In
order to determine whether cholesterol structure has
effect on oligomerization as well as hemolytic activity of
VVC or not, VVC was incubated with phosphatidylcholine
or cholesterol derivatives containing a high structural
similarity to cholesterol, including 7-dehydrocholesterol,
cholesteryl palmitate, cholesteryl myristate, deoxycholate,
and cholestane (Figure 3). Among these lipids, 7-
dehydrocholesterol only inactivated hemolytic activity of
VVC (Table 1). Furthermore, oligomerization of VVC was
also induced only by 7-dehydrocholesterol (Figure 4).
These results indicate that molecular interaction between
cholesterol and VVC is completely dependent on three-

Figure 3. Cholesterol derivatives

Table 1. Effect of various lipids on hemolytic activity of VVC. VVC (1.0 HU)
was incubated with the various lipids (1 mg) at 37oC for 30 min in total
volume of 1 ml of phosphate-buffered saline containing 1 mg of BSA. The
residual hemolytic activity was determined as described in the Materials and
Methods. The control activity of VVC without preincubation under these
conditions was arbitarily set at 100%. Each value denotes the mean ± SE
obtained from five experiments.

Treatment 
Hemolytic Activity

(% of Control)

None 100

Cholesterol 10 ± 4.50

7-Dehydrocholesterol 12 ± 5.60

Cholesteryl palmitate 100

Cholesteryl myristate 100

Deoxycholate 100

Cholestane 100

Phosphatidylcholine 100

Figure 4. Effect of various lipids on the oligomerization of VVC. VVC (1.0 Hu)
was incubated with various lipids at 37oC for 5 min. After separation by SDS-
PAGE, proteins were stained with Coomassie brilliant blue. Lane 1, VVC alone;
Lane 2, VVC with cholesterol; Lane 3, VVC with cholesteryl palmitate; Lane 4,
VVC with cholesteryl myristate; Lane 5, VVC with deoxycholate; Lane 6,
VVC with cholestane; Lane 7, VVC with phosphatidylcholine; Lane 8, VVC
with 7-dehydrocholesterol.
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dimensional structure of cholesterol. Thus, this study
strongly suggests that cholesterol serves a binding site
of VVC on plasma membrane of target cells. 
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