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MCM5: a new actor in the link between DNA
replication and Meier-Gorlin syndrome

Annalisa Vetro*,1, Salvatore Savasta2, Annalisa Russo Raucci1, Cristina Cerqua3,4, Geppo Sartori5,
Ivan Limongelli6, Antonella Forlino7, Silvia Maruelli7, Paola Perucca1, Debora Vergani1, Giuliano Mazzini8,
Andrea Mattevi9, Lucia Anna Stivala1, Leonardo Salviati3,4 and Orsetta Zuffardi1

Meier-Gorlin syndrome (MGORS) is a rare disorder characterized by primordial dwarfism, microtia, and patellar aplasia/

hypoplasia. Recessive mutations in ORC1, ORC4, ORC6, CDT1, CDC6, and CDC45, encoding members of the pre-replication

(pre-RC) and pre-initiation (pre-IC) complexes, and heterozygous mutations in GMNN, a regulator of cell-cycle progression and

DNA replication, have already been associated with this condition. We performed whole-exome sequencing (WES) in a patient

with a clinical diagnosis of MGORS and identified biallelic variants in MCM5. This gene encodes a subunit of the replicative

helicase complex, which represents a component of the pre-RC. Both variants, a missense substitution within a conserved

domain critical for the helicase activity, and a single base deletion causing a frameshift and a premature stop codon, were

predicted to be detrimental for the MCM5 function. Although variants of MCM5 have never been reported in specific human

diseases, defect of this gene in zebrafish causes a phenotype of growth restriction overlapping the one associated with orc1
depletion. Complementation experiments in yeast showed that the plasmid carrying the missense variant was unable to rescue

the lethal phenotype caused by mcm5 deletion. Moreover cell-cycle progression was delayed in patient’s cells, as already shown

for mutations in the ORC1 gene. Altogether our findings support the role of MCM5 as a novel gene involved in MGORS, further

emphasizing that this condition is caused by impaired DNA replication.
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INTRODUCTION

Meier-Gorlin syndrome (MGORS, MIM 224690) is a rare disorder
characterized by severe intrauterine and post-natal growth retardation,
bilateral microtia, and aplasia or hypoplasia of the patellae. Micro-
cephaly is reported in 43% of patients.1 Further dysmorphic features
include microstomia, full lips, highly arched or cleft palate, and
micrognathia. Recessive variants in components of the pre-replication
(pre-RC) or pre-initiation (pre-IC) complexes (ORC1, ORC4, ORC6,
CDT1, CDC6, and CDC45), as well as de novo heterozygous variants in
the DNA replication inhibitor protein GMNN, are associated to
MGORS.2–6

We report a patient with a clinical diagnosis of MGORS in whom
we detected, by whole-exome sequencing, biallelic variants in MCM5
(minichromosome maintenance complex component 5 [MIM
602696]), a gene encoding a member of the replicative helicase
complex MCM2-7. Our findings further emphasize that MGORS is
associated with impaired DNA replication.

MATERIALS AND METHODS

Clinical report
The patient was born at 41 weeks of gestation from non-consanguineous

parents of Italian origin. Intrauterine growth restriction was documented after

36 weeks of gestation. At age 7 months, weight (6 kg, − 2.9 SD) and length

(61 cm, − 3.3 SD) were both below the third centile and head circumference
was 44.5 cm (0.5 SD). He presented with microstomia, thick lips, micrognathia,
bilateral microtia, low set ears (Figure 1), and bilateral cryptorchidism. No
feeding difficulties were reported. Abdominal ultrasound, following a persistent
intestinal infection, revealed hypoplasia and ptosis of the left kidney. Psycho-
motor development and brain NMR were normal. Bilateral absence of the
ossification centers of the patellae was noticed at age 20 months, when a clinical
diagnosis of MGORS was established, and confirmed at a second evaluation at
the age of 2 years and 6 months. Growth hormone levels were normal.
Immunological investigations revealed a normal population of T- and NK-cells.
At the age of 4 years and 8 months, patient’s weight and height were 12.5 kg
(−2.7 SD) and 96.3 cm (−2.5 SD); head circumference was 51 cm (0.3 SD).
The parents’ height was 176 and 173 cm for the father and the mother,

respectively. Patient’s growth curves and details, compared to MGORS
individuals, are available in Supplementary Table S1 and Supplementary
Figure S1.

Cytogenetic and whole-exome sequencing investigations
Written informed consent was obtained from the family according to the
institutional review boards of IRCCS Fondazione Policlinico San Matteo,
Pavia, Italy.
Karyotype, chromosome instability, and array-CGH analyses were performed

as previously reported.7,8 Spontaneous sister chromatid exchange analysis was
done on patient’s and control’s lymphocytes.9 WES on the DNA of the patient
and his parents (average coverage 75× ) was performed by using a commercial
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target enrichment kit (SureSelectXT Clinical Research Exome, Agilent Tech-

nologies, Santa Clara, CA) on HiSeq2500 (paired-end 2×100 bp; Illumina,

San Diego, CA, USA). After reads alignment, variant calling and annotation,

and filtering for possible artifacts (see Supplementary Materials), candidate

variants were compared with those reported in the following databases: 1000

Genomes Project, the Exome Sequencing Project, the Exome Aggregation

Consortium (ExAC), and our internal database (189 exomes from patients with

disorders not including growth impairment and their relatives). Non-

synonymous variants or variants affecting splice-site acceptor/donor sites that

were rare (MAF o0.01) or novel according to the above-mentioned databases

were taken into consideration and analyzed in the trio according to both a de

novo and a recessive hypothesis (both homozygous and compound hetero-

zygous variants were considered for the latter). The resulting SNVs/InDels were

visually inspected by Integrative Genomics Viewer IGV 1.210 to confirm the

quality of the alignment. Relevant data were submitted to the Leiden Open

Variation Database at www.lovd.nl/MCM5 (patient ID #00081271).

Figure 1 Frontal (a) and lateral (b) view of the patient. Facial features at 20 months of age, including microtia, low set ears, microstomia with thick lips and
micrognathia.

Figure 2 MCM5 gene variants identified in our case. (a) The two panels show the IGV screenshots relative to the c.850_851del (upper panel) and the
c.1397C4T (lower panel) variants in patient’s DNA. Gray bars represent the mapped reads aligned to the reference genome, which sequence is shown below
(colored). A coverage plot is displayed in the upper part of each panel. (b) The results of Sanger sequencing of exons 7 (upper panel) and 11 (lower panel)
of the MCM5 gene are shown for the proband (Pb), his father (F) and mother (M). The c.850_851del deletion (upper panel) was detected in the paternal
DNA, whereas the c.1397C4T variant (lower panel) was maternally inherited. The altered nucleotides are indicated by arrows. MCM5 RefSeq accession
number: NM_006739.3.
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Further details on ‘Materials and Methods’ section are provided in

Supplementary Materials.

RESULTS AND DISCUSSION

The patient’s karyotype was 46,XY, and array-CGH analysis resulted
negative. WES identified about 11 000 non-synonymous or splice-sites
variants in the proband, 434 being rare or novel (Supplementary Table
S2). After filtering in the trio we remained with eight possible

compound heterozygous variants affecting four genes (Supplemen-
tary Table S3). As expected from the family history, no candidate
homozygous variants were detected. Moreover, no candidate de novo
variants were identified. None of the filtered variants was in already
known MGORS genes.
MCM5 appeared to be a strong candidate, because the encoded

protein is part of the replicative helicase complex MCM2-7. MCM2-7
is recruited on the replication origins in the early G1 phase by the

Figure 3 Functional complementation in yeast. (a) Alignment of human and yeast MCM5 protein sequences: the mutated threonine residue is underlined.
(b) A copy of the mcm5 gene was inactivated in a diploid W303 yeast by homologous recombination with a KANMX4 cassette (which confers resistance to
geneticin). The strains carrying the heterozygous deletion were left to sporulate on solid medium for 4 days at 25 °C; 10 tetrads were dissected and plated in
rich medium at 30° for 3 days. Four representative tetrads (1–4) are shown: only two spores for each tetrad survived and none of them could grow in
medium containing geneticin (YPD +G418, on the right), confirming that these haploid cells carried the wild-type allele. (c) Diploid yeasts, heterozygous for
mcm5 inactivation, were transformed by plasmids containing either the wild type (pCM189-ΔCYC1-mcm5-WT) or the mutated (pCM189-ΔCYC1-mcm5-
T501I) mcm5, and carrying a URA3 selection cassette. Transformants were selected in synthetic medium lacking uracil (SM–URA) and then left to
sporulate; 16 tetrads were dissected and four representative tetrads for each plasmid are shown (1–4 wild type; 5–8 mutant). Each colony was then streaked
in medium lacking uracil (SM–URA) to confirm the presence of the plasmid and then in geneticin-containing medium (YPD +G418) to confirm the mcm5
genotype. Transformation by the wild-type mcm5 restored a normal segregation pattern: all the four spores of each tetrad (1–4) could grow in SM–URA, both
the two carrying the inactivated allele and the two carrying the wild-type mcm5. The latter could no more survive in geneticin-containing medium (YPD
+G418; spores: 1B, 1D, 2A, 2B, 3A, 3C, 4B, 4C). In contrast, only 50% of those transformed with mutant mcm5 survived. All the surviving spores (5A, 5B,
6A, 6B, 7B, 7D, 8B, and 8C) carried the wild-type allele, as demonstrated by their geneticine-sensitivity (YPD+G418). This indicated that the Thr501Ile
abolishes the function of mcm5.

MCM5 in Meier-Gorlin syndrome
A Vetro et al

648

European Journal of Human Genetics



ORC1-6 complex through CDT1 and CDC6 (origin licensing). This
pre-RC is further activated at the G1-S-phase transition by cell-cycle
dependent kinases (CDK and DKK), allowing the assembly of the pre-
IC complex, including CDC45, the unwinding of the DNA, and
finally, its replication.6,11 Genes encoding for multiple components of
this process have already been found mutated in MGORS
patients.2,3,5,6,12 Moreover, although MCM5 alterations have never
been associated with human diseases, spontaneous mcm5 mutants13

and morphant models2 in zebrafish strictly overlap the phenotype of
growth restriction caused by orc1 depletion.
The two variants affecting MCM5 in our patient (Figure 2), namely

c.850_851delAG, p.(Arg284Glyfs*49), of paternal origin, and
c.1397C4T (p.Thr466Ile), inherited from the mother, were both
predicted to be damaging with high confidence by the in silico tools we
used (Supplementary Table S4).
The c.850_851delAG change was predicted to result in non-sense

mediated mRNA decay (NMD). We assessed the relative abundance of
the two transcripts by deep-sequencing of a 519 bp fragment encom-
passing the c.1397C4T variant in the cDNA from lymphoblastoid cell
lines (LCLs) of the patient and his parents. In the patient’s sample the
c.1397C4T variant (corresponding to r.1397c4u) was called by 77%
of the reads, whereas the allele harboring the frameshift variant was
represented by 23% only of the reads, with a shift from a 1:1 to a 3:1
ratio in favor of the transcript bearing the c.1397C4T variant
(Supplementary Table S5). This indicated a selective partial degrada-
tion of the transcript bearing the c.850_851delAG variant, supporting
the hypothesis of NMD. Western blot (Supplementary Figure S2)
analysis also showed a reduction of the MCM5 protein in LCLs lysates
from the patient and his father, carrying the frameshift variant. MCM5
was only barely detectable in the nuclear (insoluble) fraction of
fibroblast cells lysates from the patient compared to a control. This
finding might be explained by an impairment of the MCM2-75p.T466I
to stably maintain its association with the chromatin, as suggested for
mutations affecting the same domain in S. cerevisiae.11 Consistent with
this hypothesis, we observed a comparable decrease in the levels of
chromatin-bound MCM2 (Supplementary Figure S3).
The c.1397C4T variant (p.Thr466Ile), affects a region highly

conserved among orthologous MCM5 proteins and different members
of the MCM2-7 complex (Supplementary Figure S4). This region is
also conserved in the SsoMCM protein from archaea Sulfolobus
solfataricus,14 which X-ray structure was used to do in silico structural
analysis of p.Thr466Ile in human MCM5. The p.Thr466Ile substitu-
tion affects a conserved residue located in the pre-sensor 1 domain
(PS1) of MCM5 (Supplementary Figure S5), one of the three β-hairpin
structures of the C-terminal domain that are critical for the activity of
MCM proteins.14,15 This domain is also highly conserved in all the
MCM subunits of S. cerevisiae, where mutations in the PS1 impair the
helicase activity of the MCM2-7 complex.11,16

The pathogenicity of the p.Thr466Ile variant (corresponding to p.
Thr501Ile in yeast) was further supported by a yeast-based functional
complementation assay17 in S. cerevisiae (strain W303) carrying the
mcm5 deletion, as reported in Supplementary Materials. Transforma-
tion with the plasmid containing the wild-type mcm5 effectively
rescued the growth phenotype of the tetrad, whereas the plasmid
carrying the p.Thr501Ile mutant had no effect, indicating that the
mutation is detrimental for Mcm5p protein function (Figure 3).
To date, the only other member of the MCM2-7 complex found

mutated in humans is MCM4 (MIM 602638). A single ancestral
variant of this gene (NM_005914.3:c.71-2A4G), resulting in a
N-terminal truncated protein, was associated at homozygous state
with short stature, adrenal insufficiency, natural killer cell deficiency,

and genomic instability, in multiple families from an isolated Irish
population.18,19 The reported phenotype, with the exception of short
stature, is rather different in respect to MGORS. Moreover our patient
did not present any sign of immunological defects, even after extensive
investigations, and this condition has never been reported in MGORS.
These differences may be explained by the specific effect of the c.71-
2A4G on the MCM4 protein, or by the specific genetic background
in which this variant was found.
We have also tested patient’s cells for chromosome instability and for

signs of centrosomes abnormalities, as reported for other primordial
dwarfisms20,21 and, possibly, for some ORC1 mutations.22 However we
did not identify in our patient either signs of chromosome instability,
or increased number of cells with amplified centrosomes or micro-
nuclei (Supplementary Table S6 and Supplementary Figure S6).
A slow S-phase progression has been reported in LCLs from ORC1

mutated MGORS2. We thus investigated by BrdU pulse-chase analysis
both LCLs and primary skin fibroblasts from our patient. A significant
delay was observed in both cell types (Supplementary Figures S7 and S8).
We also tested cells hypersensitivity to replicative stress, a feature

reported in association to a reduction in the helicase complex.23 To
this purpose, we treated patient’s and control’s LCLs with the
replication inhibitor hydroxyurea. A reduced percentage of patient’s
cells proceeded towards the S-phase (Supplementary Figure S9). This
is possibly explained by the impairment of the so-called ‘dormant
origins’ to be activated, as previously suggested by Ge et al.23

In summary, we report MCM5 as a novel gene associated with
MGORS. Although different pathogenetic mechanism for MGORS
were proposed, the more likely appears to be an impairment of DNA
replication initiation, since all the genes thus far associated with this
disease are involved in this pathway.
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