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A clinically driven variant prioritization framework
outperforms purely computational approaches for the
diagnostic analysis of singleton WES data

Zornitza Stark1, Harriet Dashnow1, Sebastian Lunke1, Tiong Y Tan1,2, Alison Yeung1, Simon Sadedin1,
Natalie Thorne3, Ivan Macciocca1,3, Clara Gaff1,2,3, Melbourne Genomics Health Alliance, Alicia Oshlack1,
Susan M White1,2 and Paul A James*,2,4

Rapid identification of clinically significant variants is key to the successful application of next generation sequencing

technologies in clinical practice. The Melbourne Genomics Health Alliance (MGHA) variant prioritization framework employs a

gene prioritization index based on clinician-generated a priori gene lists, and a variant prioritization index (VPI) based on rarity,

conservation and protein effect. We used data from 80 patients who underwent singleton whole exome sequencing (WES) to test

the ability of the framework to rank causative variants highly, and compared it against the performance of other gene and variant

prioritization tools. Causative variants were identified in 59 of the patients. Using the MGHA prioritization framework the average

rank of the causative variant was 2.24, with 76% ranked as the top priority variant, and 90% ranked within the top five. Using

clinician-generated gene lists resulted in ranking causative variants an average of 8.2 positions higher than prioritization based

on variant properties alone. This clinically driven prioritization approach significantly outperformed purely computational tools,

placing a greater proportion of causative variants top or in the top 5 (permutation P-value=0.001). Clinicians included 40 of

the 49 WES diagnoses in their a priori list of differential diagnoses (81%). The lists generated by PhenoTips and Phenomizer

contained 14 (29%) and 18 (37%) of these diagnoses respectively. These results highlight the benefits of clinically led variant

prioritization in increasing the efficiency of singleton WES data analysis and have important implications for developing models

for the funding and delivery of genomic services.
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INTRODUCTION

Whole exome sequencing (WES) is a powerful diagnostic tool in
clinical practice, but its utility is limited by the potentially over-
whelming scale of the genomic data generated. The efficient identi-
fication of clinically significant variants is a key component of the
successful implementation of genomic technologies in the clinical
setting. The ideal variant prioritization tool or strategy should be able
to rank highly the causative variant(s) within a patient data set. Some
existing tools such as the CADD1 and Condel2 deleteriousness scores
are genotype-driven, providing clinical hypothesis-free variant ranking.
Other computational tools such as Exomiser,3 eXtasy,4 Phevor5 and
PhenGen6 combine phenotype and variant information. A comparison
of the performance of these tools using simulated data reported that
computational phenotype analysis substantially improves the perfor-
mance of exome analysis pipelines, with Exomiser outperforming the
other tools evaluated.7 Another commonly used strategy is the use of
trio WES, which allows the phasing of variants, and rapid identifica-
tion of de novo variants. This strategy has been reported to increase
diagnostic yield by approximately 10%8,9 but has the disadvantage of
increasing the cost of sequencing compared to singleton WES. In
addition, parental samples may not always be available, and trio
sequencing may be less effective in consanguineous families.

We have previously described the development and implementation
of a filtering and prioritization system designed to highlight the results
most likely to be relevant in the clinical setting.10 This system has two
components: one is a gene prioritization index (GPI) based on
clinician-generated a priori candidate gene list, and the other a variant
prioritization index (VPI) combining information on rarity, conserva-
tion and protein effect. Here we present an evaluation of this clinically
driven variant prioritization framework, and compare it with pub-
lically available computational tools for ranking of variants from WES
data which utilize phenotypic and variant data (Exomiser) or variant
data alone (CADD and Condel). We also evaluate two computational
tools, PhenoTips11 (http://phenotips.org) and Phenomizer12 (http://
compbio.charite.de/phenomizer/) that use phenotypic information to
generate lists of differential diagnoses and candidate genes and
compare their performance to that of clinicians.

SUBJECTS AND METHODS

Data set
We used a data set derived from 80 infants who presented with multiple
congenital abnormalities and dysmorphic features or other features strongly
suggestive of monogenic disorders who underwent singleton WES as a first-tier
investigation.13 Each patient’s key features were recorded using Human
Phenotype Ontology (HPO) terms at enrolment using PhenoTips, and a
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phenotype-driven list of candidate genes was generated by their clinician based
on the clinical differential diagnosis, and supplemented by literature and
database searches. A clinical summary of each case was presented by
the referring clinician at a dedicated weekly multidisciplinary meeting. The
clinicians involved were seven clinical geneticists, two metabolic physicians and
two paediatric neurologists. The multidisciplinary meeting determined patient
suitability against the study inclusion criteria, and also refined candidate gene
lists as necessary. Singleton WES was performed as previously described.13

The Melbourne Genomics Health Alliance variant prioritization
framework
The Melbourne Genomics Health Alliance variant prioritization framework,
implemented in the bioinformatics pipeline, Cpipe10 (http://cpipeline.org), has
two components. The first is a GPI whereby variants in genes from the
clinician-generated candidate gene list were automatically given first-tier
priority, while variants in other Online Mendelian Inheritance in Man
disease-associated genes (the ‘Mendeliome’) were given second-tier priority.
The second component is a VPI that combines factors such as rarity,
conservation and predicted effect on the protein structure to rank each variant
individually within the data set as well as to place groups of variants in
‘Mendeliome’ genes into four tiers (Figure 1). Cpipe uses ANNOVAR (Version
23 August 2013)14 to identify the functional consequence of variants. Condel
scores were generated for each variant using VEP 74, and the 24-1-2013 Condel
plugin (incorporating SIFT and PolyPhen-2 scores as predictors). CADD scores
were generated for each variant using Annovar version 2013aug23. CADD
scores of complex variants were calculated separately using the online
application: http://cadd.gs.washington.edu/score.
Variants that did not meet the criteria for even the first VPI tier, and those in

genes not currently associated with human disease were not considered for
curation. Variants that reached these minimum requirements for prioritization
were imported into a customized Leiden Open Variation Database15 and sorted
by GPI then by VPI (both in descending order) to produce the combined
ranking. If no causative variant was identified, the variants in the ‘Mendeliome’
were re-ranked by VPI alone. Variants in the V4 and V3 categories (truncating/
splice-site or very rare missense) were reviewed by a clinician to determine
whether the affected gene was consistent with the patient phenotype. Variants
could also be sorted by any individual attribute, such as GPI, VPI, Condel score
or CADD score.
Each patient’s data were analysed individually when available, over a period

of 24 months (February 2014 to February 2016). The analysis and annotation
pipeline, and the gene content of the ‘Mendeliome’ were updated throughout
this time, with data from ‘unsolved’ patients reanalysed on a 6-monthly basis.
Determination of causality and variant classification in all cases was made by

consensus at a multidisciplinary team meeting, comprising clinical and
laboratory geneticists, bioinformaticians, genetic counsellors and other medical
specialists. Criteria for variant classification were based on the principles

outlined in the American College of Medical Genetics and Genomics standards

for interpretation of sequence variants.16 A diagnosis of 49 genetic conditions

was made in 47 out of 80 infants (59%), including one further case since the

original publication.13 A total of 59 variants were designated as causative: 33

were truncating, two were splice-site mutations, two were in-frame deletions or

duplications, one was a stop loss, and 21 were missense. All novel variants

determined to be causative have been deposited in ClinVar.

Comparison with other tools
The WES data from the 80 infants were used to evaluate the performance of the

clinically driven variant prioritization framework and to compare it to other

publically available computational resources. The full data set was reanalysed to

determine the ranking provided by the GPI and VPI tools used independently,

and the ranking provided by CADD and Condel scores. The recorded HPO

terms and the VCF files were entered in Exomiser between April 2016 and June

2017. The default settings were used, applying a 1% minor allele frequency

cutoff and no inheritance model. The human–disease association data analysis

model (PhenIX) was used. For the 47 patients with a WES diagnosis, the

presence or absence of the causative variant, and its ranking was recorded. The

variant rankings produced by Exomiser and CADD scores for all patients

including the 33 patients without a WES diagnosis were reviewed by a clinical

geneticist for new diagnoses.
We determined the average ranking, and the proportion of causative variants

that were ranked top, and within the top 5 variants, by each tool. For 10 of the

47 infants, multiple causative variants were identified due to either the

condition being autosomal recessive, or due to the presence of multiple

unrelated diagnoses. In order to compare the ranks of all variants across all

patients, the ranks of these second and subsequent causal variants were adjusted

such that for each ranking method, the adjusted rank was equal to the original

rank minus the number of causal variants ranked higher. For example, if the

prioritization tool ranked the two causative variants for an autosomal recessive

condition as number one and two, they were taken as having both been ranked

one. Exomiser ranks multiple variants in the same gene together, and

these were treated as a single ranking regardless of the number of variants

per gene.
In addition, we evaluated the number of WES diagnoses that were included

in a priori lists of differential diagnoses based on patient phenotype by clinicians

and by patient phenotyping software. The presence or absence of the WES

diagnosis in the list of differentials produced by PhenoTips was audited at the

end of the study. The HPO terms recorded by clinicians at enrolment were

entered into Phenomizer in February 2016. The presence or absence of the

WES diagnosis in the top 100 differentials provided, and its ranking was

recorded.

Figure 1 Variant Priority Index ranks variants based on characteristics such as population frequency, conservation scores and predicted effect on the protein
(1000G: 1000 Genomes, ESP: Exome Sequencing Project).
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Ethics approval
The study was part of the Melbourne Genomics Health Alliance demonstration

project (www.melbournegenomics.org.au), and received Human Research

Ethics Committee approval (13/MH/326).

RESULTS

The HPO terms and causative variant rankings for each patient are
listed in Supplementary Table 1. Clinicians described patient pheno-
types using an average of four positive HPO terms (range 1–12). The
median length of clinician-generated gene list was 23 (range 1–161).
An average of 107 variants were available for curation in each patient
(range 70–168). Of these, an average of 1.4 variants were in genes from
the clinician-generated candidate gene list (range 0–8). Thirty-nine out
of 49 (79%) of molecular diagnoses made were from the clinician-
generated candidate gene lists, and the average rank of the causative
variant was 1.09. Of the 14 variants that did not receive a GPI rank
because they were outside the gene list, the average rank produced by
the VPI was 5.79. Overall, the average rank of causative variants
produced by the combined use of GPI and VPI was 2.24 (range 1–14),
with 45 (76%) variants ranked first, and 53 (90%) ranked within the
top 5 variants in the patient data set, which was significantly better
than the other comparison methods (permutation P-value= 0.001)
(Table 1, Figure 2). Exomiser and CADD score-based analysis of the
data from the unsolved cases (N= 33) did not identify any additional
diagnoses.
Clinicians included 40 out of the 49 WES diagnoses in their list of

differential diagnoses (82%). The lists generated by PhenoTips and
Phenomizer contained 14 (28%) and 18 (37%) of these diagnoses
respectively.

DISCUSSION

A key challenge in singleton WES analysis is selection of variants for
curation. In most laboratories, this task would be completed by a
laboratory scientist. If characteristics of the variant alone guide variant
selection, a large number of variants would require curation, increas-
ing the time required for WES data analysis. Even if the scientist
utilizes the clinical information provided at the time of test request,
this is often brief and may not provide sufficient detail to assist with
variant selection. This study demonstrates the continuing value of
clinician-generated candidate gene lists in increasing the efficiency of
singleton WES data analysis. Using clinical information resulted in
ranking causative variants an average of 8.2 positions higher than
prioritization based on variant properties alone, reducing the curation
burden for laboratory scientists. This clinically driven prioritization
framework significantly outperformed purely computational tools,
placing a greater proportion of causative variants top or in the top 5
(permutation P-value= 0.001).

Exomiser performed the best of the computational tools, slightly
outperforming CADD and Condel scores in placing a higher propor-
tion of causative variants top (37% as top hit vs 27% as ranked by
CADD score, and 9% as ranked by Condel score (missense variants
only)), highlighting the value of incorporating phenotype matching in
variant prioritization. The performance of Exomiser in our hands is
below that previously published17 where artificially seeded causative
variants were ranked top for 96–97% of 10 000 simulated exomes, and
54% of 11 causative variants were ranked as top using data from 9
previously diagnosed patients from the National Institutes of Health
(NIH) Undiagnosed Diseases Program (UDP) when family member
data were used and 45% as top hit when family data were not used.
These differences in performance may in part be due to the nature of
our infant cohort, which included a large number of early and
relatively undifferentiated clinical presentations. This is in contrast to
the 9 families from the NIH Undiagnosed Diseases Program, which
are presumably at the end of the diagnostic trajectory. Conversely,
although our strategy is effective in patients in whom a differential
diagnosis list can be generated by clinicians, almost by definition it is
not applicable in the setting of an undiagnosed diseases programme by
virtue of patients only being included when clinician input has been
exhausted.
Despite the strong performance of the gene list approach, restricting

WES data analysis to candidate gene lists would result in a significant
proportion of diagnoses being missed. In this cohort, 20% of WES
diagnoses were due to variants in genes outside of the clinician-
generated candidate gene lists. Four such cases involved genes that
were only associated with disease in the medical literature after the
original gene list was compiled, and the other five cases involved
atypical, complex and very rare diagnoses that were not considered in
the clinical differential diagnosis but in retrospect reconciled the
patient’s features.
The generation of candidate gene lists for each patient undergoing

WES by clinicians is a labour-intensive task, and adds considerable
time per patient to the typical clinical workload. This has decreased
over time, as we have developed standard gene lists for common
presentations such as microcephaly and with the emergence of gene
list tools such as the Genomics England gene panel app (https://
bioinfo.extge.co.uk/crowdsourcing/PanelApp/). However, in our
experience, a small proportion of patients (predominantly those with
dysmorphic syndromes or complex phenotypes) still benefit from
customized lists. Multidisciplinary peer review of cases at dedicated
meetings is utilized at a number of centres to facilitate appropriate
patient selection for genomic testing.18 We have utilized this type of
structure for candidate gene list refinement as well as patient selection.
While this was initially an additional time- and labour-intensive
activity, our experience is that it can be successfully incorporated into

Table 1 Comparison of causative variant ranking by combined GPI/VPI, Exomiser, CADD score and Condel score, N=59 variants

Causative variants not

ranked Mean rank of causative variant (range)

Number of causative variants

ranked no. 1

Number of causative variants ranked

in top 5

Combined GPI/VPI

rank

0 2.24 (1–14) 45 (76.3%) 53 (89.8%)

Exomiser (PhenIX) 0 14.80 (1–186) 22 (37.3%) 42 (71.2%)

CADD score 0 9.78 (1–47) mean CADD=6.6 16 (27.1%) 37 (62.7%)

Condel score 38 (64.4%) 13.00 (1–71) mean Condel=0.96 2 (9%a) 7 (31.8%a)

Abbreviations: GPI, gene prioritization index; VPI, variant prioritization index.
aOf 22 missense variants that received a Condel score.
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pre-existing clinical activities that historically served a similar purpose
(dysmorphology case review meeting).
Given the increase in clinical workload mandated by this approach,

the potential to introduce clinician bias into data analysis, and
concerns regarding sustainability, scalability and inter-clinician varia-
bility, we were keen to evaluate whether computational tools can
replace and/or outperform clinicians in generating lists of differential
diagnoses and/or candidate genes. Candidate gene lists based on
patient phenotype have been reported as having been used in other
studies. These have been generated by laboratories using phenotypic
information supplied on requisition forms by searching databases such
as the Human Gene Mutation Database and Online Mendelian
Inheritance in Man;8 or in the case of the study by Willig et al, by
using Phenomizer,12,19 resulting in candidate gene lists of over 200
genes. The candidate gene lists for the patients included in this study
varied in length from 1 to 161 genes, but most were relatively short
(median of 23), reflecting firstly the presence of multiple physical and
other abnormalities in this patient group, which assist in narrowing
the differential diagnosis; and secondly, critical appraisal by experi-
enced clinicians familiar with the patient. Furthermore, we found that
while clinicians included 40 out of the 49 WES diagnoses in their a
priori list of differential diagnoses (82%), software tools such as
PhenoTips and Phenomizer generated lists that contained 14 (28%)
and 18 (37%) of these diagnoses respectively. It is likely this difference
in performance is due to factors such as clinician experience, skills
such as ‘gestalt’ recognition, and the ability of clinicians to take into
account additional factors such as age at presentation, family history
and relevant negative findings in deriving differential diagnoses.
Genomic testing places new demands on traditional models for the

funding and delivery of laboratory and clinical genetics services.
Patient care and laboratory workflows are likely to benefit from the
delivery of genomic services by integrated clinical-laboratory centres.
To effectively engage in this partnership, clinical geneticists need to
develop a deep understanding of genomic data interpretation, and
shift their skill set towards interpreting phenotype data in the genomic
context. While some of the additional time commitment required may
be offset by a reduction in the number of patients undergoing lengthy
diagnostic odysseys, genomic testing is also likely to increase the
overall number of patients referred to genetic services. The investment
required to develop and expand the genomic clinical workforce is also
likely to be substantial. It will be important to account for these

increased time and workforce demands in funding models, which
typically focus on test reimbursement to laboratories.
Although this study represents a comprehensive evaluation of

purely computational and combined clinical-computational variant
prioritization approaches using real patient data, it is still limited by its
small size and does not include evaluation of any proprietary variant
prioritization tools. The performance of the clinically-driven frame-
work described is clinician-dependent which may affect reproduci-
bility, and the utility of the gene list approach is likely to be limited
with non-specific patient phenotypes such as non-syndromic intellec-
tual disability. We have also not compared the performance of
alternative variant ranking tools in combination with clinician-
driven gene lists. It is possible that further improvements in overall
ranking could be achieved by replacing the VPI with specialized
ranking tools such as Exomiser. Incorporating variant frequency data
from large data sets such as from the Exome Aggregation Consortium
(ExAC)20 can be expected to improve the ability of computational
tools such as the VPI to highlight potential de novo variants from
singleton WES data particularly for rare paediatric disease diagnosis.
We anticipate that ongoing work in this area will see further
improvements in variant ranking algorithms and robust clinical
evaluation of these methods will also be an important ongoing
research activity.
The recently published recommendations regarding the integration

of genomics into clinical practice highlight the importance of
structured phenotyping and phenotype-driven gene lists in facilitating
data interpretation.21 The optimum timing and mode of incorporating
phenotype information and clinical expertise into genomic data
analysis remains to be determined. Reassessment of WES data by a
clinical geneticist familiar with the patient led to a change in diagnosis
in 21 of 155 (14%) patients seen in an Exome Clinic, with an overall
increase in diagnostic yield of 7%.22 Our study provides quantitative
evidence for the benefits of utilizing the clinician’s direct and detailed
knowledge of the patient in integrating phenotype information at the
start of the laboratory genomic analysis process. While computational
tools are important adjuncts in WES data analysis, and their
performance will continue to improve, close clinical-laboratory inter-
action remains a key element in the selection of variants for curation
and the successful implementation of clinical genomics.
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Figure 2 Comparison of the performance of four variant prioritization tools using data from 47 patients diagnosed through singleton WES.
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