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Population-specific genetic variation in large
sequencing data sets: why more data is still better
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We have generated a next-generation whole-exome sequencing data set of 2628 participants of the population-based Rotterdam

Study cohort, comprising 669 737 single-nucleotide variants and 24 019 short insertions and deletions. Because of broad and

deep longitudinal phenotyping of the Rotterdam Study, this data set permits extensive interpretation of genetic variants on a

range of clinically relevant outcomes, and is accessible as a control data set. We show that next-generation sequencing data sets

yield a large degree of population-specific variants, which are not captured by other available large sequencing efforts, being

ExAC, ESP, 1000G, UK10K, GoNL and DECODE.
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INTRODUCTION

In the era of next-generation sequencing (NGS), the use of large
population data sets to approximate variant frequencies in control
populations has become common practice. The first large population-
scale sequencing data set was generated by the 1000 Genomes Project,1

where an integrated genome-wide map of genetic variation was
established for 2504 individuals of European, American, African and
Asian descent. Another approach was made by the NHLBI ‘Grand
Opportunity’ Exome Sequencing Project, in which a set of 6500
European and African Americans samples was exome sequenced.2 The
recent Exome Aggregation Consortium (ExAC) is now combining
exome sequencing data sets from over 60 000 unrelated individuals
from different origins.3 From these large sequencing projects, it
became apparent that many variants are population-specific.3 There-
fore, several initiatives have generated more local data sets. The
UK10K project4 contains 4000 genomes from the UK, along with 6000
exomes from individuals with selected extreme phenotypes. A collec-
tion of 3000 Finnish exomes, showed that the Finnish population had
more loss-of-function variants and gene knock-outs than non-Finish
Europeans.5 GoNL,6 the Dutch reference genome project, provided a
local genetic map based on whole-genome sequencing of 250 Dutch
trios.7 Another local data set is based on full genomes from 2636
Icelanders.8 Due to Iceland being an isolated population, deleterious
variants could reach higher frequencies than in other populations.
These initiatives emphasize the importance of local genetic maps to
interpret clinical relevance of a potential disease-causing mutation, and
indicate the differences in available population data sets that should be
considered when these are used in research or clinical practice.
Within the Rotterdam Study cohort, a prospective population-based

cohort study on individuals 45 years and older to investigate
determinants of disease and disability in the Dutch population,9 we
have generated a set of 2628 exomes for integrative genetic studies of

diverse phenotypes and to serve as a local reference panel for clinical
sequencing efforts.

MATERIALS AND METHODS
DNA samples were obtained from the Rotterdam Study, which is a prospective

population-based cohort study established in 1990 studying the determinants of

disease and disability in Dutch elderly individuals.9 Out of 5984 eligible

participants from the RS-I cohort − based on the availability of height, weight,

GWAS data and informed consent − 3284 subjects were randomly selected, as

shown in Figure 1. Baseline characteristics are provided in Supplementary

Table 1.
Genomic DNA was prepared from whole blood and processed using the

Illumina TruSeq DNA Library preparation (Illumina, Inc., San Diego, CA,

USA), followed by exome capture using the Nimblegen SeqCap EZ V2 kit

(Roche Nimblegen, Inc., Madison, WI, USA). Paired-end 2×100 bp sequen-

cing was performed at six samples per lane on Illumina HiSeq2000 sequencer

using Illumina TruSeq V3 chemistry.
Reads were demultiplexed and aligned to the human reference genome hg19

(UCSC, Genome Reference Consortium GRCh37) using the Burrows-Wheeler

alignment tool (BWA version 0.7.3a10). After indel realignment and base quality

score recalibration using the Genome Analysis ToolKit (GATK version 2.7.411)

and masking of duplicates (Picard Tools version 1.9012), gvcf files were

generated using HaplotypeCaller v3.1.1 (GATK) and genotyped using Geno-

typeGVCFs v3.1.1 (GATK).11 Raw genotype data was QC-ed and filtered as

described in the Supplementary Information. All coding variants used in

analysis are available on the European Variation Archive (http://www.ebi.ac.uk/

eva/) under accession number PRJEB20726.
All detected variants were annotated based on RefSeq annotation (NCBI

Reference Sequence Database) using ANNOVAR (version 2014-07-1413).

The presence and allele frequencies of these variants in various databases:

1000G (v3),1 ESP (v2),2 ExAC (v0.3),3 UK10K (v1407),4 DECODE (v1501)8

and the Genome of the Netherlands (v4)6 were obtained and compared to our

data set.
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RESULTS

Two thousand six hundred and twenty eight samples passed technical
and genetic quality control and were included in the data set
(Figure 1), with an average mean depth of coverage of 55x (range
20x to 185x, median coverage of 53x). A total of 669 737 single-
nucleotide variants (SNVs) and 24 019 short insertions or deletions
(indels) were detected, this data set was denoted Rotterdam Study
Exome Sequencing set 2 (RSX2). Of all 669 737 SNVs detected in our
RSX2 data set, 439 633 (66%) were exonic. Of these, 120 677 (27.4%)
were not detected in any other public database (ExAC2.0, ESP6500,
1000G, UK10K, DECODE and GoNL), as shown in Figure 2. Most of
these variants (120 179; 99.6%) were found at a minor allele frequency
(MAF) below 1% in our data set, 65 324 were singletons (54%) and
19 870 were doubletons (17%). The largest overlap with a single data
set was with ExAC2.0 (71% of 439 633 SNVs), followed in descending
order by ESP6500 (46%), 1000G (36%), UK10K (34%), GoNL (26%)
and DECODE (22%).

DISCUSSION

From 439 633 detected coding variants, 120 179 were absent from all
six other population databases. A portion of this absence can be
attributed to various biological (ie, ethnical backgrounds, isolated
populations or case-series) and technical (whole-genome sequencing,

exome capturing or filtering strategies and sequencing depth) differ-
ences, the remainder is most likely due to population-specific variance.
The smallest overlap with DECODE is partly due to the lower

sequencing depth and stronger filtering strategy in that data set,
resulting in fewer variants in general. In addition, the genetically
isolated status of the Icelandic population warrants fewer genetic
variability and smaller overlap with RSX2.8 Despite originating from a
similar population, the small overlap with the GoNL database is likely
due to its small sample size, reducing power to detect rare variants.6 A
larger overlap with UK10K was observed as a result of its large sample
size and related population. The differences with the UK10K data set
are largely due to population-specific differences and, the selection of
individuals with extreme phenotype in UK10K.4 The 1000G data set
holds many more variants than RSX2, probably caused by whole-
genome sequencing coverage on coding regions inaccessible by whole-
exome sequencing, and by the presence of non-Caucasian individuals.1

Similarly, difference in populations and sample size leads to the
ESP6500 data set to be larger than RSX2, although the selection for
various case-populations might also be of influence.2 Finally, the
greatest data set of ExAC2.0 contains most variants, as a result of
much larger sample size and the inclusion of many different
populations.3

Each data set present in this comparison contained variants not
present in any of the other data sets. These results suggest that, for
example, when filtering or interpreting genetic variants in a WES
analysis of a Mendelian disease pedigree, both smaller population-
specific data sets (such as, RSX2, GoNL, UK10K and/or DECODE) as
well as large aggregation data sets (such as, ExAC) contribute
information and should be used jointly to filter. Additionally, each
database contributes variants not seen elsewhere, suggesting that as
many databases as eligible should be considered in these types of
analyses. When WES data sets are to be used as controls (eg, in a case
control comparison) note should be taken that some data sets such as
UK10K, ESP and ExAC2.0, contain large collections of case-series2–4

and will not provide a good representation of DNA sequence variants
of any allele frequency spectrum in the normal population. Given their
design and collection strategy, population-based data sets such as
RSX2, DECODE and GoNL, might be better suited for this purpose,
depending on the diseases and traits studies and their estimated
prevalence in these databases.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

1 Genomes Project C, Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM et al: A
map of human genome variation from population-scale sequencing. Nature 2010; 467:
1061–1073.

2 Tennessen JA, Bigham AW, O'Connor TD, Fu W, Kenny EE, Gravel S et al: Evolution and
functional impact of rare coding variation from deep sequencing of human exomes.
Science 2012; 337: 64–69.

3 Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T et al: Analysis of
protein-coding genetic variation in 60,706 humans. Nature 2016; 536: 285–291.

4 UK10K WTSI, Hinxton, UK. Available at: http://www.uk10k.org [june-2015].
5 Lim ET, Wurtz P, Havulinna AS, Palta P, Tukiainen T, Rehnstrom K et al: Distribution

and medical impact of loss-of-function variants in the Finnish founder population. PLoS
Genet 2014; 10: e1004494.

6 Boomsma DI, Wijmenga C, Slagboom EP, Swertz MA, Karssen LC, Abdellaoui A et al:
The Genome of the Netherlands: design, and project goals. Eur J Hum Genet 2014; 22:
221–227.

7 Genome of the Netherlands C: Whole-genome sequence variation, population
structure and demographic history of the Dutch population. Nat Genet 2014; 46:
818–825.

Figure 1 Overview of sample selection and quality control. Out of 5984
eligible samples, a final random set of 2628 exomes was generated. QC,
quality control; SNP, single-nucleotide polymorphism; het/hom ratio, ratio
between heterozygous and homozygous positions; Ti/Tv ratio, ratio between
transitions and transversions.

Rotterdam Study whole-exome sequencing
JGJ van Rooij et al

1174

European Journal of Human Genetics

http://www.uk10k.org


8 Gudbjartsson DF, Helgason H, Gudjonsson SA, Zink F, Oddson A, Gylfason A et al:
Large-scale whole-genome sequencing of the Icelandic population. Nat Genet 2015;
47: 435–444.

9 Hofman A, Brusselle GG, Darwish Murad S, van Duijn CM, Franco OH, Goedegebure A
et al: The Rotterdam Study: 2016 objectives and design update. Eur J Epidemiol 2015;
30: 661–708.

10 Li H, Durbin R: Fast and accurate long-read alignment with Burrows-Wheeler transform.
Bioinformatics 2010; 26: 589–595.

11 McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al:
The Genome Analysis Toolkit: a MapReduce framework for analyzing
next-generation DNA sequencing data. Genome Res 2010; 20:
1297–1303.

12 http://broadinstitute.github.io/picard/.
13 Wang K, Li M, Hakonarson H: ANNOVAR: functional annotation of genetic

variants from high-throughput sequencing data. Nucleic Acids Res 2010; 38:
e164.

Supplementary Information accompanies this paper on European Journal of Human Genetics website (http://www.nature.com/ejhg)

Figure 2 Overlap of RSX2 with other publically available data sets. Overlap was based on only RefSeq coding SNVs which were detected in at least 1
individual in RSX2 (439 633 SNVs total). The numbers in the Venn diagrams display the number of overlapping SNVs in thousands, the numbers between
parenthesis are those SNVs with MAF below 1% (386 341 total). A total of 318 586 SNVs were present in any of the 6 databases (72%). Each individual
database yielded a smaller overlap, ranging from 311 017 (Exac, 71%) to 113 627 (GoNL, 26%). Almost all SNVs unique to RSX2 have a MAFo1% in the
RSX2 data set (120 547; 99.6%).
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