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Genomics and metabolomics of muscular mass in a
community-based sample of UK females

Michael Korostishevsky1, Claire J Steves2, Ida Malkin1, Timothy Spector2, Frances MK Williams2 and
Gregory Livshits*,1,2

The contribution of specific molecular-genetic factors to muscle mass variation and sarcopenia remains largely unknown.

To identify endogenous molecules and specific genetic factors associated with appendicular lean mass (APLM) in the general

population, cross-sectional data from the TwinsUK Adult Twin Registry were used. Non-targeted mass spec-based metabolomic

profiling was performed on plasma of 3953 females (mostly dizygotic and monozygotic twins). APLM was measured using dual-

energy X-ray absorptiometry (DXA) and genotyping was genome-wide (GWAS). Specific metabolites were used as intermediate

phenotypes in the identification of single-nucleotide polymorphisms associated with APLM using GWAS. In all, 162 metabolites

were found significantly correlated with APLM, and explained 17.4% of its variation. However, the top three of them

(unidentified substance X12063, urate, and mannose) explained 11.1% (P≤9.25×10−26) so each was subjected to GWAS.

Each metabolite showed highly significant (P≤9.28×10−46) associations with genetic variants in the corresponding genomic

regions. Mendelian randomization using these SNPs found no evidence for a direct causal effect of these metabolites on APLM.

However, using a new software platform for bivariate analysis we showed that shared genetic factors contribute significantly

(P≤4.31×10−43) to variance in both the metabolites and APLM – independent of the effect of the associated SNPs. There are

several metabolites, having a clear pattern of genetic inheritance, which are highly significantly associated with APLM and may

provide a cheap and readily accessible biomarker of muscle mass. However, the mechanism by which the genetic factor

influences muscle mass remains to be discovered.
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INTRODUCTION

Lean body mass (LBM) is one of the three major components of body
composition, which also includes body fat and bone mass. All three
components are essential for normal physiology and metabolism, and
deviations from normal values may be associated with pathological
conditions. One of them is sarcopenia, defined as age-related reduc-
tion in muscle mass and muscle strength is a particularly important
clinical problem.1,2 In the elderly, loss of LBM may be as much as 30%
for women above 60 years old3 and it is often correlated with physical
impairment and disability – with potentially severe clinical conse-
quences including loss of mobility, osteoporosis, increased fracture
risk, dyslipidemia, insulin resistance, and increased mortality.4 LBM is
one of the major predictors of bone mineral density and is likely to be
at least as important as fat body mass (FBM) in protection against
post-menopausal bone loss.5,6

Despite the undoubted clinical significance of LBM and the
established strong familial component7,8 there is a paucity of
molecular genetic studies of this trait. This is in a stark contrast to
the other two body composition components, the subject of many
publications concerning candidate genes, whole genome and genome-
wide association studies published during the last two decades.
Currently, we are aware of only a few genome-wide linkage5 and
association analyses.9,10 Several potential candidate genes, including
the FTO gene11 were reported to be associated with LBM, with small
proportion of variance (1–3%) attributable to their effect.

Thus, the potential molecular genetic mechanisms regulating LBM
remain almost unknown. The major aim of this study was therefore to
investigate genetic factors affecting LBM. One way to approach this
problem is through metabolomics. The recent published studies
clearly suggest this may serve as a powerful proxy to discover
tractable genetic polymorphisms involved in a variety of complex
phenotypes.12,13 If a small number of metabolites could be found to be
associated with the primary phenotype (as indeed was observed in the
present paper), then they could be used as a guide to a discovery of the
functionally interpretable genetic polymorphisms associated with the
primary phenotype.
Hence, in the present study we implemented a combination of

‘omics‘, including metabolomics and genomics in relation to appen-
dicular lean mass (APLM). APLM was selected because it consists
virtually entirely of skeletal muscular tissue, as compared with total
lean mass, the measurement of which could be biased by other
components of non-fat soft tissue, such as brain, lungs, liver, and
other viscera. Because of this important advantage, APLM is currently
widely used in assessment of a sarcopenic status of an individual14 as
well as in variety of the genetic studies, for example.15,16

We used a large sample of middle-aged UK female twins, who were
assessed using whole body DXA, metabolomic (MTB) screening and
genome-wide association scans imputed to 2.5 million variants.
In addition, since we were interested in accurate estimation of
common and variable-specific genetic and environmental effects on
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LBM and its associated metabolites, we also implemented a newly
developed modification of bivariate analysis, reported here for the
first time.

MATERIALS AND METHODS

Study sample
The data examined in the present study were from the TwinsUK Adult Twin
Registry, described in detail elsewhere.17 The sample had been collected from
the general population through national media campaigns in the Uniited
Kingdom and without ascertainment for any of the individual characteristics,
diseases, or traits. In the present study, 3953 individuals (101 singletons, 1156
dizygotic, and 770 monozygotic twin pairs) were included having all measure-
ments of interest. All studied individuals were female with age range between 18
and 80 years, and average 46.9± 12.3 years. The mean BMI was 25.8±4.6 kg/m2,
and LBM ranged between 23.8 and 68.8 kg, with mean LBM= 39.2± 5.4 kg.
All participants gave written informed consent before entering the study and the
St Thomas’ Hospital research ethics committee had approved the project.

Phenotype
All three major body composition components, ie, bone mineral density
(BMD), FBM and LBM were measured by using standard whole body DXA
method,7 following the manufacturer’s recommendations (QDR 4500W
system, Hologic Inc., Bedford, MA, USA) and performed by trained technicians
using a standardized protocol of measurement, as described in our previous
publications.18 Briefly, at installation, the manufacturer's engineer calibrated the
instrument, and then daily quality control scans were performed using the
spine phantom. Intra-scanner reproducibility, expressed as a coefficient of
variation from duplicate measurements in healthy volunteers 1 week apart, was
0.8% at the lumbar spine. Twins of each pair were scanned on the same day.
For the purposes of this study, we defined APLM as the sum of LBM
measurements obtained at the four limbs. Since APLM is highly correlated
(r= 0.486, P«0.001) with body height (H), we used the relative APLM measure,
RALM=APLM/H2, similar BMI as in previous studies.1

Metabolomics
Venous blood was taken in the seated/semi-recumbent position after 48 h
fasting, between 0900 and 1400 h. Samples were taken from the co-twin pair
within 10min of each other. Non-targeted metabolomic profiling was
performed on fasting plasma samples of TwinsUK participants by Metabolon
Inc. using ultrahigh performance liquid chromatography and mass spectro-
metry (for detailed information on processing/QC, see Supplementary
Material).19,20 Raw data were median-normalized by dividing each MTB
concentration by the day MTB median, then inverse normalized as MTB
concentrations were not normally distributed. To avoid spurious false-positive
associations due to small sample size, metabolic traits having 420% missing
values were excluded.

Genomics
Twins UK subjects had been genotyped using a combination of Illumina arrays
(Human Hap300 and the Human Hap610Q) as previously and repeatedly
reported, for example.21 SNPs were excluded if call rate o97% (SNPs with
minor allele frequency, MAF≥ 5%) or o99% (for 1%≤MAFo5%), Hardy–
Weinberg P-values o10− 6 and MAFo1%. Subjects were removed if genotyp-
ing failed in 42% SNP. The overall genotyping efficiency was 98.7%.

Design of the study and statistical analysis
The analysis of the data included the following stages and corresponding
methods. First, we confirmed familial aggregation of the RALM in the study
sample, computing zygosity-specific correlation between the twins. Next, we
conducted linear regression analysis of all available MTBs, measured in at least
2500 individuals with RALM, using STATISTICA 7.1 software (www.statsoft.
com). At this stage, we identified MTBs significantly correlated with RALM
after correcting for multiple testing by FDRo0.05.22 Of these, using multiple
regression analysis we selected MTBs that showed the highest and independent
correlation with RALM. Highly associated MTBs were then subjected to GWAS

conducted using the GenABEL software.23 This carries out association analysis,
taking into account familial relationships. The most highly associated SNPs for
each MTB were identified, and used in a Mendelian randomization procedure
to test whether the selected metabolite(s) was causally associated with RALM.
The underlying idea of this method is that, where a genetic variant can be

identified that alters the level of the intermediate phenotype (metabolite), it can
be used to test whether a relationship between the metabolite and the outcome
variable (RALM) is likely to be causal. As the genotype has been randomly
assigned at conception (hence ‘Mendelian randomization’) it can be used as a
proxy for the intermediate variable (instrumental variable) to assess the effect of
the exposure on the outcome, not the effect of a gene on an outcome.24,25 To
test the hypothesis of causal effect of the given metabolite, we conducted genetic
variance component analysis26 of RALM, and each of the selected MTBs
separately, as implemented in the statistical package MAN,27 which takes into
account familial structure of the sample. Each analysis was conducted with
simultaneous testing of the linear regression effect of the SNP, most
significantly associated with the corresponding MTB variation. The causal
effect of the MTB on RALM can be established by the ratio, ρ= βR/βM, where
β2R and β2M are the least squares estimates of the SNP effect on the RALM and
the MTB variations in the respective linear regression models.25 The test for the
nullity of the causal effect ρ was based on the following approximation:
ρ2/σρ

2= χ2df= 1, where σρ= (1/β2M)√(σ2Rβ
2
R+σ

2
M β2M).

To examine whether the metabolite/RALM correlation was caused by a
shared genetic or environmental effect, we used a newly developed bivariate
pedigree-based association analysis. This analysis simultaneously tests and
adjusts variation of both dependent variables for any given SNP. This method,
like variance component analysis, evaluates the contribution of the following
factors to variation of the two correlated variables: VSNP, VADs, VADc, VCFs, and
VCFc. Here, V represents the proportion of the phenotypic variance attributable
to linear additive effect of the SNP; the trait specific (s) and common (c)
additive genetic effect (AD); and common familial (twins’) environment (CF)
specific for the given trait (s) or shared by both phenotypes (c), respectively.
Unexplained residual variation is defined as VRS. The estimates are based on
discrete approximation of additive genetic and familial factors. The use of the
discrete model allows the direct computation of likelihood from the pedigree
data and does not require N-dimensional normal distribution of the likelihood
(LH) for evaluation of a pedigree of N individuals.28,29 The method is
applicable for genetic analysis of both quantitative and qualitative phenotypes,
and is fully described in the Supplementary Materials B.

Public data access
The data from this study can be accessed through the following website: http://
www.ncbi.nlm.nih.gov/clinvar/?term= SCV000212129.

RESULTS

Descriptive statistics of the study sample are provided in Table 1, and
include the distribution characteristics of RALM. The intra-class
correlations of MZ and DZ twins for RALM were significant:
0.795± 0.022 and 0.460± 0.026, respectively, suggestive of genetic
influence. We conducted a series of regression analyses of all available

Table 1 Basic descriptive statistics of the study sample

Variable Mean Minimum Maximum SD

Age (years) 46.91 17.70 80.00 12.30

Height (cm) 162.19 141.00 191.00 6.19

Weight (kg) 66.10 35.10 140.90 12.29

Fat body mass (kg) 23.10 5.24 67.51 8.65

Lean body mass (kg) 39.18 23.57 68.76 5.37

APLM (kg) 17.72 10.47 32.92 2.88

BMI (kg/m2) 25.14 13.92 52.71 4.55

RALM (kg/m2) 0.67 0.42 1.17 0.10

Abbreviations: APLM, appendicular lean mass; BMI, body mass index; RALM, relative
appendicular lean mass.
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MTB levels with RALM: 162 MTBs were significantly correlated with
RALM (Po0.05, by FDR), and explained 17.4% of its variation.
However, this set of MTBs was found to be largely redundant.
Implementing stepwise multiple regression analysis we found that one
MTB explains 6.7%, three – 11.1% and ten – 13.2% of the RALM
variation. The 10 MTBs most highly associated with lean mass are
listed in Table 2. Their correlations were also consistently observed
with other measurements of lean mass. These 10 MTBs were subjected
to GWAS, with simultaneous adjustment of each variable for age.

Three MTBs, unknown substance X12063, urate, and mannose
showed clear and strong association with specific genomic regions
(Figure 1). X12063 was associated with two genomic regions,
7q22.1:98736000-99335000 (the top SNPs were mapped to pseudo-
gene CYP3AP1 (Cytochrome P450, family 3, subfamily A)) and
12p12:20955000-21343000 (protein coding SLCO1B1& SLCO1A2
(Solute carrier organic anion transporter family) genes). As seen in
Figure 1, each genomic region association is marked by numerous
SNPs retaining statistical significance at FDRo0.005. Urate and
mannose were associated each with, 4p16.1:9529000-10026000 and
2p23:27372000-27967000, respectively. The genotyping results of the
most polymorphic SNP among the top 10 in each region were selected
for the next stage of the study and given in Table 3.
The three MTBs, X12063, urate, and mannose, collectively

explained 11.07% of the variation of lean mass variable RALM.
By likelihood ratio test (LRT) their combined effect in the multiple
regression model, adjusting for relatedness, was extremely highly
significant at P= 1.03E− 71. Therefore, the Mendelian randomization
approach was then used to test for evidence of any causal association
between metabolites and RALM using each corresponding SNP in
turn. The genotype-dependent variation of X12063 levels, in relation
to age is demonstrated in Figure 2, showing the combined effect of the
two independent SNPs for this MTB (Figure 1, Table 3).
The genotypes of each SNP were numbered from 0 to 2 according
to the dose of ‘+’ allele. In case of the X12063 levels, the individuals
were scored from 0 to 4 (a sum of the ‘+’ alleles by two SNPs) and

Table 2 Linear correlations between the ten top MTBs and lean mass

variables

Metabolite LBM RLBM RALM P-valuea

X12063 0.200 0.214 0.259 2.85E−42

Urate 0.177 0.223 0.235 6.31E−48

Glutamate 0.159 0.204 0.213 2.11E−27

Mannose 0.181 0.197 0.207 9.25E−26

Gamma-glutamylleucine 0.163 0.179 0.204 5.40E−34

Gamma-glutamylvaline 0.150 0.179 0.203 2.27E−30

Valine 0.158 0.174 0.190 1.78E−30

Isoleucine 0.165 0.164 0.184 1.67E−27

Leucine 0.158 0.153 0.177 4.37E−29

Kynurenine 0.161 0.158 0.176 1.55E−24

Abbreviations: LBM, total lean mass; RLBM (=LBM/H2), relative lean body mass.
aSignificance of the correlations between MTB and RALM.

Figure 1 GWAS results obtained for X12063 (a), urate (b), and mannose (c) variations.
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displayed clear dose-dependent discrimination between the regression
lines. The urate and mannose demonstrated similar dose dependence
on ‘+’ allele at rs737267:G4T and rs1260326:T4C, respectively
(Supplementary Material A: Supplementary Figures S1 and S2).

Results of the Mendelian randomization tests are detailed in
Supplementary material A: Supplementary Table S1. The test ratio
ρ= βR/βM did not deviate significantly from the nullity of the effect,
and we therefore rejected the working hypothesis of causal association
between RALM and selected MTBs. We looked for evidence that the
correlation observed between them (see Table 2) is caused by other
common genetic and/or environmental effects.
To test this hypothesis, we undertook the bivariate variance

pedigree-based component analysis of RALM and each of the three
MTBs separately. The best fitting and most parsimonious model
(column ‘MP-model’) confirms a highly significant association of
rs4646450:G4A with X12063 levels, but not with RALM (Table 4).
However, it shows that RALM variation is governed by additive
genetic factors which are both phenotype specific and shared with
X12063, explaining 39.6% and 34.5% of its variation respectively. The
effects were highly significant by LRT. The significance of the effect of
the common genetic factors shared by RALM and X12063 reached
P= 4.3E− 43; however, the phenotype-specific effect of the common
genetic factors on each of the variables variation was not equal in size:
0.348 (±0.063) vs 0.139 (±0.011). We found no detectable contribu-
tion of the environmental factors simultaneously affecting both
phenotypes. The residual correlation between RALM and X12063,
after adjustment for common genetic effects remained significant,
0.210 (±0.057) with P= 1.54E− 08. That is, about 12.5% of the
phenotypic correlation (Rph= 0.240) between these two traits is
attributable to their common genetic factors. Similar estimates of
the additive genetic and family effects were obtained when another
marker rs4363657:T4C was included in the analysis (not shown). The
SNP genotype explained about 4.1% (P= 1.44E− 26) of the X12063
variance, while its effect on RALM was not significant. The common
genetic (but not the environmental) factors were significant and their
estimates were virtually the same as above.
Results of bivariate analysis of RALM with urate and mannose and

their corresponding SNPs, rs737267:G4T and rs1260326:T4C, were
similar to the above (Supplementary material A: Supplementary Tables
S2 and S3). They confirm the significance of the association of the
SNPs with their respective MTBs, but not with RALM. The best fitting
models unequivocally suggest a significant common effect for the
additive genetic factors on MTB/RALM variation. It comprised
34.47± 5.10% (P= 2.5E− 23) and 39.724± 2.983 (P= 1.76E− 42) of
the RALM total variation in the analyses of urate and mannose,
respectively.

Table 3 Basic characteristics of the SNPs selected in GWAS of the

three MTBs

SNP A1 A2 F_A1 Chr. Position MTB P-value*

rs4646450 A G 0.1614 7q22.1 99104254 X12063 4.987E−50

rs4363657 T C 0.8283 12p12 21259989 9.287E−46

rs737267 T G 0.2550 4p16.1 9543842 Urate 2.13E−59

rs1260326 T C 0.4088 2p23 27584444 Mannose 5.97E−56

Basic characteristics of the SNPs corresponds to NCBI Build 36 (hg18 in HGVC nomenclature).
F_A1, sample frequency of allele A1.
*P-values – statistical significance of the family-based association test for the given SNP with
the respective metabolite variation. The A2 allele in each SNP was associated with greater
levels of the MTB, and was considered as a reference '+' allele in this analysis.

Figure 2 Multiple scatterplot of X12063 values vs age. Five black regression
lines correspond to the X12063 average values in individuals carrying from
0 (the lower thin line) to 4 (upper heavy line) ‘+’ alleles in rs4646450-
rs4363657 genotype. The regression line corresponded to carries of two ‘+’
alleles (double heterozygotes) overlay the population average (the middle
line). Comparison of the genotype-specific regression lines gives statistically
highly significant difference by LRT (P=2.3E−62) and the ‘+’ allele
explains 10.52% of the X12063 variation. The ‘+’ allele for each of two
SNPs is defined in Table 3.

Table 4 Bivariate variance component analysis of the genetic and familial effects on RALM and X12063 variation

G-model MP-model Parameter significance

Variance components RALM X12063 RALM X12063 RALM X12063

VSNP(rs4646450) 0.050 6.857 0 6.924 (0.561) 5.00E−38

VADs 37.730 42.608 37.999 (4.544) 47.134 (4.199) 9.57E−18 8.91E−32

VADc 35.242 13.397 34.785 (6.322) 13.891 (1.055) 3.11E−04* 4.30E−43**

VCFs 7.281 4.686 7.518 (3.403) 0 1.80E−02

VCFc 0 0 0 0

VRS 19.698 32.451 19.698 (5.991) 32.051 (3.708) 4.29E−04 1.67E−19

Rrs 0.21 0.210 (0.057) 1.54E−08

VSNP, VADs, VADc, VCFs, VCFc, and VRS are variance components attributable to the SNP (rs4646450) effect, trait specific (s), and common for both phenotypes (c) additive genetic effect (AD);
common familial (twins’) environment (CF) specific for the given trait (s) or shared by both phenotypes (c), and unexplained residual variation (RS), respectively. RRS is correlation between residuals
after accounting for the contribution of the significant variance components. G-model is general model with all parameters estimated; MP-model is most parsimonious model with standard error
estimates, in parenthesis. Parameter significance is estimated by likelihood ratio test, in step-by-step uni-parametric restriction. *The P-value for the hypothesis assuming equal VADc estimate for
both variables, and **VADc=0 for both traits.
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Since RALM is one of the two major components of soft tissue
mass, we tested whether its correlation with the selected metabolites
was unique to lean tissue, by computing their correlation with relative
appendicular fat mass (RAFM), and also with BMI. This was
particularly important because of the recognized correlation between
lean and fat mass adjusted for height2 (ref. 30) (also apparent in this
study); and the fact that the associated metabolites and genes are
strongly linked to obesity and the metabolic syndrome. All three
metabolites were significantly correlated with BMI (between 0.244
(P= 1.46E− 46) and 0.353 (P= 1.28E− 89), and RAFM (between
0.207 (P= 1.67E− 25) and 0.291 (P= 7.19E− 45). As both body
composition components are highly correlated with BMI (r= 0.719
for RALM and r= 0.857 for RAFM) and inter-correlated (r= 0.4166,
P= 5.25E− 128), to test which of RALM or RAFM was associated with
study metabolites, we adjusted BMI to each of them separately and for
both simultaneously, and then computed the correlations between the
metabolites and adjusted BMI again. Adjustment for each RALM and
RAFM led to substantial decrease in magnitude and statistical
significance of all the correlations, however, they remained statistically
significant in all tests (P≤ 4.24E− 13). Only when BMI was adjusted
for both RALM and RAFM the correlations were eliminated, suggest-
ing that both fat and lean mass are independently associated with the
three metabolites. Confirming this, canonical correlation analysis
(www.statsoft.com) showed comparable contributions of each of the
metabolites (‘left set’) to variation of their canonical variable, and
similarly of RALM and RAFM (‘right set’) to their canonical variable
(Supplementary material A: Supplementary Table S4). The corre-
sponding canonical correlation was 0.41; χ2(6)= 411.9, Po0.000001
(Supplementary material A: Supplementary Figure S3).

DISCUSSION

The contribution of genetic and metabolic factors to human muscular
mass is not currently well established. However, significant heritability
estimates have been reported5,8 as well as the identification of some
candidate genes.10,11 These, however, explain only a minor portion of
the muscular mass variation. In this study, we implemented a
combined metabolomics and genomics approach, aiming to identify
metabolically interpretable genetic determinants of muscle mass
variation. With muscular mass, this approach is probably undertaken
for the first time, although attempts to detect circulating molecules
that discriminate healthy lean from healthy obese individuals have
previously been undertaken.31

Our analysis identified several metabolic factors, in particular urate,
mannose, and a currently unidentified metabolite, X12063, that were
highly significantly associated with skeletal muscle mass, as assessed by
APLM relative to body height (RALM) (P= 2.11E− 27–6.31E− 48).
Over 160 MTBs displayed pairwise significant correlations with
RALM. Variations of many of these MTBs were not independent,
and their combined association with RALM explained 17.4% of its
phenotypic variation. The three aforementioned MTBs were virtually
independent, and explained 411%. Of these, the major contributor
was X12063, alone explaining 6.7% of the variation. GWAS demon-
strated that X12063 was associated with two independent genomic
regions with top P-values 4.987E− 50 and 9.287E− 46, on chromo-
somes 7q22.1 and 12p12 correspondingly. Significant association
signals of the two other MTBs were located in at 4p16.1 for urate
(best P= 2.13E− 59) and 2p23 for mannose (best P= 5.97E− 56).
In all instances, the association signals were mapped to genomic
regions with known function. Specifically, X12063 variation was
associated with gene CYP3A5 on chromosome 7. This gene encodes
a member of the cytochrome P450 superfamily of enzymes involved in

drug metabolism and synthesis of cholesterol, steroids, and other
lipids related to the lipid-lowering efficacy of simvastatin32 and the
metabolism of diverse drugs ibuprofen.33 Strong association between
CYP3A5 and X12063 was recently reported in a GWA study on the
KORA sample.34 X12063 was also associated with genetic variation of
protein coding SLCO1B1 gene involved in hepatic uptake of statins
and in statin-induced myopathy.35 Urate is a product of purine
metabolism and produced by muscle and fat breakdown, with strong
links to metabolic syndrome and cardiovascular disease.36 It was
strongly associated with SLC2A9 (Solute carrier family 2, facilitated
glucose transporter).37 This locus is associated with various pheno-
types of obesity, in particular waist-to-hip ratio, visceral adiposity, and
abdominal obesity, and others.38 Strong association of serum urate
concentrations with SLC2A9 was reported in previous studies and is in
good agreement with our present findings.19,34,39 It should be
mentioned that although the last two studies used also twin’s sample,
we compared our results with the estimates obtained in the
independent KORA sample also reported in these two papers. Finally,
we found that mannose was significantly associated with protein
coding GCKR (glucokinase (hexokinase 4) regulator) gene, which is
also in a good agreement with previously published work.19 Expres-
sion of this gene controls activity and intracellular location of
glucokinase, a key enzyme of glucose metabolism,40 with polymorph-
isms associated with lipid levels41 and chronic kidney disease.42 The
last 3 loci were listed among the top 37 genetic loci associated with
blood MTB concentrations.19

We undertook Mendelian randomization procedure24 to test
whether any of the associations seen between metabolites and RALM
are likely to be causal. This study found no evidence for causal
association between the variants and muscle mass. In the case of urate
at least, this was expected – urate levels are strongly associated with
increased body mass, especially visceral fat mass, due to increased
production of urate and reduced excretion in insulin resistant and
insulinemic states.43 Weight reduction interventions lead to reductions
in urate levels.44 However, it remains possible that circulating levels of
urate, as well as of the two other aforementioned metabolites may also
be influenced to some extent by medications, metabolic disease and/or
smoking, eating behavior and other factors, which were not examined
in the present study. This problem, however, would require a separate
and detail analysis, which is out of scope this study, but represents one
of its limitations.
Since our sample included both, MZ and DZ twins, we were able to

examine whether MTBs share genetic and/or common environmental
factors with RALM. For this purpose, we developed a new method of
bivariate association analysis (Supplementary material B). This analysis
supported the assertion that the association of the metabolites and
RALM was in each case due to shared genetic factors but not, in fact,
due to the associated genetic variants we had identified. No evidence
was found for shared environmental factors contributing to the
correlations between metabolites and RALM. For example, after
adjustment of X12063 variation for rs4646450:G4A, the null hypoth-
esis of no common genetic factor was rejected with P= 4.30E− 43.
These results are unequivocal, and demonstrate that other genetic or
epigenetic factors are involved in the covariation of these MTBs
and RALM.
Our analysis also showed significant and independent association of

the three metabolite levels with RAFM. The corresponding correla-
tions were of the similar magnitude and statistical significance when
RAFM and RALM were compared, thus indicating that these
metabolites are probably markers of soft tissue in general and not
muscle and fat specifically. This was illustrated in canonical correlation
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analysis (Supplementary material A: Supplementary Figure S3).
The question is then what these metabolites mark in soft tissue
physiology? In healthy subjects, fat mass and lean mass are signifi-
cantly correlated,30 and mechanisms leading to increases in both fat
and lean mass may act through dynamically changing trophic
hormones such as growth hormone, as well as cortisol and leptin.45

With increasing age, the correlation between fat and lean mass appears
to lessen – greater fat mass at baseline has been reported to be
significantly related to greater subsequent loss of lean mass, and loss of
muscle quality (defined as strength per unit mass),30 potentially
leading to the deleterious state of sarcopenic obesity. The participants
of this study were community dwelling healthy volunteers with an
average age of 46.9, and results here largely represent the midlife
period. Future studies are planned to investigate the metabolomic and
genomic correlates of lean and fat mass longitudinally.
As with any study, the present one has limitations. A major

limitation is that despite the large sample size (43000 individuals),
it was conducted on single sample of the data. Nevertheless, as
mentioned, the available published data support our findings.19,34,39

This project has also a number of advantages, besides sample size.
All the individuals in the study were assessed for all the variables of
interest, which included DXA evaluation of the body composition, the
genome-wide association genotyping and non-targeted metabolomics
of4360 endogenous molecules. We developed a special statistical tool
that allows accurate estimating of the contribution of the common and
specific genetic and environmental factors. The model of bivariate
pedigree analysis implemented in this study has several important
features in comparison with traditional models.26,46 It does not require
commonly used suggestion of N-dimensional normal distribution of
the likelihood (LH) for evaluation a pedigree of N individuals.28,29 The
method allows direct computation of the likelihood on pedigree data,
and for the pair of the tested phenotypes; it estimates the common and
the trait-specific genetic and family effects. It also estimates the
phenotype-specific SNP effects. The model allows the inference of
the correlations between the genetic, family, and residual variance
components of the pair of the phenotypes. The approach is also
applicable for genetic analysis of qualitative traits, and does not require
assumption of the underlying liability with threshold to the binary
condition.26 It should be mentioned that despite the quite different
mathematical algorithms the implementation of the two models gives
comparable results when we compare adequate variance/covariance
components (eg, heritability, common twin environment, and genetic
correlations). More detail comparison of the two models is given in
Supplementary materials, Supplementary Table S5.
Additional limitation of this study is that it focused on females only.

However, sex differences in human body composition including
muscle mass and its age-related changes are profound and well
known. The analysis of one-sex sample is therefore not prone to
potential genotype × sex interactions, which are likely the rule rather
than exception.47,48

In summary, the present study found highly significant correlations
of skeletal muscular mass variation with a few endogenous metabolic
factors, each of which showed extremely significant association with
just one or two genomic regions. The association of these metabolites
and lean mass was shown not to be causal, but instead driven by
shared genetic etiology. Using the twin structure of the cohort, we
found substantial common causation by additive genetic factors shared
by APLM and metabolites after adjusting for the effect of key
associated SNPs. The nature of these common genetic effects remains
to be discovered.
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