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PIAS4 is associated with macro/microcephaly in the
novel interstitial 19p13.3 microdeletion/
microduplication syndrome

Julián Nevado*,1,2, Jill A Rosenfeld3, Rocío Mena1, María Palomares-Bralo1,2, Elena Vallespín1,2,
María Ángeles Mori1,2, Jair A Tenorio1, Karen W Gripp4, Elizabeth Denenberg4, Miguel del Campo5,
Alberto Plaja5, Rubén Martín-Arenas1, Fernando Santos-Simarro6, Lluis Armengol7, Gordon Gowans8,
María Orera9, M Carmen Sanchez-Hombre9, Esther Corbacho-Fernández9, Alberto Fernández-Jaén10,
Chad Haldeman-Englert11, Sulagna Saitta12, Holly Dubbs13, Duban B Bénédicte14, Xia Li15,
Lani Devaney16, Mary Beth Dinulos17, Stephanie Vallee17, M Carmen Crespo1, Blanca Fernández18,
Victoria E Fernández-Montaño1, Inmaculada Rueda-Arenas1, María Luisa de Torres2,18, Jay W Ellison19,
Salmo Raskin20, Carlos A Venegas-Vega21,22, Fernando Fernández-Ramírez21, Alicia Delicado2,18,
Sixto García-Miñaúr2,6 and Pablo Lapunzina2,6

Array comparative genomic hybridization (aCGH) is a powerful genetic tool that has enabled the identification of novel

imbalances in individuals with intellectual disability (ID), autistic disorders and congenital malformations. Here we report

a ‘genotype first’ approach using aCGH on 13 unrelated patients with 19p13.3 submicroscopic rearrangement (11

deletions and 2 duplications) and review cases in the literature and in public databases. Shared phenotypic features

suggest that these patients represent an interstitial microdeletion/microduplication syndrome at 19p13.3. Common

features consist of abnormal head circumference in most patients (macrocephaly with the deletions and microcephaly with

the duplications), ID with developmental delay (DD), hypotonia, speech delay and common dysmorphic features. The

phenotype is associated with at least a ~ 0.113 Mb critical region harboring three strong candidate genes probably

associated with DD, ID, speech delay and other dysmorphic features: MAP2K2, ZBTB7A and PIAS4, an E3 ubiquitin

ligase involved in the ubiquitin signaling pathways, which we hypothesize for the first time to be associated with head size

in humans.
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INTRODUCTION

Chromosome 19 has the highest gene density of the human
chromosomes.1 However, only a few disease-associated microdele-
tion/duplication regions have been described.2–11 On the short arm,
microdeletion/duplication syndromes have been proposed for 19p13.
13,2 19p13.123 and terminal 19p13.3 microdeletions.4 Pure terminal
19p13.3 duplications7 have also been described as syndromic entities.
High-resolution microarray comparative genomic hybridization

(aCGH) is a powerful genetic tool implemented as a first-tier test
for diagnosis of genomic imbalances.12,13 A 'genotype first' approach,
in which patients are characterized by a similar genomic rearrange-
ment before a common clinical presentation is observed, has proven to
be successful in characterizing the growing list of microdeletion/

duplication syndromes. In fact, using this experimental approach, we
and others recently described new microdeletion or microduplication
syndromes.14–17

Here we report 13 new patients with proximal 19p13.3 submicro-
scopic rearrangements (11 deletions and 2 duplications) and review
patients from the literature (14 cases; 13 deletions and 1 duplication)
18–22 and public genomic databases such as DECIPHER and ISCA
Consortium (10 cases; 6 deletions and 4 duplications) for a total of 37
cases. We describe the phenotypic findings and suggest that these
patients represent a new microdeletion/duplication syndrome at
19p13.3, with a 113.5 Kb critical region harboring three genes:
ZBTB7A, MAP2K2 and PIAS4, the latter being a candidate gene for
abnormal head size.
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MATERIALS AND METHODS

Individuals
Patients 1–4 were referred for genetic assessment and patients 5–9 and 12–13 for
a customized aCGH analysis to the Institute of Medical and Molecular Genetics
at the University Hospital La Paz in Madrid (Madrid, Spain). Patients 5, 7 and
9–13 were originally ascertained following referral for clinical aCGH testing to
Signature Genomics, Spokane, WA, USA. The clinical investigations were
performed according to the guidelines in the Declaration of Helsinki. Informed
consent was obtained from all family members and specific permission to
publish photographs was obtained. The studies were approved by the IRB of
both institutions. All data reporting variants/phenotypes linked to all rearrange-
ments described herein have been submitted to DECIPHER public data base.

aCGH, fluorescence in situ hybridization and parent-of-origin
analysis with short tandem repeats
The aCGH experiments were performed using previously described
methods.23–26 Details on the used arrays and specific techniques are given in
Supplementary Materials. FISH studies27 and microsatellites analyses were
performed following standard procedures.

Detection of breakpoints and junction fragment analysis with long-
range PCR and Sanger sequencing
To determine the sequence at the breakpoints for some 19p13.3 deletions
(patients 1–7, 9, 12 and 13), we designed a different set of primers (available
upon request); according to our custom 19p13.3 aCGH results and followed
previously described methods.16

RESULTS

Clinical data
Clinical and phenotypic findings of all 13 individuals are listed in
Table 1, and the facial phenotypes of some patients are shown in
Figure 1 (patients 1, 3–6 and 13). Table 1 also analyzes the frequency
of several phenotypic features, and compares with previously reported
cases (reviewed in Table 2 and references18–22). Among them,
developmental delay (DD), abnormal head size, speech delay, intel-
lectual disability (ID), feeding problems, hypotonia and other dys-
morphic features were the most prevalent, present in most deletion
cases. Individuals with duplications share many of these main
phenotypic features. Unique traits only reported with microdeletion
include ophthalmologic alterations, gastroesophageal reflux, sleep
disorders, congenital heart disease, and in a lower incidence, beha-
vioral disorders such as autism or aggressive behavior. Distinct
recognizable facial features, including a short philtrum, thin upper
lip, abnormal ears, wide nasal bridge, depressed nose and root,
downslanting palpebral fissures and hypertelorism were apparent in
many patients (see Figure 1 and Tables 1 and 2). Ocular anomalies
included strabismus, amblyopia, astigmatism and myopia. Congenital
heart disease, such as atrial septal defect (the most frequent), dilated
aorta, tetralogy of Fallot, bicuspid aortic valve, prominent aortic root
and patent ductus arteriosus were observed. In addition, six out of
nine patients, including both individuals with duplication, showed
proportionate short stature, and three others had a postnatal growth
pattern above the mean. In total, 9/13 showed some height alteration.
Interestingly, head circumference was abnormal in all but two patients
(patients 6 and 10). Head circumference had an almost complete
phenotype–genotype correlation among our and previously reported
patients: 21/24 patients with deletion have macrocephaly and 2/3
patients with duplication have microcephaly. In fact, macrocephaly
(OFC497th centile) or microcephaly (OFCo3rd centile) was
observed at birth in patients with 19p13.3 genomic rearrangements
and remained a medical concern throughout their lives.

Additional cases (without full clinical information available) with
genomic rearrangements at this region and published in public
databases, such as DECIPHER and ISCA consortium, were summar-
ized in Supplementary data (Supplementary Table S1).

aCGH studies
Genomic rearrangements within 19p13.3 were demonstrated by aCGH
in 13 patients (see Supplementary Figure S1 and Table 3 for genomic
coordinates in hg19; NCBI build 37). Eleven had deletions, ranging in
size from 151 kb (patient 11) to 1.70Mb (patient 7), and two had
duplications, 1.48Mb (patient 10) and 2.39Mb (patient 8). In all but
three (patients 6, 9 and 13), the 19p13.3 deletion was the sole
significant aberration (Table 3). In patient 6 we also observed a
de novo 0.226 Mb deletion at 19q13.2, and patients 9 and 13 showed
two genomic rearrangements within 19p13.3 separated by a normal
region (see supplementary data Supplementary Figure S3). FISH
and/or other aCGH assays confirmed the initial aCGH results (data
not shown). Most of the deletions/duplications have different break-
points, although the breakpoints in some cases are in close proximity
(Figure 2 and Supplementary Figure S1 and Table 3). When parental
samples were available, the rearrangements were found to be de novo
(by means of either FISH or aCGH, see supplementary data).
Among individuals with interstitial 19p13.3 rearrangements (shar-

ing characteristic features of abnormal head size, DD, speech delay,
hypotonia and dysmorphic features) the shortest region of overlap
(SRO) in our series is delineated distally and proximally by patient 11
with estimated breakpoints at genomic positions chr19:3979568-
4131259; hg19; NCBI build 37 (~150 kb; Figure 3a). This SRO is
shared by 11 of 13 patients (excluding patient 6 partially and patient
10 totally, both of whom have normal head size) and by 13/14 patients
in previously reported cases.18–22 This segment of ~ 150 kb includes
one microRNA (SNORD37) and four RefSeq genes: PIAS4, ZBTB7A,
MAP2K2 and partially EEF2. Review of additional cases included in
the literature and public databases such as DECIPHER and ISCA
Consortium (with full clinical data) allowed us to narrow this SRO to
a 113.5 kb segment (chr19:3979568–4093035; hg19; NCBI build 37)
and excluded EEF2 (Figure 2). Thus, 31/37 individuals shared this
SRO and others overlapped it partially (case 4 in reference,22 patient 6
in our series and DECIPHER case 271675; Figure 2). On the other
hand, three cases did not share the SRO (patient 10 in our series and
DECIPHER cases 259222, 255689), although they shared some clinical
findings, such as ID, wide nasal bridge, narrow forehead or vesicour-
eteral reflux, with the SRO's patients.

Characterization of mechanisms underlying interstitial 19p13.3
genomic rearrangements
We initially designed a custom aCGH with a significant coverage of
19p13.3 (chr19:1477536–6653608, hg19). Further, long-range PCR
and automated sequencing were performed to precisely define the
breakpoints in some cases (patients 1–7 and 12, Figure 3; patients 9
and 13, data not shown), followed by bioinformatic analysis in both
breakpoints through several web tools showing that those lay next to
highly homologous repetitive sequences of SINE or LINE elements,
which could mediate those rearrangements directly. Results of repeat
element analyses, breakpoints and sequences involved are summarized
in Table 4, and showed in detail in supplementary data
(Supplementary Figure S2). In addition, we also showed analysis of
known repeat and genomic architectural elements, such as palindro-
mic DNA or stem-loop structures within the deleted breakpoints that
may also modulate in those non-recurrent genomic rearrangements
(Supplementary Tables S2 and S3).
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DISCUSSION

We delineate, review and refine recently described overlapping inter-
stitial deletions/duplications within proximal 19p13.3 (genomic coordi-
nates: 2329320–4996928; genome assembly hg19, NCBI build 37),
showing a consistent genotype–phenotype correlation of 13 novel
patients, using a ‘genotype first approach’. Thus, we propose a novel
interstitial microdeletion/duplication syndrome at 19p13.3, centromeric
to the 19p13.3 terminal microdeletions and microduplications.6,7

Both deletions and duplications of this region result in some
common, non-specific features present in many other microdeletion/
duplication syndromes. Available clinical data presented here, together
with cases in the literature8–22 and databases, demonstrate several
consistent phenotypic findings for this interstitial 19p13.3 deletion:
macrocephaly, typically combined with prominent forehead and bi-
temporal narrowing; facial dysmorphic features such as hypertelorism,
depressed nasal bridge and nasal root, short philtrum, thin upper lip
and ear anomalies; and developmental and speech delay and ID.
Similarly, all patients with duplications of the same region consistently
showed microcephaly, dysmorphic facial features (wide nasal bridge,
depressed nasal root and hypertelorism), feeding problems in infancy,
DD and ID, although dysmorphic features and DD/ID were less severe
than in the reciprocal deletions.

Genomic context, deletion size and genes implicated
The SRO for most cases (31 out of 37) presented here is a 113.5 kb
region harboring three genes: PIAS4, ZBTB7A and MAP2K2
(Figure 2). Although patient 6 (who partially shared the SRO), patient
10 and DECIPHER cases 255689 and 259222 did not share the SRO,
they were included in this study because they share many clinical
features with patients with deletion or duplication of the SRO.
The three SRO genes are involved in diverse functions, including
transcription, histone deacetylation and gene translation; ZBTB7A

(zinc finger and BTB domain containing 7A) is a transcriptional
repressor belonging to the POK (POZ/BTB) family involved in
adipogenesis. ZBTB7A may have an important role in neuronal
development;28 thus deletion of ZBTB7A might contribute to the
DD in our patients. In addition, other similar members of this protein
family, such as ZBTB20, ZBTB38 and ZBTB18, are strong candidates
for the DD in a new microdeletion syndrome at 3q1317 and have been
associated with human height in GWAS studies29 or with several
features in 1q43-q44 microdeletion syndrome,30 respectively. Domi-
nant gain-of-function mutations of MAP2K2 (mitogen-activated
protein kinase kinase 2) cause cardiofaciocutaneous syndrome,31 and
recently, haploinsufficiency of MAP2K2 has been suggested as a new
model of RASopathy in a series of seven patients with deletions.22

Finally, PIAS4 (protein inhibitor of activated STAT4) encodes a RING
finger (RNF) protein, which interacts with the androgen receptor
(AR). PIAS4 is also an E3 ligase involved in ubiquitin signaling
pathways.32 Additional cases (showing almost the same phenotype)
that either partially overlapped or did not include this 113.5 kb SRO
region suggest that part of the phenotypic features could be explained
by a ‘position effect’ or by additional genes close to this SRO
(Figure 2). Therefore we hypothesize that the interval from TLE2 to
CREB3L3 within 19p13.3, a highly conserved region among different
species33,34 with a rich content in haploinsufficient genes (with 16/55
with a high likelihood of being haploinsufficient),35 as a critical region
responsible for most clinical features. Additional genes that may
contribute to clinical features are (from centromere to telomere):
EEF2, DAPK3, NMRK2, ATCAY and NFIC, among others (Figure 2),
which are involved in cognitive impairment,36 regulation of myogenic
differentiation,37 apoptosis and transcriptional regulation of canonical
Wnt/β-catenin signaling,38 and autosomal recessive Cayman cerebrallar
ataxia,39 respectively. NFIC is a member of the nuclear factor I (NFI)
gene family necessary for optimal cellular gene expression,40 similar to

Figure 1 Facial photographs of individuals presented in this study. Patient 1 at age 8 months (a, b), 4 years (c, d) and 7 years (e, f); patient 3 at age of
diagnosis, 10 yrs (g, h, i); patient 4 at age 5 years (j); patient 5 at age 7 months (k), 2 years (l) and 4 years (m, n); patient 6 at age 5 years (o, p); patient
13 at age 8 years (q, r).
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NFIX, a strong candidate for many phenotypic findings similar to
those reported here in the recently described 19p13.13 microdeletion/
duplication syndrome (located ~ 9Mb centromeric to our SRO).2

NFIX has been also implicated in the autosomal dominant
Marshall–Smith syndrome (MIM 602535) and in patients with
Sotos-like syndrome (currently known as Sotos syndrome type 2;
MIM 614753).10 Interestingly, deletion of NFIC is observed in 22/37 of
patients discussed here (Figure 2). Altogether, these genes appear to be
involved in important pathways that could contribute to develop-
mental abnormalities. Additional cases will be needed to refine genes
directly implicated in the complete phenotype.
The potential relevance of this ~1.1Mb interval from TLE2 to CREB3L3

(that includes the SRO) is supported by its highly conserved nature in all
vertebrates, from fish to mammals.33,34 Further support underlining the
importance of this highly conserved region and its contribution to the
clinical features in patients with 19p13.3 deletion/duplications is given by
their haploinsuffiency (HI) score. HI score (defined by Huang and
colleagues, 2010)35 ranges from 0 to 100, where 0 means highly
haploinsufficient and 100 not haploinsufficient. The region from TLE2
to CREB3L3 includes 16/55 potential HI genes with a score o50.35

Chromosomal architecture context and mechanisms of
rearrangement
The deletions and duplications at 19p13.3 in patients reported here
were not flanked by segmental duplications and mostly unique to each
patient, though some are in close proximity (see Figure 2,Table 3).
This fact combined with the absence of low copy repeats within or
flanking deleted/duplicated regions makes non-allelic homologous
recombination (NAHR) an unlikely causative mechanism. Several
mechanisms have been proposed for the formation of copy number
alterations with non-recurrent breakpoints, and in most microhomol-
ogy at breakpoint junctions have been invoked. They can be grouped
as non-replicative (NAHR and others such as non-homologous end
joining (NHEJ) and microhomology-mediated end joining (MMEJ))
or replicative-based repair mechanisms (fork stalling and template
switching (FoSTeS), serial replication slippage (SRS), break-induced
SRS and microhomology-mediated break-induced replication).41–44

We hypothesize that most interstitial non-recurrent 19p13.3 rear-
rangements are a consequence of NHEJ and/or the alternative pathway
MMEJ, although different patterns have been depicted. Indeed,
although repetitive elements of the same family (SINE; Alu: patients
1, 4 and 5) or different family (DNA MER and LINE; patient 2) are
present at both breakpoints, the level of sequence identity is probably
too low for Alu/Alu-mediated NAHR. In addition, the 4bp, 3bp, 50 bp
or 3bp of microhomology (patients 1, 2, 4 and 5, respectively) and/or
some changes of nucleotides at the breakpoints (patients 2 and 5) may
point to NHEJ or to MMEJ as mechanisms preferentially involved
(Table 4,Supplementary Figure S2). In another group of patients, such
as patients 6 and 7, only the distal breakpoint showed a repetitive
element directly involved, although microhomology of 5- and 6 bp,
respectively, and some nucleotide insertions observed at the junctions
of these deletions, suggested also a MMEJ mechanism (Table 4,
Supplementary Figure S2). Finally, a third group of patients (eg,
patient 12) did not show any repetitive element directly involved, but
close to them. In fact, breakpoints were flanked by AluJo and L1
(LIMB7) elements and the presence of 3 bp microhomology without
any scar may point to NHEJ mechanism.
In silico genomic analysis of the breakpoints of the remaining

patients (3, 9 and 13) revealed numerous highly repetitive sequences
(SINEs/LINEs, see Table 4) that may be involved in the generation of
such events. In fact, chromosome 19 contains ‘Alus’ in the highestT
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density, comprising 27.2% of chromosome.45 In patients 9 and 13 a
replicative mechanism may be suggested by the complex genomic
rearrangement observed (deletion-normality-deletion and duplication-
normality-deletion, respectively; see Supplementary Figure S3). Addi-
tional cases must be analyzed for a more complete understanding of
the mechanisms of deletion and whether genomic architecture in this
region predisposes to genomic rearrangements, as previously suggested
in other chromosomal regions.46 In fact, additional analysis of
sequence elements at both breakpoints revealed repetitive elements
in all cases, sequences forming nonB-DNA conformations and
sequence motifs that may lead to genomic instability and subsequently
genomic rearrangements by promoting double strand breaks (DSBs)
or by stalling the replication fork as we discussed for the FOXL2
locus47 (also see Supplementary Tables S2).

Clinical findings and genotype correlation with head circumference
Macrocephaly can be caused by disruption of a broad spectrum of
genes and biological functions. There are a few microdeletion/
duplication syndromes with macrocephaly listed in the DECIPHER
database: the 1q21.1 microduplication, 8p23.1 duplication, 19p13.13
deletion and Sotos syndrome. In contrast, microcephaly is listed in 16
syndromes in the DECIPHER database. We add the interstitial
19p13.3 microdeletion/duplication syndrome to the differential diag-
nosis of macrocephaly or microcephaly, respectively. A similar
phenomenon of ‘mirror’ head size phenotypes has been previously
reported with genomic rearrangements such as the 19p13.13 micro-
deletion/duplication syndrome,2 the 1q21.1 microdeletion/duplication
syndrome,48 and the Sotos syndrome/5q35 duplication syndrome.49

A comparative analysis of almost all deleted and duplicated patients
pointed to PIAS4 as a strong candidate for abnormal head size
(see Figure 3, dashed line), as all patients but one with abnormal head
size had deletion or duplication of this gene. In agreement with this,
injection of high doses of PIAS into early frog embryos led to reduced
head structures with a general and reduced embryonic body length.34

In addition, most patients without rearrangements of PIAS4 are
normocephalic (Figure 3 panel b). Further support for PIAS genes'
implication in head size in humans was obtained reviewing our own
database for macrocephalic patients. Indeed, we found a patient with a
3.68 Mb 7p13-p12.3 deletion (43 511 010-47 209 011, genome assembly
hg19, NCBI build 37), which included ZMIZ2, a PIAS-like family
gene50 (see Supplementary Figure S4), as well as that other patients
with rearrangement at 7p13-p12.3; cases nssv578186 and nssv584525
and DECIPHER 1224, 1223, 1222, 1221, 1220 (deletions) and
nssv579045 (duplication) also showed macrocephaly and microcephaly,
respectively.
In contrast, other facts do not support PIAS4’s role in head size in

humans. Heterozygous and homozygous knockout mice for PIAS4 did
not show phenotypic changes.51 However, no brain weight measures
were taken in the study (Dr Grossched's personal communication). In
addition, normocephalic patients have PIAS4 deletions or duplications;
11 of 48 patients in this review had a head size that did not correlate
with PIAS4 copy number changes (see Figure 3, mostly in normoce-
phalic individuals in panel b; with asterisks). However, some were
evaluated using low-resolution arrays (case 4 in reference22 and
DECIPHER 255689) or have additional (case 3 in reference22) or very
large chromosomal rearrangements that extend toward the centromere
(Figure 3 panel b). We speculate that very large deletions and
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Figure 2 Graphical representation of interstitial 19p13.3 deletions and duplications; genes within the minimal region of overlap. SRO (chr19: 3979568–
4093035; hg19; NCBI build 37). Patients are from our series (a); previous reports (b) and public databases, such as DECIPHER and ISCA consortium (c).
Gray; duplications, Black; deletions.
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duplications extending toward the centromere past genomic coordinate
5 000 000 (at 19p13.3 band; hg19, NCBI 37) may modify the head size
phenotype of PIAS4 dosage change owing to the existence of putative
dominant-negative regulator genes within this area. KDM4B, PTPRS
and SAFB are predicted haploinsufficient genes35 that might be strong
candidates for this effect. Mouse knockout studies reveal that these
genes are involved in abnormal head morphology (Kdm4b), decreased
brain size by weight (Ptprs), or in smaller fetal size (including head;
Safb) compared with littermates (Mouse Genomic Informatic
database, MGI; and Mouse Genome Database, MGD; web pages).
The specific mechanism of how PIAS4 or other RNF proteins may

be involved in macro/microcephaly is unknown, but PIAS4 is highly
conserved from zebrafish to mammals.33,34 One hypothesized
mechanism is disruption of AR-mediated transcription, which is a
common feature of PIAS-like proteins.52 A second hypothesis is
disruption of bone morphogenetic protein-signaling pathways, as the
RING domain of PIAS4 is involved in its suppression.53 Third, PIAS4
may be involved in the WNT signaling pathway through its interaction
with several transcription factors,32,54 and WNT is important for

several aspects of facial morphogenesis. Fourth, PIAS4 is an E3
ubiquitin ligase, and haploinsufficiency of E3 ubiquitin ligases in
plants and Drosophila melanogaster55–57 leads to organ overgrowth.
Interestingly, individuals with haploinsufficiency of RNF135 or
RNF125, which encode other RNF proteins, have been associated
recently (via alteration of ubiquitin signaling pathways) by us
and others with macrocephaly and overgrowth in patients with
dysmorphic features and ID.58,59 Thus, additional efforts will be
necessary to definitively establish how PIAS4, PIAS-like or other RNF
proteins, may be involved in regulation of human head size.
In summary, after identifying 13 unrelated patients and reviewing

others previously reported, we further delineate a novel interstitial
microdeletion/duplication syndrome at 19p13.3 (different from subtelo-
meric microdeletions) whose clinical features overlap many other known
microdeletion/duplication syndromes, such as anomalies of head size
(macrocephaly in deletions and microcephaly in duplications), pointing
to PIAS4 as a putative candidate. This study also provides detailed clinical
information for geneticists to assist in the evaluation, diagnosis and
management of individuals with similar genomic rearrangements.
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