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Identification of candidate genes for familial
early-onset essential tremor

Xinmin Liu1, Nora Hernandez2,3, Sergey Kisselev1, Aris Floratos4,5, Ashley Sawle4,5, Iuliana Ionita-Laza6,
Ruth Ottman7,8,9,10, Elan D Louis2,3 and Lorraine N Clark*,1,11

Essential tremor (ET) is one of the most common causes of tremor in humans. Despite its high heritability and prevalence, few

susceptibility genes for ET have been identified. To identify ET genes, whole-exome sequencing was performed in 37 early-onset

ET families with an autosomal-dominant inheritance pattern. We identified candidate genes for follow-up functional studies in

five ET families. In two independent families, we identified variants predicted to affect function in the nitric oxide (NO) synthase

3 gene (NOS3) that cosegregated with disease. NOS3 is highly expressed in the central nervous system (including cerebellum),

neurons and endothelial cells, and is one of three enzymes that converts L-arginine to the neurotransmitter NO. In one family, a

heterozygous variant, c.46G4A (p.(Gly16Ser)), in NOS3, was identified in three affected ET cases and was absent in an

unaffected family member; and in a second family, a heterozygous variant, c.164C4T (p.(Pro55Leu)), was identified in three

affected ET cases (dizygotic twins and their mother). Both variants result in amino-acid substitutions of highly conserved amino-

acid residues that are predicted to be deleterious and damaging by in silico analysis. In three independent families, variants

predicted to affect function were also identified in other genes, including KCNS2 (KV9.2), HAPLN4 (BRAL2) and USP46. These
genes are highly expressed in the cerebellum and Purkinje cells, and influence function of the gamma-amino butyric acid

(GABA)-ergic system. This is in concordance with recent evidence that the pathophysiological process in ET involves cerebellar

dysfunction and possibly cerebellar degeneration with a reduction in Purkinje cells, and a decrease in GABA-ergic tone.
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INTRODUCTION

Essential tremor (ET) is a chronic, progressive neurological disease.1

Its hallmark motor feature is a 4–12-Hz kinetic tremor that occurs
during voluntary movements such as writing, eating and drinking. At
disease onset, the tremor not only affects the hands and arms but it
may also eventually spread to involve the head (ie, neck), voice, jaw
and other body regions.2 Given the presence of etiological, clinical,
pharmacological response and pathological heterogeneity, there is
growing support for the idea that ET may be a family of diseases
whose central defining feature is kinetic tremor of the arms, and
therefore it might more appropriately be called ‘the essential tremors’.3

Family studies4,5 and twin studies6,7 provide strong evidence for a
genetic contribution to ET, with heritability estimates ranging from 45
to 90% in twin studies.6,7 Despite this high heritability, the field of ET
genetics has made only limited advances. Previously, we and others
reported that ET aggregates in families, with many families containing
multiple members with ET.8–10 Most studies indicate that at least
30–70% of ET patients have a family history, with the vast majority
(480%) of young onset (⩽40 years old) cases reporting ⩾ 1 affected
first-degree relative.11 To date, only three published genome-wide
linkage scans have been performed, all in North American or Icelandic
ET families.12–14 These studies provided evidence for genetic loci

harboring ET genes on chromosomes 3q13 (ETM1; OMIM:
190300),12 2p22-p25 (ETM2; OMIM: 602134)13 and 6p23 (ETM3;
OMIM: 611456).14 Several studies have attempted to replicate linkage
to ETM1,15–17 ETM215,18,19 and ETM3, without success (no LOD
score 42.0), and the genes and causal variants for these loci
(ETM1, ETM2 and ETM3) have yet to be identified. Recently,
using a linkage and a whole-exome sequencing approach, the fused
in sarcoma/translated in liposarcoma (FUS/TLS) gene (Chr16p11.2)
was identified as a candidate gene in a large family with ET from
Quebec.20 Subsequent studies,21–23 including our own, indicate
that variants in FUS are an extremely rare or family-specific
cause of ET, and without functional studies, the pathogenicity of
variants identified so far ((c.868C4T, p.(Q290*)), RefSeq acces-
sion number NM_004960.320 and c.1129C4T p.(R377W), RefSeq
accession number NM_004960.3 reported in 1 patient with family
history of ET24 is unknown.
Despite its remarkably high prevalence, the pathophysiology of ET

is still poorly understood and current debate as to whether it is a
functional or neurodegenerative disease.25,26 There is considerable
evidence from clinical, neuroimaging and physiological studies, of
cerebellar involvement,27,28 and an emerging literature that documents
a variety of changes, some of which are degenerative, in the Purkinje
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cell population.29,30 There is also a related literature that indicates a
possible change in brain gamma-amino butyric acid (GABA) tone
in ET.31,32

MATERIALS AND METHODS

Study participants and clinical diagnosis
To identify genes for ET, we enrolled probands (affected with ET) and relatives
in a family study of ET at Columbia University, NY, USA (2011–2014). The
study was approved by the Institutional Review Board at Columbia University
and written informed consent was obtained from all enrollees. The criteria for
enrollment were as follows: (1) the proband had early-onset ET with age at
onset ⩽ 50 years; (2) the proband had a diagnoses of definite or probable ET;
(3) in addition to the proband there were at least two affected relatives in the
family; (4) additional affected and unaffected family members were willing to
participate in the study; and (5) the families contained more than two affected
individuals in different generations. For the genetic analyses, we excluded
enrollees who had been diagnosed with Parkinson’s disease (PD) or dystonia.
The final sample includes 52 families (52 probands (affected with ET)) and 155
relatives. The number of affected individuals enrolled per family ranged from 3
to 7 (mean= 4.1). An in-person evaluation was performed on all participants,
during which they completed demographic, medical history and family history
questionnaires, and underwent a videotaped neurological examination, from
which a total tremor score (range 0–36) was assigned.10,33–37 After review of the
questionnaires and videotaped examinations, the diagnosis of ET was then
reconfirmed by a senior neurologist specializing in movement disorders (EDL)
using reliable and valid research criteria.38 All ET diagnoses (possible, probable
and definite) required, at a minimum, moderate or greater amplitude kinetic
tremor on at least three tasks, and an absence of other etiologies (eg, dystonia,
PD and drug-induced tremor). Probable ET required such tremor on at least
four tasks and definite ET required this as well as postural tremor of at least
moderate amplitude.38 As such, all ET diagnoses also met the requirements
outlined in the Consensus Statement on Tremor of the Movement Disorders
Society.39 At the time of starting the genetic analyses, 37 families had completed
all clinical assessments and evaluations (videotape, diagnosis of ET by EDL and
isolated DNA), and were selected for whole-exome sequencing.
An additional 95 unrelated ET cases enrolled in a clinical–epidemiological

study at Columbia University21 were also screened by Sanger sequencing for
KCNS2 coding variants.

Whole-exome sequencing analysis
Genomic DNA was isolated from peripheral blood cells using standard
methods. Whole-exome sequencing was performed on the genomic DNA of
at least two most distantly related affected (definite, probable or possible ET
diagnosis) individuals from each of 37 total families. In some families, 42
affected individuals were sequenced. The pedigrees for 37 families, indicating
that family members were exome sequenced, are shown in Supplementary
Figure S1. All samples were processed using the Agilent SureSelect XT kit
(Agilent Technologies, Santa Clara, CA, USA) for library preparation and

exome captured using the All Exon v5+UTRs library (Agilent Technologies).
Paired-end sequencing was performed at 440× coverage per sample.
Obtained libraries were sequenced on the Illumina HiSeq2500 instrument
(Illumina, Inc., San Diego, CA, USA). Sequence alignment to the human
reference genome (UCSC hg19) was performed using the Burrows–Wheeler
Aligner algorithm,40 and variant calling was performed using the Genome
Analysis Toolkit (Broad Institute, Cambridge, MA, USA).41 The following
criteria were used to generate a list of variants for each family for follow-up
genotyping of other family members and cosegregation analysis: (1) on the
assumption that disease-causing variants were rare, we excluded all common
single-nucleotide polymorphisms (MAF41%) in dbSNP v.137; (2) the variant
was shared between individuals with ET within a family; and (3) the variant was
ranked by the software tool pVAAST (see Web Resources)42 (using a dominant
model and the maximum number of permutations of 1 000 000) with P-value
o0.05.

Genotyping
Follow-up genotyping was performed using matrix-assisted laser desorption/
ionization time-of-flight mass spectrometry (Sequenom, San Diego, CA, USA)
with Sequenom iPlex Gold custom assays designed using MassARRAY assay
design software version 4.0 (Sequenom). Details of the variants that were
genotyped are provided in Supplementary Table S1.
From the cosegregation analysis, we identified a list of annotated ‘candidate’

variants that were shared exclusively by affected ET patients within a family.
Annotation of cosegregating candidate variants was performed at the gene and
variant level (Supplementary Materials and Methods).

Availability of data. All phenotype, genotype and exome data will be released
and deposited in the database of Genotypes and Phenotypes (dbGaP:
http://www.ncbi.nlm.nih.gov/gap) of the National Center for Biotechnology
Information. The study titled ‘Identification of Susceptibility Genes for Essential
Tremor’ received the dbGaP accession phs000966.v1.p1.

RESULTS

The demographic and clinical characteristics of affected ET patients
and unaffected family members that were sequenced are shown in
Table 1. The average age at onset of tremor in ET patients was 24.5
years (±17.2) and duration of tremor was 35.3 years (±19.5). Ten
percent of ET patients reported Ashkenazi Jewish ancestry.
We identified variants predicted to affect function in five ET

families (Table 2). Cosegregating variants were considered to be
candidates based on the following criteria: (1) the variant occurred
at a highly conserved nucleotide or amino-acid residue; (2) amino acid
changes were predicted to be damaging to the protein by one or more
prediction tools (provean, SIFT and mutation taster); (3) the gene is
expressed in the cerebellum (including Purkinje, granule, stellate and
basket cells); and (4) the gene function is implicated in the

Table 1 Clinical characteristics of affected ET patients and unaffected family members that were exome sequenced in 37 ET families

Clinical characteristic ET patients (n=100) Unaffected (n=4) Total (n=104)

Male, n (%) 45 (45) 1 (25) 46 (44.2)

Age at tremor onset, mean years (SD) 24.5 (17.2) NA NA

Age at interview, mean years (SD) 59.9 (17.7) 44.8 (18.1) 59.3 (17.8)

Ashkenazi Jewish, n (%) 10 (10) 0 (0.0) 10 (9.6)

Duration of tremor, mean years (SD) 35.3 (19.5) NA NA

Total tremor score, mean (SD) 18.6 (7.7) NA NA

Head tremor on examination, n (%) 29 (29) 0 (0) NA

Chin tremor on examination, n (%) 9 (9) 0 (0) NA

Head tremor presence in head and chin, n (%) 10(10) 0 (0) NA

Tremor absent in chin or head, n (%) 52 (52) 4(100) NA

Abbreviations: ET, essential tremor; NA, not applicable.
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pathophysiological process in ET. In two independent families
(families A and B), we identified variants in the nitric oxide (NO)
synthase 3 gene (NOS3) that cosegregated with disease. In family A, a
heterozygous variant, c.46G4A (p.(Gly16Ser)), located in NOS3, was
present in all three affected ET cases and absent in an unaffected
family member. In family B, a heterozygous variant, c.164C4T
(p.(Pro55Leu)), was identified in three affected ET cases that included
dizygotic twins and their mother. These NOS3 variants are absent
from the 1000 genomes project (TGP) database but are present in the
heterozygous state in the exome aggregation consortium (ExAC) data
set with an allele frequency of 1.969× 10− 5 and 5.145×10− 5. The
father was also affected with ET but did not carry the heterozygous
variant identified in other family members, and family history
information was not available for him as he was adopted, suggesting
the possibility of a phenocopy. NOS3 was ranked 32 (P-value 0.0133)
in the pVAAST analysis (Supplementary Materials and Methods).
Both variants result in amino-acid substitutions of highly conserved
amino-acid residues that are predicted to be deleterious and damaging
by in silico analysis (both mutations by SIFT and mutation taster). The
main clinical features of six affected individuals from two families with
NOS3 variants are shown in Table 3.
In family C, a heterozygous variant was identified in the gene

KCNS2 (KV9.2), c.1137T4A, resulting in a missense amino-acid
substitution (p.(Asp379Glu)) and ranked 52 (P-value 0.027) in the
pVAAST analysis (Supplementary Materials and Methods). The
variant is absent from the TGP and ExAC databases. This variant
was present in all affected ET patients but was absent in an unaffected
family member (Figure 1). KCNS2 was also identified as a candidate
gene in a significant linkage interval (P2 LOD 3.312 and P1 LOD
2.729) on hg19 chr8: g.94960934_101969832 (Supplementary
Materials and Methods, and Supplementary Table S2) by nonpara-
metric linkage analysis in 37 ET families. Three in silico prediction
programs, provean,43 SIFT44 and mutation taster,45 predict that this
amino-acid substitution is intolerable, deleterious and damaging to the

structure and function of the KCNS2 protein. Furthermore, the
asparagine residue at position 379 is highly evolutionarily conserved,
suggesting that this residue is essential for channel function (Figure 2).
KCNS2 also shows high homology to Drosophila Shab, a K+ channel
that regulates membrane excitability and synaptic transmission in
many central nervous system (CNS) neurons, in addition to the
neuromuscular junction, with 42% amino-acid identity and 63%
amino-acid similarity. Protein alignment of Drosophila Shab with
KCNS2 shows that the asparagine residue (and adjacent amino acids)
at position 379 in KCNS2 is conserved in Shab (Figure 2). We also
evaluated the effect of the variant on the protein structure (residue
range 332–413) using Swiss-Pdb viewer (Deep View version 4.0, see
Web Resources; Figure 3). The variant, c.1137T4A (p.(Asp379Glu)),
alters the molecular surface, electrostatic potential and creates a strong
hydrogen bond that is absent from the wild-type protein (Figure 3).
We sequenced the coding regions of the KCNS2 gene in an additional
95 unrelated ET cases enrolled in a clinical–epidemiological study at
Columbia University.21 We did not identify novel variants predicted to
affect function in KCNS2, nor did we identify the KCNS2 variant,
c.1137T4A (p.(Asp379Glu)), identified in family C, in any of the 95
ET cases analyzed.
In family D, we identified a heterozygous variant, c.1048G4C (p.

(Gly350Arg)), in hyaluronan and proteoglycan link protein 4
(HAPLN4; pVAAST rank 38, P-value 0.0167) that was identified in
three affected ET cases. DNA was not available for other family
members that reside in the United Kingdom and were unwilling to
participate. Three in silico prediction programs, provean,43 SIFT44

and mutation taster,45 predict that this amino-acid substitution is
intolerable, deleterious and damaging to the structure and function of
the HAPLN protein. Furthermore, the glycine residue at position 350
is highly evolutionarily conserved, suggesting that this residue is
essential for function of the protein. The variant is absent from the
TGP database and present in the ExAC database with an allele
frequency of 0.00002917.

Table 2 Variants predicted to affect function identified in ET families

Family Gene cDNA (Ensembl transcript) Protein Function

A NOS3 c.46G4A (ENST00000297494) p.Gly16Ser Enzyme that converts the neurotransmitter NO from L-arginine

B NOS3 c.164C4T (ENST00000297494) p.Pro55Leu Enzyme that converts the neurotransmitter NO from L-arginine

C KCNS2 c.1137T4A (ENST00000287042) p.Asp379Glu K+ channel highly expressed in Purkinje and granular cells

D HAPLN4 c.1048G4C (ENST00000291481) p.Gly350Arg Hyaluronan and proteoglycan link protein 4. Expressed in perineuronal nets in the basal

ganglia and cerebellum

E USP46 c.398C4T (ENST00000441222) p.Ala133Val Ubiquitin-specific protease 46 involved in GABA synthesis. Highly expressed in cerebellum

Abbreviations: ET, essential tremor; GABA, gamma-amino butyric acid; HAPLN4, hyaluronan and proteoglycan link protein 4; NO, nitric oxide; NOS3, nitric oxide synthase 3 gene;
USP46, ubiquitin-specific protease 4.

Table 3 Clinical features of ET individuals with NOS3 variants

Family A Family B

Clinical feature IV-001 V-002 V-004 IV-001 DZ twin IV-002 DZ twin III-003

Age at tremor (years) 14 30 16 12 12 12

Duration of tremor (years) 45 4 21 10 10 31

Total tremor score 33 13 15.5 25 20 26

Tremor presence in head Yes Yes No No No No

Tremor presence in chin No No No No No No

Tremor presence in head and chin Yes No No No No No

Abbreviations: ET, essential tremor; NOS3, nitric oxide synthase 3 gene.
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Figure 1 Pedigrees with variants in the genes NOS3 (families a and b) KCNS2 (family c), HAPLN4 (family d) and USP46 (family e). Genetic pedigrees for
families with likely pathogenic mutations are shown. The generation in each pedigree is indicated by roman numerals. The proband is indicated by an
arrowhead. A ‘+’ symbol indicates subjects that were exome sequenced. Below each subject with DNA available for genetic analysis, the subject id (00X),
age at tremor onset and date of birth are indicated. Symbol shading is as follows: definite ET, symbols completely black; probable ET, symbols half vertical
black fill; possible ET, symbols with a quadrant in black; and unaffected, clear symbol.

Figure 2 Evolutionary conservation of KCNS2. Evolutionary conservation of KCNS2 at the protein level. The asparagine residue indicated in blue at position
379 in Human KCNS2 is highly conserved across species including chimpanzee, rhesus macaque, mouse and pufferfish. The non-synonymous substitution to
glutamic acid identified in family 68 is indicated in red. KCNS2 also shows high homology to Drosophila Shab, a K+ with 42% amino-acid identity and 63%
amino-acid similarity. Protein alignment of Drosophila Shab with KCNS2 shows that the asparagine residue (and adjacent amino acids) at position 379 in
KCNS2 is conserved in Shab.
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In family E, we identified a heterozygous variant, c.398C4T
(p.(Ala133Val)) in ubiquitin-specific protease 46 (USP46), which
cosegregated with ET in the family (pVAAST rank 5, P-value
0.00228). The variant was present in five ET cases. DNA was not
available for testing from other family members. Although only one in
silico prediction program (mutation taster) predicts that the amino-
acid substitution in USP46 is disease causing, the alanine residue at
position 133 is highly conserved in several species (chimpanzee,
macaque, cat, mouse, chicken, pufferfish and zebrafish). The variant
is absent from the TGP genomes and ExAC databases.

DISCUSSION

Among the 37 early-onset ET families analyzed, we identified four
promising candidate genes in five families. Functional studies will be
needed to validate our findings and determine their mechanism of
action (dominant gain-of-function or dominant negative) and
role in ET.
In two families (A and B), we identified variants predicted to affect

function in NOS3. NOS3, one of three enzymes that converts
L-arginine into the neurotransmitter NO, is the major NO synthase
(NOS) isoform expressed in endothelial cells and has an important
role in vasculature homeostasis.46 NOS3 is also highly expressed in the
CNS (including the cerebellum), neurons and endothelial cells.46 In
the brain, NO mediates neuronal survival, synaptic plasticity, vascular
smooth muscle relaxation and endothelial cell permeability. The
cerebellum expresses high levels of NOS in granule, stellate and basket
cells.47 The NOS pathway has been implicated in the pathogenesis of
Alzheimer’s disease (AD), PD, and cerebrovascular disease and stroke,
and previous studies have also demonstrated aberrant expression of
the NOS3 gene in neurons, glial and endothelial cells in AD
brains.46–48 The Glu/Glu genotype at p.(Asp298Glu) (rs1799983;
ClinVar pathogenic allele) has been reported as a risk factor for AD
in several case–control studies.
Recent findings from several studies, including our own, indicate

that the pathophysiological process in ET involves the cerebellum.
There is also some discussion as to whether this is associated with
cerebellar degeneration as well as a decrease in GABA-ergic activity in
deep cerebellar neurons, disinhibition in output to the deep cerebellar
neurons and an increase in rhythmic activity of the thalamocortical
circuit.25,26 Significantly, in the current study, we identified variants in
three genes in independent ET families, which include KCNS2 (KV9.2)

(family C), HAPLN4 (BRAL2) (family D) and USP46 (family E), each
of which is highly expressed in Purkinje cells.
KCNS2 (KV9.2), a K+ channel α-subunit that is highly and

selectively expressed in the brain, modulates the activity of the
KV2.1 and KV2.2 channels.49 A similar localization of expression of
KCNS2 (KV9.2) and KV2.1 and KV2.2 has been observed in the
Purkinje and granular cells in the cerebellum.49 KCNS2 also shows
high homology to Drosophila Shab, a K+ channel that is widely
expressed in the CNS and peripheral nervous systems, and that
interacts with the Drosophila Shaker channel in the regulation of
synaptic transmission.50 Indeed, these channels regulate membrane
excitability and synaptic transmission in many central neurons and
also in the neuromuscular junction.50 Drosophila Shaker mutants
display leg shaking under anesthesia,51 abnormal spike bursting in
motor circuits52 and greatly enhanced neurotransmission at neuro-
muscular junctions.53 A tremor phenotype has been described in
patients with variants in related potassium channel family members
(eg, KCNA1, KV1.1).54 Further, in other K+ channels mouse models
(KV3.1 and KV3.3 K+ channel), mice display severe motor deficits,
including tremor, myoclonus and ataxic gait.55,56

In family D, the gene, brain link 2 (BRAL2; also known as
HAPLN4) was identified as a candidate. It is of special interest that
BRLA2 is highly expressed throughout the GABA-ergic neurons of the
cerebellum, including Purkinje cells and basket neurons, both of
which have been shown in some studies to be abnormal in ET57,58 in
postmortem studies of humans with ET. Furthermore, the Purkinje
cells, and their entire GABA-ergic output, are directed at the neurons
in the deep cerebellar nuclei. Therefore, a reduction in Purkinje cell
output or a reduction in the receptivity of deep cerebellar nuclei to
GABA could result in tremor.59 Of particular interest is that mice
deficient for BRAL2 have attenuated perineuronal nets, altered
localization of brevican and show a slight decrease in the number of
synapses in deep cerebellar nuclei neurons. Interestingly, in a mouse
model of a related link protein family member, BRAL1, CNS axonal
nerve conduction is markedly decreased without changes in the
clustering or transition of ion channels at the nodes or in the tissue
morphology around the nodes of Ranvier. BRAL1 mice did however
changes in the extracellular space diffusion parameters, suggesting a
reduction in the diffusion hindrances in the white matter of mutant
mice. Behavioral studies or other phenotypic observations such as
tremor have not been described for the BRAL2-deficient mice, but

Figure 3 Model 3D protein structure of KCNS2. A model 3D structure of KCNS2 was generated using Swiss-Pdb viewer (Deep View version 4.0). The
modeled residue range includes amino acids 332–413, which includes the KCNS2 variant c.1137T4A (p.(Asp379Glu)), identified in family C. The amino
acid 379 is indicated. The variant alters the molecular surface, electrostatic interactions (indicated by colored dots) and creates a strong hydrogen bond
(green dotted line).
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further characterization of these mice in light of our findings is
warranted.60

USP46 was identified as a candidate gene in family E. USP46
belongs to a family of deubiquitinating enzymes that regulate diverse
cellular functions by cleaving ubiquitin from specific protein sub-
strates. They have been implicated in a wide variety of biological
processes and disease processes including cancer and neurodegenera-
tive disease.61–64 Usp46 is strongly expressed in different brain regions
including the cerebellum. In a Usp46 mouse mutant model,65 defects
in the GABA-ergic system were identified with a marked reduction in
GAD67 expression. Because GAD67 catalyzes the decarboxylation of
glutamate to GABA, Usp46 has been proposed to be involved in
GABA synthesis. Thus, it is likely that Usp46 extensively affects the
GABA-ergic system and controls a broad range of behavioral
phenotypes.65,66

One of the strengths of the study is the use of diagnostic criteria that
are both reliable and valid, and that were designed specifically for
genetic studies of ET, the Washington Heights Inwood Genetic Study
of ET. All diagnoses were assigned by a senior movement disorder
neurologist based on a detailed, videotaped neurological examination
that contained a rigorous assessment of tremor and tremor phenom-
enology. All ET diagnoses required tremors during a minimum of
three separate tasks, with diagnoses of probable and definite requiring
tremor during four tasks. Another strength is our focus on families
with an early age at ET onset, with a mean age at onset of 24.5 years
(±17.2), which may have enriched the sample for disease susceptibility
variants.
Although we have identified a number of interesting candidates,

future functional studies are needed to evaluate the pathogenicity of
the variants identified in these candidate genes. However, gene and
variant level annotation suggest that the variants are predicted to be
deleterious and damaging, and functional annotation suggests that
many of the candidate genes are likely to have a role in ET
pathogenesis. Follow-up studies in cellular and animal models will
be needed to determine the role of these genes in ET.
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