
ARTICLE

Phenotypic extremes in rare variant study designs

Gina M Peloso1,2,3, Daniel J Rader4, Stacey Gabriel2, Sekar Kathiresan1,2,3,5, Mark J Daly1,2,6,7

and Benjamin M Neale*,1,2,6,7

Currently, next-generation sequencing studies aim to identify rare and low-frequency variation that may contribute to disease.

For a given effect size, as the allele frequency decreases, the power to detect genes or variants of interest also decreases.

Although many methods have been proposed for the analysis of such data, study design and analytic issues still persist in data

interpretation. In this study we present sequencing data for ABCA1 that has known rare variants associated with high-density

lipoprotein cholesterol (HDL-C). We contrast empirical findings from two study designs: a phenotypic extreme sample and a

population-based random sample. We found differing strengths of association with HDL-C across the two study designs

(P=0.0006 with n=701 phenotypic extremes vs P=0.03 with n=1600 randomly sampled individuals). To explore this

apparent difference in evidence for association, we performed a simulation study focused on the impact of phenotypic selection

on power. We demonstrate that the power gain for an extreme phenotypic selection study design is much greater in rare variant

studies than for studies of common variants. Our study confirms that studying phenotypic extremes is critical in rare variant

studies because it boosts power in two ways: the typical increases from extreme sampling and increasing the proportion of

relevant functional variants ascertained and thereby tested for association. Furthermore, we show that when combining statistical

evidence through meta-analysis from an extreme-selected sample and a second separate population-based random sample,

power is lower when a traditional sample size weighting is used compared with weighting by the noncentrality parameter.
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INTRODUCTION

Common variant association studies (CVASs), such as those testing
alleles with45% minor allele frequency (MAF), have used genotyping
arrays to analyze single-nucleotide polymorphisms (SNPs) across the
genome. The search for rare variants that influence phenotypic
variation has been made possible through the development of next-
generation sequencing technologies.1,2 Rare variant association studies
(RVASs) are a more complex process compared with CVASs, as they
include both discovery of variation contributing to disease and
subsequent testing of the discovered variation.3,4 Statistical analysis
of rare variation is further complicated by the limited number of
alleles of a given variant in the sample that necessitates the aggregation
of variants across a gene or region. The basic approach is to take a
collapsed count of the number of minor alleles at a given threshold for
the putatively functional variants (CMC).5 Others have extended the
CMC method to weight variants in the test statistic by the MAF6 to
optimize the allele frequency threshold used (VT)7 or propose a
different statistical approach that is robust to variants of opposite effect
(C-α and SKAT).8,9 The power to detect association with the various
proposed gene-based methods is dependent on the underlying genetic
architecture of the gene.10–12

The relative power of different study designs for CVASs has been
well established.13 For all genetic studies, selecting the extremes of the
phenotype distribution improves power; a concept in genetics that can
be traced back to seminal work by Lander and Botstein.14 More
recently, it has been established that extreme sampling performs better

than random population-based sampling for single rare variants, with
the apparent effect size increasing with more and more stringent
selection thresholds,15 but limited studies have explored the effect
when variants are aggregated within a gene. Studies have shown that
extreme sampling can enrich for the presence of causal variants16,17

and, furthermore, that extreme phenotypic sampling and/or a two-
stage analysis can lead to gains in power.17–19 Lee et al20 compare
available gene-based tests and discuss design strategies for RVASs.
Meta-analysis frameworks have been proposed to combine individual
variant score statistics across studies and reconstruct gene-based
tests,21 but this may lead to biases when selection, sequencing, and
quality control differ between studies. Another framework for meta-
analysis is combining gene-based association statistics, but the effect
on power of meta-analyzing gene-based association results from two
rare variant studies with different study designs remains a question.
In this study we performed targeted sequencing of a set of genes and

extracted rare variant data from ABCA1, as it is known to have an
effect on high-density lipoprotein cholesterol (HDL-C). We then
examined association in two contrasting samples: an extreme-selected
sample and a population-based random sample. HDL-C is a well-
studied heritable quantitative trait22 and there are reports of rare
coding variation contributing to abnormal lipid profiles. Genes related
to low HDL-C – ABCA1, APOA1, and LCAT – have been found by
studying families with extreme HDL-C phenotypes. Furthermore,
extreme sampling strategies in the population cohorts have also shown
association between rare variation in these genes and low HDL-C.23
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Here, we demonstrate empirically different strength of association
between rare variants in ABCA1 with HDL-C using a random
population-based sample in contrast to a phenotypic extreme-
selected sample. Based on this observation we performed a simulation
study to attempt to reconcile the causes of the differences in
association and answer the following questions: (1) What is the
impact of phenotypic selection on rare variant study designs in
contrast to common variant association?; and (2) What impact does
this have when meta-analyzing rare variant results?

SUBJECTS AND METHODS

Extreme samples
Individuals of European ancestry who have had an abnormally high or low
HDL-C level (o35mg/dl for women and o28mg/dl for men or 4100mg/dl
for women and 480mg/dl men) within the past 5 years were recruited to
participate in a study from a lipid specialty clinic at the University of
Pennsylvania. Individuals with no history of liver disease or HIV and who
are not currently pregnant, nursing, or taking hormone replacement therapy or
niacin had ~ 40ml of blood drawn. Plasma lipid levels were measured and
individuals with HDL-C levels greater than the 95th percentile were selected for
targeted sequencing (n= 389, mean HDL-C= 102mg/dl). Healthy age- and
sex-matched controls with plasma HDL-C levels o25th percentile were also
sequenced (n= 387, mean HDL= 32mg/dl). The exons of ~ 900 genes
including ABCA1 were sequenced in the 776 individuals of self-reported
European descent. After extensive quality control measures, 731 individuals
remained. Of this group, 701 individuals had HDL-C values distinctly either
above the 95th percentile or below the 25th percentile for their age and sex and
genotypes within ABCA1. The final targeted sequencing association analysis was
performed on 351 individuals with low HDL-C levels (mean HDL-C= 32mg/dl)
and 350 individuals with very high HDL-C levels (mean HDL-C=102mg/dl)
(Table 1).

Population samples
To select individuals from the general population, we drew from the well-
described Offspring cohort of the Framingham Heart Study (FHS). The FHS is
a three-generation, prospective, community-based, family study begun in 1948
and designed to identify the factors that contribute to cardiovascular disease.
The original FHS cohort24 includes 5209 men and women who in 1948 were
between the ages of 30 and 62 years, residing in the town of Framingham,
Massachusetts, and who had not yet developed cardiovascular disease. The FHS
Offspring cohort25 consists of 5124 of the adult children and spouses (enrolled
in 1971) of the original individuals. A total of 1623 randomly selected,
unrelated FHS Offspring cohort participants were included in this study.
FHS Offspring participants were studied longitudinally over the course of 8
clinical exams (NIH dbGaP accession number: phs000007.v18.p7). The exons
of ~ 200 genes including ABCA1 were sequenced in 1623 individuals of self-
reported European descent from FHS. The data can be downloaded from
dbGaP Study Accession: phs000307.v10.p9. After extensive quality control
measures 1600 individuals remained for analysis (Table 1).

DNA sequencing methods and quality control
A custom hybrid capture array was used to sequence ABCA126 as part of two
different targeted sequencing studies (one of ~ 900 genes for the extreme

sample and ~ 200 genes for the random sample). DNA libraries were barcoded
using the Illumina index read strategy and sequenced with an Illumina
HiSeq2000 (San Diego, CA, USA). Reads were mapped to the human genome
hg19 with the BWA algorithm,27 variants called with the Genome Analysis
Toolkit (GATK) Unified Genotyper Module,28 and annotated using
SnpEFF.29,30 Samples that failed in any step of the solution hybrid selection
component of the targeted sequencing process were excluded. Population
clustering was assessed through multidimensional scaling using pruned
common variants (45% MAF) with high call rates and that were not in
linkage disequilibrium. Outliers on a plot of the first two principal components
generated from multidimensional scaling were excluded. Samples with hetero-
zygosity rates (number of heterozygote sites/number of variants per sample)
and singleton counts three interquartile ranges above the median were also
excluded. Variants with low mean depth (o8) and low call rate (o95%) were
excluded. Observed variation in ABCA1 was submitted to the LOVD database
(www.lovd.nl/ABCA1; patient IDs 00046624–00046771).

Statistical analysis
We created a collapsed count of the number of minor alleles for nonsynon-
ymous variants with o5% frequency for ABCA1 in each study. We tested the
association between the ABCA1 count and outcome adjusting for age and sex.
We used linear regression with continuous HDL-C for the population samples
and logistic regression for the extreme-selected samples. All analyses were
implemented in the R statistical package (version 3.0, Vienna, Austria).

Simulation study
We simulated a model where the percent variance explained by a gene is either
(1) driven by rare variants or (2) driven by a single common variant. We used
ABCA1 as a representative gene, and used the variants identified in the EVS
(http://evs.gs.washington.edu/EVS/). There were 120 missense variants
observed in the EVS, 38 predicted to be probably damaging, 17 possibility
damaging, and 65 benign by PolyPhen2 (PPH2).31 For each replicate, we tested
for association between a collapsed count of variant carriers and the simulated
phenotype. We did not set out to compare the various methods for gene-based
testing but rather to study the effect of extreme sampling on power.
All simulations were performed in the R software package (version 3.0).

Simulation mimicking real data. We simulated 1000 replicates of ABCA1 for
7000 individuals from a population based on the observed frequencies (p) in
EVAS using (1− p)2 for the homozygous major allele, 2p(1− p) for hetero-
zygous, and p2 for homozygous minor allele probabilities for each variant.
Based on PPH2 predictions, we assigned each variant to be neutral or have a
1-SD (or 1/2-SD) effect (s) with the following probabilities: 30% for probably
damaging, 5% for possibly damaging, and 1% for benign. Effects were
simulated to be in the same direction. We modeled an additive effect of the
variants and simulated a phenotype based on the genotypes. A 1-SD unit effect
was chosen to obtain results with adequate power. We also simulated a
common variant with a MAF of 0.25 and a common variant phenotype with
0.06-SD effect (given the known common variant in ABCA1).32 We then
random sampled 3000 individuals, and 350 cases with the highest simulated
phenotype, and 350 controls with the lowest simulated phenotype. These
sample sizes gave us similar empirical power for the common variant analysis
using the Genetic Power Calculator (http://pngu.mgh.harvard.edu/~ purcell/
gpc/) and through simulation (Supplementary Table S2). In each set of selected
individuals, we tested for association between a collapsed count of the number
of variants observed and the simulated phenotype. We summarized the results
over all the replicates to obtain estimates of power for each selection strategy.

Simulation with fixed sample size for rare and common analysis and maximum
power simulation. We simulated 1000 replicates of variation in ABCA1 for
10 000 individuals from a population based on the observed EVS variant
frequencies and assigned each variant to be neutral or have a 1-SD effect (s)
based on PPH2 predictions, as before. To determine the robustness of the
results, we also simulated 0.5-SD and 1.5-SD effects for the rare variants. We
simulated a common variant as described in the previous section. For the fixed
sample size simulation, we then selected a proportion of subjects (between 0.01
and 0.5) with the highest simulated phenotype as cases, the same proportion of

Table 1 Descriptive statistics of the samples

High HDL Low HDL Random sample

N 350 351 1600

HDL (mg/dl) 102±19 32±5 51±15

Female 49% 50% 50%

Age (SD) 60±12 62±14 36±9.6

The 350 high HDL subjects were in the top 5% tail, and the 351 low HDL subjects were in the
bottom 25% tail. The random sample was from the Framingham Heart Study Offspring Cohort
and was not selected based on phenotype. Values reported were mean±SD or percentages.
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subjects with the lowest simulated phenotype as controls, and contrasted that
with a random sample of the same sample size (cases+controls). In each set of
selected individuals, we tested for association between a collapsed count of the
number of variants observed and the simulated phenotype. We summarized the
results over all the replicates to obtain estimates of power for each selection
strategy. For the maximum power simulation, we used the genetic power
calculator33 to determine the number of individuals needed for the random
sample so that the extreme sample and the random sample had the same power
for the common variant.

Simulation comparing sampling strategies. We simulated 1000 replicates of
ABCA1 for 1 000 000 individuals as a population based on the observed EVS
variant frequencies in order to simulate the selection of extremes from a
population. First, we simulated all variants to be neutral to examine type I
error. Then, as described above, we assigned variants to have neutral or 1-SD
effects based on PPH2 predictions given the following probabilities: 30% for
probably damaging, 5% for possibly damaging, and 1% for benign (model 1),
and simulated a phenotype based on the genotypes. We then varied the amount
of variation that we set to be functional by assigning each variant to be neutral
or have an effect given the following probabilities for the PPH2 prediction
classes: 50% for probably damaging, 20% for possibly damaging, and 5% for
benign (model 2; more functional variation), and 10% for probably damaging,
1% for possibly damaging, and 0.1% for benign (model 3; more neutral
variation). We took random samples of 1100, 2100, 5100, and 10 100
individuals and compared that with selecting 100 cases and 100 controls from
the 5, 1, 0.1, and 0.01% tails, and selected 100 cases from the 5, 1, 0.1, and
0.01% tail and 1000 random samples. In each set of selected individuals, we
tested for association between a collapsed count of the number of variants
observed and the simulated phenotype. We summarized the results over all the
replicates to obtain estimates of power for each selection strategy.

Meta-analysis simulation. We simulated two populations as described above,
assigning each variant to be neutral or have a 1-SD effect based on PPH2
predictions. We selected the 2% tails for the extreme-selected sample (200 cases
and 200 controls) and 1000 individuals for the random sample. For each of
1000 replicates, we tested for association between a collapsed count of the
number of variants observed and the simulated phenotype in each sample (the
extreme-selected sample and the population-based random sample). We then
combined the results from the two simulated studies through a Z-score-based
meta-analysis with the following weights: (1) sample size, (2) common variant
power, and (3) rare variant power. We also used weights of γ for the random
sample and 1− γ for the extreme-selected sample, where γ ranged from 0 to 1.
When γ= 0, the meta-analysis is based only on the extreme-selected sample,
and when γ= 1, the meta-analysis is based only on the population-based
random sample.

RESULTS

Empirical association results in extremes and population samples
The mean HDL-C in high HDL-C group was 102mg/dl compared
with 32mg/dl in the low HDL-C group (Table 1), whereas the mean
HDL-C in the random sample was 51mg/dl. The two groups of the
HDL extreme-selected samples had similar distributions of age and
similar proportions of each sex. The random sample had a similar sex
ratio but was younger (mean: 36 years old) compared with the two
extreme-selected samples.
Using missense variants with MAF o5%, we found an association

of HDL-C with ABCA1 in the extreme sample (P= 0.0006). This was
based on 31 variants that were polymorphic in extremes
(Supplementary Table S1). In contrast, using the population-based
sample, the P-value was 0.03, based on 35 variants observed. Of note,
the rate of variation is different between the population-based sample
and extreme sample. With the extreme sampling, approximately half
of the sample size was necessary to obtain the same number of variants
as with the population-based sample.

Of the 31 variants that were observed in the extremes, 10 of them
were seen in the population-based sample. When these 10 variants
were tested in the population-based sample, no evidence for associa-
tion was found (P= 0.53), but we did find that the individuals who
carried one of the 10 variants also found in the extreme sample
(n= 58) had, on average, higher mean HDL (52mg/dl, Zmean= 0.95)
compared with individuals who carried one of the 25 variants (n= 38)
that were not also observed in the extreme samples (46mg/dl,
Zmean= 0.70). Furthermore, the fraction of individuals who are in
the 5% tails for the 10 variants also found in the extremes was 19%
compared with only 5% of individuals with one of the 25 variants also
not observed in the extremes. This suggests that the extreme sampling
approach enriches for functional variation.
When collapsing variants in a gene-based test, a frequency filtered is

often applied. When performing analysis of extreme samples, the
frequency of variants in the population can be used instead of the
frequency in the sample because the frequency of associated alleles will
be distorted with the selection. We analyzed our extremes filtering on
the MAF observed in the European Americans from the EVS and
found that the association evidence improved (P= 0.0003) compared
with the filtering based on the frequency observed in the studied
sample (P= 0.0006).

Simulation mimicking real data
In an attempt to reconcile the difference observed in results between
the extreme-selection and the population-based random selection
samples, we simulated data for these two study designs with the
respective sample sizes fixed based on equal power to detect a
common variant association. Under this design we find that for the
rare variant test, using extremes is more powerful, even with a reduced
sample size (Supplementary Table S2). The difference in power is
diminished when causal variants are simulated to have smaller effects.
Power is still greater in the extreme samples when variant effects were
simulated to not all be the same size (Supplementary Table S2). We
found that extreme cases have a higher proportion of functional
variants compared with a random sample (Supplementary Figure S1)
and that the sample size needed to capture all potentially functional
rare variation is considerably larger when randomly sampling the
population in contrast to extreme phenotypic selection. Furthermore,
the mean effect size across the 1000 replicates is 67% higher when only
variants simulated to be functional are aggregated (mean effect
size=− 0.49) compared with aggregating all putatively functional
variants (mean effect size=− 0.16) in the extreme phenotypic selec-
tion sample. The extreme selection is affecting both the discovery of
variants and the phenotypic distribution.

Simulation with fixed sample size for rare and common analysis
and maximum power simulation
To study the effect of the phenotypic selection threshold, we simulated
10 000 individuals and then selected individuals at different thresholds
(1–20% in 2% increments). We found that for a fixed sample size and
selection thresholds o20%, both the CV and RV tests have higher
power for a case–control design than using a population-based
random sample (Figure 1 and Supplementary Figure S2). We also
observed that for a fixed sample size and a rare variant test, a smaller
individual variant effect gives a smaller difference in power between a
population-based random sample and an extreme case–control sample
selection. For example, at a 5% selection threshold for the extremes
and equal sample size for the population-based random sample and a
1/2-SD effect for each variant, the power is 0.07 compared with 0.15,
respectively, but for a 1.5-SD effect, the power is 0.65 compared with
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0.25. Increasing the fraction of functional variants in a gene yields
power increases overall, as would be expected, but also increases the
gap in power between population-based random samples and
phenotypic extreme case–control samples. Conversely, as the amount
of variation that is functional decreases, the apparent power difference
also diminishes. When we used the genetic power calculator to fix the
power between case–control and random sample analysis for the
common variant, we found that the case–control sample was always
more powerful than the random sample for the RV test (Table 2).

Simulation comparing sampling strategies
We simulated 1 million samples for the ABCA1 gene, and sampled sets
of random individuals of various study sizes as well as 100 cases from
the tail. Type I error was well controlled (Supplementary Table S3).
From this simulation, we found selecting 100 cases from the 1% tail
and 1000 random sample is more powerful than a random sample of
1100 individuals (41 vs 17%) (Table 3). Furthermore, increasing the
phenotypic selection threshold yields greater gains in power. For
example, selecting 100 cases in the 1% tail and 1000 random samples
gives similar power to a random sample of 5100 individuals. We also
find there is greater gain in power from more extreme sampling of 100
cases and 100 controls than sequencing 1000 more subjects. This is
because of a larger proportion of subjects with a functional variant in
the extremes and a higher proportion of functional variation, with
increasing proportions as the tail becomes more extreme (Figure 2).
Here, a key consideration is the magnitude of the effect size for the
functional alleles. In the presence of alleles with a strong phenotypic
impact, extreme sampling pays greater dividends in terms of power.
As the effect size weakens, so too does the impact of very extreme
selection on power.

Meta-analysis simulation
We simulated two studies: a random sample of 1000 individuals (study 1)
and a 2% extreme-selected sample of 200 cases and 200 controls
(study 2). We then performed a Z-based meta-analysis of these two
simulated studies with different weighting schemes. We found that
when we weighted by sample size, a traditional approach to combining
statistical evidence, we had lower power than when we weighted by the
noncentrality parameter (NCP) from the studies (0.209 vs 0.252).
Power was nearly identical when weighting by the common variant
test NCP and the rare variant test NCP (0.248 vs 0.252). Weighting by

Table 2 Power estimates from simulation with power fixed for the

case–control and random sample common analysis

Power

Threshold n.rs RV.RS RV.CC CV.CC CV.RS.

0.01 1410 0.179 0.296 0.291 0.311

0.02 2330 0.257 0.363 0.416 0.451

0.05 4250 0.387 0.440 0.673 0.678

0.1 6140 0.447 0.458 0.801 0.829

0.2 7830 0.517 0.477 0.903 0.903

0.3 8050 0.492 0.432 0.912 0.906

0.4 7450 0.507 0.408 0.893 0.888

0.5 6360 0.451 0.366 0.827 0.820

Abbreviations: Threshold, the threshold for selecting the extreme samples; RV, rare variant test;
CV, common variant test; n.rs, sample size for the random sample for equal power to the
extreme case–control design for a common variant (MAF=0.25 and a 0.06-SD effect).
The power between the extreme case–control (CC) and population-based random sample (RS)
for the common variant was fixed using the genetic power calculator. A 1-SD effect was
simulated for each functional variant.
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Figure 1 Ratios of power from the fixed sample size simulation. Samples
were simulated with equal numbers for the population-based random sample
(RS) and the extreme case–control (CC) sample. The x axis is Threshold, the
threshold for selecting the extreme samples. The y axis is the Power Ratio,
the ratio of the CC power over the RS power. The first three plots are for the
rare variant tests with three different models. The last panel is the power
difference for the common variant. The probability that specific class of
mutations are function was simulated as follows: Model 1 – prob=0.3,
poss=0.05, benign=0.1; model 2 – prob=0.5, poss=0.2, benign=0.05
(increases the amount of variation that is functional); model 3 – prob=0.1,
poss=0.01, benign=0.001 (decreases the amount of variation that is
functional).
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sample size increases the contribution of the random sample to the
meta-analysis in comparison with weighting by the NCP. Using a
range of values for the weighting, we found that the optimal weighting
when combining an extreme-selected sample with a population-based
random sample will up-weight the extreme-selected sample (Figure 3)
beyond what would be considered by the relative sample size. In our
scenario, the optimal weighting occurred when the random sample
had a 40% weight and the extreme-selected sample had a 60% weight.
Taking our original results of the association between HDL-C and

ABCA1 in both the population-based random sample and the
extreme-selected sample, we found the meta-analyzed P-value using
the sample sizes is 7.7 × 10− 4, but when we use the optimal weighting
found above, the P-value became almost an order of magnitude more
significant (P= 4.9× 10− 5).

DISCUSSION

From real data, we observed substantive differences in the results from
rare variant analysis from two different study designs for HDL-C and
the ABCA1 gene. We then confirm through a simulation study that the
search for rare genetic effects differs fundamentally with an extreme
sampling design in contrast to using a population-based random
sample. We find that although cross-sectional and extreme samples
lead to similar results for common variants, this is not the same for a
burden of rare variants and we strongly advocate for extremes in
sequencing studies, where possible. As is the case in other analytic
settings, the use of phenotypic extremes tends to lead to an over-
estimate of the effect of the variant and tends to overestimate the
proportion of functionally active variants in a region, both of which
support the value of population-based samples.34 However, much
larger sample sizes will be needed in order to have the power to detect
associations in these instances.
We showed that as the selection threshold is made more stringent,

extreme selection continues to gain further power. This selection
strategy is not only boosting the typical power gains from selection but
also concentrating the functional variants in the sample. As previously
reported,16 this is the critical step to the design of a rare variant
association study. If individuals are not selected for the functional
variants, there will be no power to detect the association. Also, we
found that the power boost in extreme-phenotype selection compared
with a population-based random sample is larger as the effect sizes of
the variants increase.
We concentrated on the effect of extreme sampling when designing

(RVASs), whereas Zuk et al3 addressed key questions on testing
missense alleles, frequency thresholds for inclusion into the test, the
use of isolated populations, and the value of gene-set analysis. Our
work is complementary to this and highlights that studying extreme
samples is critical not only because of the greater association power
per individual, but because of the higher rate of relevant functional
variants ascertained by sequencing and thereby tested for association.
There are many statistical tests available for testing rare variants

with complex traits5–9 and simulation studies show that these tests

Table 3 Power estimates from simulation comparing sampling

strategies

Sampling

Common variant

test Power

Rare variant

test Power

Random sample of 1100 0.227 0.166

Random sample of 2100 0.4 0.251

Random sample 5100 0.728 0.433

Random sample of 10 100 0.946 0.563

c/c 100/100 from 5% tails 0.187 0.123

c/c 100/100 from 1% tails 0.289 0.270

c/c 100/100 from 0.1% tails 0.424 0.527

c/c 100/100 from 0.01% tails 0.532 0.758

c/c 100 from 5% tail and 1000 random samples 0.090 0.197

c/c 100 from 1% tail and 1000 random samples 0.137 0.413

c/c 100 from 0.1% tail and 1000 random samples 0.183 0.695

c/c 100 from 0.01% tail and 1000 random samples 0.251 0.879

A million samples were generated for variants in ABCA1 and a phenotype with a 1-SD effect for
each rare functional variant and 0.06-SD for the common variant (MAF=0.25). Various
selection methods were used to select subjects from the generated samples and power was
computed for the rare variant test and the common variant test. c/c, case/control.

Figure 2 Amount of variation in extremes compared with random sample. (a) Proportion of subjects with a functional variant. (b) Proportion of functional
variants. Results are based on 1000 replicates and 1-SD effect for each rare functional variant. RS, random sample of 10 000 individuals.
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behave similarly in many situations but depend on many factors such
as the proportion of causal variants, the variants effect sizes and
frequencies, and consistency of direction of effects.1,35 We do not
address which rare variant test should be used, but provide an intuitive
explanation of why extreme sampling is beneficial for sequencing
studies.
Finally, the results from this study will not only affect single cohort

analyses but also, perhaps most importantly, have serious ramifications
for combining results from multiple independent studies, a point that
has not been previously addressed. As a natural extension, meta-
analysis of multiple RVASs will be more powerful when the individual
studies contributing are extreme-selected samples for the trait of
interest and will be less powerful with population-based random
samples. Furthermore, traditional approaches for combining evidence
across studies such as weighting by sample size is inefficient. As the
effect size is expected to be larger for the extreme-sampling designs
compared with a random sample design, a weighting scheme that is
more balanced to this effect will have better performance. As an
alternative to weighting by sample size, we suggest that studies should
be weighted by the expected NCP, conditional on the genetic model.
Unfortunately, the genetic model is largely unknown, but previously
established positive control genes with known effects on phenotype
can be used to calibrate the expected NCP of studies in a meta-
analysis.
In conclusion, we have provided practical evidence on the benefits

of using extreme samples for rare variant studies and highlighted an
issue with the traditional weighting scheme used when evidence from
multiple studies with different study designs are combined.
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