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The more the merrier? How a few SNPs predict
pigmentation phenotypes in the Northern German
population

Amke Caliebe1,4, Melanie Harder2,4, Rebecca Schuett2,5, Michael Krawczak1, Almut Nebel3

and Nicole von Wurmb-Schwark*,2,6

Human pigmentation traits are of great interest to many research areas, from ancient DNA analysis to forensic science. We

developed a gene-based predictive model for pigmentation phenotypes in a realistic target population for forensic case work from

Northern Germany and compared our model with those brought forth by previous studies of genetically more heterogeneous

populations. In doing so, we aimed at answering the following research questions: (1) do existing models allow good prediction

of high-quality phenotypes in a genetically similar albeit more homogeneous population? (2) Would a model specifically set up

for the more homogeneous population perform notably better than existing models? (3) Can the number of markers included in

existing models be reduced without compromising their predictive capability in the more homogenous population? We

investigated the association between eye, hair and skin colour and 12 candidate single-nucleotide polymorphisms (SNPs) from

six genes. Our study comprised two samples of 300 and 100 individuals from Northern Germany. SNP rs12913832 in HERC2
was found to be strongly associated with blue eye colour (odds ratio=40.0, Po1.2×10−4) and to yield moderate predictive

power (AUC: 77%; sensitivity: 90%, specificity: 63%, both at a 0.5 threshold for blue eye colour probability). SNP associations

with hair and skin colour were weaker and genotypes less predictive. A comparison with two recently published sets of markers

to predict eye and hair colour revealed that the consideration of additional SNPs with weak-to-moderate effect increased the

predictive power for eye colour, but not for hair colour.
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INTRODUCTION

Elucidating the genetic basis of human pigmentation traits such as eye,
hair and skin colour is of great interest in many areas of scientific
research. For example, pigmentation traits are known to be associated
with a number of human diseases, including melanoma and non-
melanoma skin cancer.1–3 Moreover, the prediction of pigmentation
phenotypes from genotypes would be highly relevant to ancient DNA
research4–6 and, if and when legally possible, to forensic case work,
particularly for solving cases without a suspect.7,8

The aetiology of human pigmentation traits is thought to be
highly complex, possibly involving gene–gene and gene–environment
interactions,9–11 and a high level of phenotypic diversity has been
observed among individuals of European descent.12,13 Interestingly,
while the heritability of eye and hair colour is known to be very strong,
skin colour appears to be less genetically determined.14

In the recent past, some important advances have been made
towards the identification of genes associated with human pig-
mentation traits. For eye and hair colour, a few major genes show
large effects even though some additional genes of minor effect
have been found to be trait-associated as well in genome-wide
studies, thereby highlighting the polygenic nature of these pheno-
types. The HERC2/OCA2 genes have a specifically strong effect on

human eye colour.10,15–18 Single-nucleotide polymorphism (SNP)
rs12913832 in HERC2 shows a particularly strong genotype–
phenotype association that is potentially modified by SNP
rs1800407 in OCA2,10,17 a gene involved in human pigmentation
via the regulation of melanin production.19 More recently, the
rs12913832 region of HERC2 has been reported to act as an
enhancer of the transcription of OCA2.19

The red hair phenotype appears to be predominantly determined by
theMC1R gene,20 which encodes the melanocortin receptor. For other
hair colours, such as blond, brown and black, and for skin colour,
weaker genetic associations involving OCA2 and HERC2 have been
described in European populations.10 Additional genes suggested
to have a minor effect upon pigmentation phenotypes include
SLC24A4,21,22 IRF4,22 TYR,21 TYRP1,23 LYST,24 TTC3/CSCR9,24

ASIP23 and SLC45A5,25 among others.
Recently, the prediction of external features from DNA data has

gained considerable interest in forensic science, where this approach is
also referred to as ‘forensic DNA phenotyping’, and where consider-
able progress has been made in this regard, particularly for eye
colour.7,26–28 Two marker sets comprising six SNPs for eye colour and
13 markers for hair colour have been suggested to reliably predict
these traits in European populations.29,30
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We aimed to develop a more specific prediction model for a realistic
target population of forensic case work from Northern Germany. To
this end, we investigated the association between eye, hair and skin
colour and 12 candidate pigmentation SNPs in six different genes.
These SNPs were partly overlapping with the two previously estab-
lished marker sets mentioned above. Because of the special role of red
hair, we followed a new phenotyping strategy, dividing hair colour into
two, possibly independent, sub-phenotypes: the red tint component
and the light-dark component. The light-dark component was defined
by nine evenly graded types of shading.
After model selection, we evaluated the predictive capability of our

models and compared our results with that of the other two marker
sets.29,30 To obtain unbiased estimates of predictive capability, we
adopted a two-stage design for our study with 300 individuals in stage
1, the ‘modelling sample’, and 100 different individuals in stage 2, the
‘estimation sample’. Finally, in addition to deriving population-specific
prediction models, we analysed the association between phenotypes
and tried to define coherent phenotype groups.

MATERIALS AND METHODS

Study population
A total of 400 unrelated individuals (197 male, 203 female) from Northern
Germany were recruited for our study between 2010 and 2011. The
median age was 27 years (interquartile range: 24-33 years). All individuals
were born in Germany and had German parents and grandparents (self-report).
All 400 participants were recruited and investigated in the same way. The first
300 participants were included in the ‘modelling sample’ of stage 1 (used for

SNP selection), the remaining 100 individuals constituted the ‘estimation
sample’ of stage 2 (prediction evaluation). All participants gave written
informed consent before the study. Genotype and phenotype data were de-
identified for analysis purposes according to the declaration of Helsinki. The
project was approved by the Ethics Committee of the Medical Faculty of
Christian-Albrechts University Kiel.

Phenotyping
Pigmentation phenotypes were documented by photographs taken at daylight
conditions and from a distance of 30 cm, using a Canon EOS 400D (Canon
Deutschland GmbH, Krefeld, Germany) (18–55mm focal length). For each
participant, one photograph was taken of each eye, the scalp hair and the inner
arm. Photographs were normalised using the standard functions in Photoshop
4.0 (Adobe Systems Software, San Jose, CA, USA), and consensus phenotype
calling was carried out by two raters by discussion. In the rare cases where no
agreement was reached a third party was involved.
Eye colour was divided into three categories, namely blue, green and brown

(Figure 1a). Individual skin type was classified applying the Fitzpatrick
scheme31 to the inner arm. Hair colour type was defined in multitiered
fashion. To this end, a collection of coloured hair strands obtained from a
hairdresser was categorised into nine evenly graded types of shading, ranging
from light blond (type I) to black (type IX) (Figure 1b). Strands of red hair or
with red tint were omitted from this classification because it was intended to
address the light-dark component only. Then, hair colour was divided into two
sub-phenotypes, namely the red tint component (yes/no) and the light-dark
component (I–IX). For each individual, the presence of red tint was ascertained
(by questioning) in head hair, facial hair (beard), axillary hair or pubic hair. If
an individual had red head hair, this was noted separately to enable a separate

Figure 1 Definition of eye and hair colour phenotypes. (a) Classification of eye colour; blue: 1 – pure blue, 2 – blue-brown, 3 – blue-green; green: 4 – blue-
green-brown, 5 – pure green, 6 – green-brown; brown: 7 – amber, 8 – brown-green, 9 – pure brown. (b) Hair strands used for hair colour categorisation; light
blond – I, blond – II, dark blond – III, ash – IV, light brown – V, brown – VI, dark brown – VII, black-brown – VIII, black – IX.
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analysis for this special phenotype. The light-dark component was determined
by reference to the hair strand collection mentioned above. Here, individuals
with recognisable red tint were classified according to their basic hair colour
type. For example, strawberry blonds were deemed class I (blond), whereas
people with auburn hair were classified as one of IV, V or VI (brown).
Although this was possible for 22 red-haired individuals, four had no definable
basic hair colour. These were excluded from the analysis of the light-dark
component. No participants with exclusively white hair were included in the
study. When a participant had dyed hair, the original hair colour was
determined by the hairline.

Genotyping
Buccal swabs (COPAN) were taken from all 400 participants and DNA was
extracted using Chelex 100 (Walsh et al32). In a comprehensive PubMed search,
12 SNPs were identified as promising candidates for further analysis using the
following criteria (Table 1, Supplementary Table S1): large odds ratio (OR),
validation in several independent studies, large sample sizes and adequate
population backgrounds, low to no linkage disequilibrium with other candidate
markers and suitability for genotyping in a single assay. In addition to the 12
SNPs, participants were genotyped for rs1426654 (SLC24A5), rs1129038
(HERC2) and rs1667394 (OCA2). SNP rs1426654 is a European ancestry
marker (Giardina et al33) used to control population background. SNPs
rs1129038 and rs1667394 served as genotyping quality markers because they
are in perfect LD with candidate SNPs rs12913832 and rs916977 respectively
(Mengel-From et al34; Sturm et al17).
Primers were designed and checked for possible dimer and hairpin structures

using the DNAstar Lasergene v8.1.2 software (DNASTAR, Madison, WI, USA)
and BLAST. PCR fragments had to be shorter than 200 bp in order to meet the
standards of reliable forensic or ancient DNA analysis.
For DNA amplification, a Multiplex PCR Master Mix (Qiagen, Hilden,

Germany) was used in a total reaction volume of 12.5 μl, with 0.2–0.5 ng
template DNA. PCR was performed with a thermal cycler 2700 (Life
Technologies, Carlsbad, CA, USA) under the following conditions: (1) 95 °C
15 min; (2) 35 cycles of 94 °C 30 s, 64 °C (SNPs nos 2–5, 7–8, 10 in Table 1) or
58 °C (SNPs nos 1, 6, 9, 11 and 12) 90 s, 72 °C 1 min; and (3) 60 °C 30 min.
PCR products were purified using ExoSAP-IT (Affymetrix, Santa Clara, CA,
USA) according to the manufacturer’s protocol. Single-base extension was
carried out in a total reaction volume of 7 μl, including 0.5 μl of cleaned PCR
products, using the SNaPshot Multiplex Kit (Life Technologies) on the same
PCR cycler as before. The single-base extension cycling conditions were as
follows: 25 cycles of 96 °C 10 s; 55 °C 5 s; and 60 °C 30 s. Fragment analysis was
performed with the ABI Prism 3130 Genetic Analyzer (Life Technologies) using
GeneMapper v3.2 (Life Technologies). For more information on primer
sequences and concentrations, see Supplementary Table S2a.

The model proposed by Walsh et al30 for the prediction of eye colour is
based upon six SNPs. Five of these had been genotyped in all our study
participants before (Table 1, SNPs nos 1, 3, 10–12). The 100 individuals of stage
2 were additionally genotyped for rs16891982 (SLC45A2) as described above,
with an annealing temperature of 58 °C in the first PCR. For more information
on primer sequences and concentrations, see Supplementary Table S2b.
The model devised by Branicki et al29 for predicting hair colour is based

upon 13 single or compound markers. Three of these were also included in our
set of candidate SNPs (Table 1, SNPs nos. 1, 3, 10) and were genotyped
in all participants. The 100 stage 2 individuals were also genotyped for the
remaining 10 markers, namely two compound markers in MC1R and
rs1042602 (TYR), rs4959270 (EXOC2), rs28777 (SLC45A2), rs683 (TYRP1),
rs2402130 (SLC24A4), rs12821256 (KITLG), rs16891982 (SLC45A2) and
rs2378249 (ASIP). SNPs were analysed as described above, with an annealing
temperature of 58 °C for the first PCR. The MC1R markers were analysed by
sequencing the whole locus. To this end, a 1080 bp fragment was amplified and
sequenced with an ABI Prism 3130× l Genetic Analyzer using the Big Dye
Terminator v3.1 Cycle Sequencing Kit (both Life Technologies), following the
manufacturer’s protocols. See Supplementary Table S2c for more information
on primers used in this study.
Genotype and phenotype data of this study were submitted to the

European Genome-phenome Archive (EGA, https://ega.crg.eu) with study
accession number EGAS00001001174 (sample/proband ids EGAN00001268626-
EGAN00001269025).

Statistical analysis
Genotypes for all markers of the two previously published models (or marker
sets) (Branicki et al29; Walsh et al30) were only available for 100 individuals in
our study (stage 2). To compare the predictive capability of the two marker sets
with a model derived specifically for our target population, the 300 individuals
of stage 1 were used to detect significant genotype–phenotype associations and
to create an appropriate prediction model. Data from stage 2 then served for
estimation and comparison of the predictive capability (sensitivity, specificity,
predictive accuracy, area under the receiver operating characteristic curve
(AUC)) for each new model and the two previously published models (Branicki
et al29; Walsh et al30). For illustration, we also performed model selection and
prediction evaluation on the whole data set (ie, stages 1 and 2 combined), using
cross-validation to estimate sensitivity and specificity.
Sample size calculations indicated that ~ 100 individuals per group would

suffice to detect an OR of 3 as nominally significant, depending upon the minor
allele frequency of the SNP of interest, and 150 individuals per group after
Bonferroni adjustment (12 SNPs tested, 80% power, 5% significance level).
Stage 1 therefore comprised 300 individuals. The association between a given
trait (ie, eye colour, hair colour/red tint, hair colour/light-dark component, skin
colour) and a candidate SNP was tested for statistical significance using
regression models. To allow for scarce genotypes, we performed permutation
tests (100 000 permutations) in addition to standard asymptotic tests. Since
P-values were not found to be notably different, only P-values from permuta-
tion tests will be given. Each SNP was analysed both individually (simple
regression) and in combination with other candidate SNPs (multiple regression
with backward selection), also allowing for possible SNP–SNP interactions.
Genotypic, additive allelic, dominant and recessive models were considered for
each SNP. Results, however, will be presented for the additive model only
because this model required the least parameters but yielded consistently large
effects. To derive robust prediction models, phenotypes were categorised in
various ways. Dependent on the scaling of the outcome, we performed logistic,
linear, ordinal (proportional odds) and/or multinomial logistic regression. Since
blue was by far the most frequent eye colour in our study, the analysis of eye
colour was confined to the discrimination between blue and non-blue. For hair
colour, red tint was treated as a dichotomous outcome whereas the light-dark
component was treated in three different ways, either as dichotomous (blond
versus non-blond), ordinal or quantitative (nine types of increasing darkness).
Skin colour was treated either as dichotomous (types I–II versus types III–IV) or
as ordinal. Model selection was performed differently for the four traits. For eye
colour and red tint, SNPs that remained significant in the multiple logistic
regression analysis after backward selection and adjustment for multiple testing

Table 1 Candidate SNPs investigated for an association with different

pigmentation traits

No. Gene SNP-ID Alleles Reference

1 HERC2 rs12913832 G/A Sturm et al17

2 HERC2 rs916977 G/A Kayser et al18

3 OCA2 rs1800407 G/A Sturm et al17

4 OCA2 rs7495174 G/A Duffy et al15

5 OCA2 rs4778138 G/A Duffy et al15

6 OCA2 rs4778241 C/A Duffy et al15

7 MC1R rs1805007 C/G/Ta Sulem et al21

8 MC1R rs1805008 C/T Sulem et al21

9 MC1R rs1805009 G/C Valverde et al20

10 IRF4 rs12203592 G/A Han et al2

11 SLC24A4 rs12896399 G/T Sulem et al21

12 TYR rs1393350 G/A Sulem et al21

Abbreviation: SNP, single-nucleotide polymorphism.
Reference: first report of an association between the respective SNP and a pigmentation trait.
aOnly alleles C and T of SNP rs1805007 (MC1R) were observed in our study.
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were included in the final model. For the light-dark component of hair colour,
and for skin colour, a SNP had to be significant in all or in all but one of the
multiple regression analyses after backward selection using different outcome
definitions (ie, at least two of three analyses for the light-dark component, at
least one of two analyses for skin colour).
The relationships between traits were analysed using logistic regression analysis,

treating one trait as the dependent variable and the other traits as independent
variables, both with and without the additional inclusion of SNP genotypes. All
four traits were encoded as dichotomous variables in these analyses. Model
selection was again performed by backward selection. Multidimensional scaling
was used to detect and visualise patterns in the phenotype data.
The predictive capability of a derived model was evaluated by means of the

phenotype probability π from logistic regression analysis. This was done only
for dichotomous outcomes (eg, blue versus non-blue eye colour). If π40.5, the
corresponding phenotype was assumed to be present. Predictive capability was
quantified by the sensitivity, specificity, predictive accuracy and AUC of the
model in question.
All statistical analyses were performed with R v2.10.1 (R Development Core

Team35) unless indicated otherwise. Hardy–Weinberg equilibrium was assessed
by means of the exact test implemented in R package genetics (Warnes et al36).
Package MASS was used for ordinal and multinomial regression (Venables and
Ripley37). Permutation tests of the linear and logistic regression models were
performed with package glmperm (Werft et al38). For ordinal regression models,
permutation tests were programmed in house. The predictive capabilities of
different models were evaluated with packages DiagnosisMed (Brasil39) and
pROC (Robin et al40). The proportion of phenotype heritability explained by a
given marker was calculated according to So et al.41 Note that these estimates
apply to single markers and do not take into account the characteristics of the
respective regression models. Furthermore, these estimates refer to the liability
scale and therefore tend to be higher than on the observation scale.
Sample size calculations were performed with the GPower software v3.0.8.42

All tests were two-sided and a P-value smaller than 0.05 was considered
nominally statistically significant. P-values were adjusted for multiple testing
using the Bonferroni method.

RESULTS

Hardy–Weinberg equilibrium
After adjustment for multiple testing, none of the SNPs showed a
significant deviation from the Hardy–Weinberg equilibrium.

Eye colour
Since blue was by far the most frequent eye colour in our study
population, we confined our analysis of eye colour to the discrimina-
tion between blue and non-blue (Supplementary Table S3a; for the
stratified genotype distribution, see Supplementary Table S4; for the
eye colour categorization, see Figure 1a). When analysed individually,

five SNPs were found to be significantly associated with blue eye
colour (Supplementary Table S3a), namely rs12913832, rs916977
(both HERC2), rs7495174, rs4778241 and rs4778138 (all OCA2).
When all 12 candidate SNPs were included in a multiple logistic
regression analysis, backward selection left only SNPs rs12913832
(HERC2) and rs1800407 (OCA2) with a significant phenotype
association after adjustment for multiple testing (Table 2). Of these
two SNPs, rs12913832 showed by far the strongest effect
(Po1.0× 10− 5, padjo1.2 × 10− 4, OR= 40.0, 95%CI= 18.3–87.5),
although the effect of rs1800407 was still of considerable size
(P= 0.0014, padj= 0.017, OR= 4.9, 95%CI= 1.8–13.6). When the
expected prevalence of blue eye colour was calculated for each
rs12913832/rs1800407 genotype combination (Supplementary Table
S3b), reasonable agreement with the observed frequencies was
observed. Models of brown versus non-brown eye colour and blue
versus brown eye colour revealed similarly strong genotype–phenotype
associations. Moreover, the results were largely independent of
whether dichotomous, ordinal or multinomial regression analyses
were performed. When modelling brown versus non-brown, blue
versus brown and in the ordinal regression analysis of eye colour, SNP
rs4778138 (OCA2) showed a nominally significant association with the
respective trait in a multiple regression that did not, however,
withstand correction for multiple testing.

Hair colour – red tint
Hair colour was defined by two distinct traits, namely a light-dark
component and whether red tint was visible in the scalp or body hair,
or not. Only two SNPs in the MC1R gene were found to be
significantly associated with the red tint trait in a multiple regression
analysis (Supplementary Table S5a; for the corresponding genotype
data, see Supplementary Table S6). Of these, rs1805007 showed the
stronger effect (Table 2; Po1.0 × 10− 5, padjo1.2× 10− 4, OR= 5.4,
95%CI= 2.8–10.3) whereas only a moderate association was noted for
rs1805008 (P= 1.0 × 10− 4, padj= 0.0012, OR= 3.5, 95% CI= 1.9–6.6).
As with eye colour, the observed and expected genotype-specific
prevalence of red tint were found to agree well (Supplementary
Table S5b). Similar results were obtained when red hair colour
(26 individuals) was analysed instead of red tint (102 individuals).

Hair colour – light-dark component
The light-dark component of hair colour was initially categorised as
blond, brown or black, with blond being the predominant type. In
addition, we defined nine evenly graded hair colour types of different

Table 2 Model-based genotype–phenotype association for four pigmentation traits for stage 1

Trait SNP (gene) p (padj) OR (95%CI) Explained heritabilitya

Eye colour (blue) dichotomous rs12913832 (HERC2) o1.0×10−5 (1.2×10−4) 40.0 (18.3–87.5) 46%

rs1800407 (OCA2) 0.0014 (0.017) 4.9 (1.8–13.6) 1%

Hair colour (red tint) dichotomous rs1805007 (MC1R) o1.0×10−5 (1.2×10−4) 5.4 (2.8–10.3) 14%

rs1805008 (MC1R) 1.0×10−4 (0.0012) 3.5 (1.9–6.6) 7%

Hair colour (light-dark, I–IX)b ordinal rs12913832 (HERC2) o1.0×10−5 (1.2×10−4) 2.9 (1.9–4.4)c 5%

rs12203592 (IRF4) o1.0×10−5 (1.2×10−4) 3.6 (2.0–6.3)c 5%

Skin type (I–IV) ordinal rs1805008 (MC1R) 6.0×10−5 (7.2×10−4) 3.0 (1.8–5.1)c 8%

rs1805007 (MC1R) 0.0035 (0.042) 2.5(1.4–4.3)c 5%

rs4778138 (OCA2) 4.9×10−4 (0.0059) 3.2 (1.6–6.2)c 4%

Abbreviations: CI, confidence intervals; OR, odds ratio; SNP, single-nucleotide polymorphism.
padj: Bonferroni-adjusted P-value (adjusted for 12 tests).
aThe proportion of the trait heritability explained by a given variant on the liability scale was assessed as described by So et al41 (without consideration of other markers interacting or in LD).
bIn the analysis of the light-dark component of hair colour, two individuals with pure red hair colour were removed.
cORs for ordinal phenotypes correspond to a proportional odds model.
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shading, ranging from light blond (type I) to black (type IX) (Figure 1b).
The most consistent association with hair colour was noted for
rs12913832 (HERC2), which showed a statistically significant effect
in all three analyses (dichotomous blond versus non-blond, ordinal
and linear regression of the light-dark component; Supplementary
Table S8a). SNP rs12203592 (IRF4) also showed a highly sig-
nificant association with the light-dark component of hair colour,
but was less strongly associated with the blond versus non-blond
trait. The two SNPs were also the only ones included in the
final model of the genotype–phenotype relationship (Table 2;
rs12913832: Po1.0 × 10 − 5, padjo1.2 × 10 − 4, OR= 2.9, 95%
CI= 1.9–4.4; rs12203592: Po1.0 × 10− 5, padjo1.2 × 10− 4, OR= 3.6,
95%CI= 2.0–6.3). For further details on the genotype–phenotype
relationship of the light-dark component, see Supplementary Tables
S7 and S8.

Skin colour
Skin colour was categorised into four types on using the Fitzpatrick
scale.31 Our genetic association analysis was performed twice, once
discriminating between skin types I–II and III–IV, and once by ordinal
regression of the four skin types (for details see Supplementary Tables
S9 and S10). SNPs rs1805007, rs1805008 (both MC1R) and rs4778138
(OCA2) were selected for the final model of the genotype–phenotype
relationship and showed a consistent albeit moderate association with
skin type (Table 2; rs1805008: P=6.0×10−5, padj=7.2×10−4, OR=3.0,
95% CI= 1.8–5.1; rs1805007: P= 0.0035, padj= 0.042, OR= 2.5, 95%
CI= 1.4–4.3; rs4778138: P= 4.9× 10− 4, padj= 0.0059, OR= 3.2, 95%
CI= 1.6–6.2). For further details on the genotype–phenotype relation-
ship of skin type, see Supplementary Tables S9 and S10.

Association between phenotypes
As was to be expected, the four pigmentation traits were not
statistically independent. Thus, the phenotypes blue eye colour and
blond hair colour and the phenotypes red tint and fair skin were
strongly associated with one another even when the respective
genotypes from the final genotype–phenotype models (Table 2) were
taken into account (Table 3). Interestingly, red tint and blond hair
colour were not significantly associated with one another in our data.

Joint multidimensional scaling analysis of the four traits in
both stages combined resulted in four distinct clusters (Figure 2).
These clusters were determined completely by blue eye colour and red
tint which therefore seem to be the most differentiating pigmentation
traits. The same clusters were also found in stages 1 and 2 individually
(data not shown). For information on the exact phenotypic composi-
tion of the four clusters, see Supplementary Table S11.

Predictive capability of SNP-based models
We next assessed the predictive capability of the different SNP- and
phenotype-based models derived in our study (Table 4a). In the
process, we used the most prevalent phenotype as the reference
category for eye and hair colour (light-dark component), that is, blue
eyes and blond hair, to ensure sufficient sample size. SNP-based
prediction was found to perform best for eye colour, with a sensitivity
of 93%, a reasonable specificity of 59%, a predictive accuracy of 84%
and an AUC of 77%. Additional inclusion of blond hair colour as a
predictor of eye colour increased the predictive capability only
marginally. Prediction of red tint also yielded comparatively high
accuracy (74–77%) owing to the high specificity of the SNP genotypes
(97–99%) and the low prevalence of the trait (31%), but had low
sensitivity (19–32%). The AUC was approximately 75%. Blond hair
was predicted moderately well by SNP genotypes (83% sensitivity,
67% specificity, 76% accuracy, 76% AUC). Interestingly, when
phenotypes were included in the logistic regression model, backward
selection excluded SNP rs12913832 (HERC2) to the benefit of blue eye
colour. However, the ensuing model gave poorer predictive power
(67% accuracy, 71% AUC) owing to a reduced sensitivity (67%).
Finally, fair skin (types I and II) could be predicted with very high
specificity (100%) using three SNPs, but sensitivity was low (9%),
thereby resulting in a predictive accuracy of only 51% and an AUC of
64%. Only a slight improvement was achieved by the inclusion of
other pigmentation traits as predictors.

Comparison with previously proposed marker sets
We compared our eye colour model comprising only rs12913832
(HERC2) and rs1800407 (OCA2) (Table 2) to the six SNPs of the so-
called ‘IrisPlex’, proposed by Walsh et al.30 Because of the high

Table 3 Associations between dichotomous pigmentation traits for stage 1

Pigmentation trait p (padj) p (padj)a OR (95% CI) OR (95% CI)a

Eye colour (blue)
Hair colour (blond) o1.0×10−5 (3.0×10−5) 0.0047 (0.014) 3.6 (2.1–6.2) 2.7 (1.3–5.5)

Hair colour (red tint)
Skin type (fair, I–II) o1.0×10−5 (3.0×10−5) 3.0×10−4 (9.0×10−4) 4.1 (2.4–7.2) 3.1 (1.7–5.6)

Hair colour (blond)b

Eye colour (blue) 1.0×10−5 (3.0×10−5) o1.0×10−5 (3.0×10−5)c 3.6 (2.1–6.3) 4.4 (2.5–7.8)c

Skin type (fair, I–II)
Hair colour (red) o1.0×10−5 (3.0×10−5) o1.0×10−5 (3.0×10−5)d 5.7 (3.1–10.2) 5.7 (3.1–10.2)d

Hair colour (blond) 2.7×10−4 (8.1×10−4) 2.7×10−4 (8.1×10−4)d 2.9 (1.6–5.2) 2.9 (1.6–5.2)d

Abbreviations: CI, confidence interval; OR, odds ratio; SNP, single-nucleotide polymorphism.
padj: Bonferroni-adjusted P-value (three tests). All associations were evaluated in a multiple logistic regression analysis treating the remaining three traits as influential variables, and by backward
selection.
aP-values and ORs are from a multiple logistic regression analysis including the predictive SNPs from Table 2 as influential variables.
bIn the analysis of the light-dark component of hair colour, two individuals with pure red hair colour were removed.
cMultiple logistic regression analysis including the predictive SNPs of Table 2 eventually disregarded rs12913832 (HERC2) after backward selection.
dMultiple logistic regression analysis eventually disregarded all predictive SNPs from Table 2 after backward selection.
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prevalence of blue eye colour and the low prevalence of green and
brown eye colour in our study population, we focused upon the
discrimination between blue and non-blue eye colour. For compar-
ison, we also considered a model based upon major SNP rs12913832
(HERC2) alone. All three models yielded comparable predictive
accuracy but the AUC of the IrisPlex model was found to be
considerably larger (89% versus 77%, Table 4b). For hair colour, we
compared our models (Table 2) to the 13 single or compound
markers proposed by Branicki et al.29 The latter performed worse than
our model for red tint. For blond hair, its predictive capacity was
rather low, with an accuracy of 56% and an AUC of 57%, and was
even outperformed by a model including only the major SNP
(Table 4b). Interestingly, the predictive accuracy for blond hair and
red tint was similar for the selected models of this study and a model
incorporating only the respective major SNP, ie, either rs12913832
(HERC2) or rs1805007 (MC1R).

Analysis of the whole data set
We also analysed our whole data set (ie, stages 1 and 2 combined) and
the results were consistently found to be similar to those of the two-
tiered analysis (Supplementary Tables S12-S17). Owing to the larger
sample size occasionally more significant results emerged. Thus, two
additional markers (rs1805008 in MC1R and rs12896399 in SLC24A4)
were significantly associated with the light-dark component of hair
colour, and one additional marker (rs7495174 in OCA2) emerged for
skin colour. For red tint, the same two markers in MC1R as before
were found to be significant. For eye colour the marker rs1800407 in
OCA2 was now disregarded in the final model, therefore this now only
consists of the main marker rs12913832 in HERC2.
When the associations between phenotypes were investigated, a new

significant relationship between blond hair colour and fair skin
emerged. Still, no significant association between red tint and blond
hair colour was found.

For blue eye colour, the predictive capability of the main marker
alone as estimated by cross-validation in the whole data set was higher
than the capability estimated from stage 2 for a model of one or two
markers selected from stage 1. Similar results were obtained for skin
colour. For red tint and blond hair colour, by contrast, the stage
2-based estimates for models derived in stage 1 were found to be the
higher ones.

DISCUSSION

In our study population, only six of 12 candidate SNPs investigated in
stage 1 were significantly associated with a pigmentation phenotype of
eye, hair or skin. These SNPs were located in four genes, namely
HERC2, MC1R, IRF4 and OCA2. The remaining SNPs showed no
consistent association in the different analyses performed. Due to the
limited sample size (300 individuals in stage 1), however, we cannot
exclude that weak effects may have been overlooked. This possibility is
also highlighted by the fact that an analysis of the whole data set yielded
more significantly associated markers than the two-tiered approach.
Larger sample sizes certainly would have revealed more genes to be
associated with the (polygenic) pigmentation traits of interest.
The marker set previously proposed by Walsh et al,30 including six

SNPs, achieved the best predictive capability for blue eye colour. This
implies that it would also be well suited for use in the comparatively
homogeneous Northern German population under study here.
Notably, for the red tint component of hair colour, the model
including only major SNP rs1805007 in the MC1R gene performed
slightly better in our study than the model suggested by Branicki
et al,29 which includes 13 single or compound markers. However, it
must be taken into account that Branicki et al29 considered only red
hair, and not red tint, as was done in our study. Using the same 13
markers to predict blond hair colour, their predictive capability turned
out to be even poorer. We observed that the Branicki model was much
inferior to major SNP rs12913832 (HERC2) alone and performed only
slightly better than mere chance prediction in the population under
study. Thus, the comprehensive prediction model previously suggested
for hair colour did not achieve convincing predictive results in our
population whilst a model comprising fewer (or only a single) marker(s)
performs equally well or even better.
The main goal of our analysis was to develop a prediction model

with a view to its practical application in a realistic target population,
and to compare its predictive capability to that of previously proposed
marker sets. We are fully aware that some of our results may only
apply to Northern Germany. Even though population genetic variation
is known to be small in Europe,43–45 more markers or different
markers may be required for accurate phenotype prediction in other
or less homogeneous populations. Moreover, the power of forensic
DNA phenotyping depends upon the prevalence of the pigmentation
phenotype(s) in question, and these frequencies differ considerably
between European countries (as is clearly demonstrated in the case of
red hair). Instead of sensitivity and specificity, the negative and
positive predictive values of a given model are more important
parameters for practical use, and these are a function of the
prevalence. Nevertheless, at least for blue eye colour, our evaluation
of the markers proposed by Walsh et al30 gave similar results as a
Europe-wide evaluation, by the same group,46 of a similar prediction
model proposed by Liu et al.47 However, since Northern Germany
constitutes only a very small segment of the European gene pool, the
general validity of our conclusion needs to be clarified in future
studies. For worldwide samples, different models may be required and
the addition of ancestral markers may be worthwhile in these
instances, owing to the preponderance of brown eye colour and dark
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Figure 2 Multidimensional scaling analysis of four pigmentation traits.
Squares: blue eye colour, red tint; circles: blue eye colour, no red tint;
triangles: no blue eye colour, red tint; crosses: no blue eye colour,
no red tint. All individuals of stages 1 and 2 were included in the analysis
except four individuals with pure red hair. Phenotypes were coded as
follows: eye colour, ordinal (blue, green, brown); hair colour - red tint,
dichotomous; hair colour - light-dark component, ordinal (I to IX); skin
colour, ordinal (I to IV).
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skin or hair colour in some regions. Such markers were successfully
applied before. In the respective studies28,48 SNP rs12913832 (HERC2)
again had the largest impact on eye colour prediction.
One reason for the poor performance of the blond hair markers

proposed by Branicki et al29 may be that the original study used a
rather small sample of 385 individuals to estimate a large number of
parameters (13 influential variables and four response hair categories)
in a multinomial model, which rendered the analysis prone to over-
fitting. The use of non-validated SNPs with minor or no effect and the
possibility of population-specific genotype–phenotype relationships
imply that the development of ever refined models with large numbers

of SNPs may result in prediction tools that are no longer robust.
Consequently, weak-to-moderate effects could often not be
replicated.11,18,49 Recently, the model originally proposed by Branicki
et al29 has been refined on the basis of a large European data set. The
resulting so-called ‘HIrisPlex’50 comprises all previously proposed 13
markers plus 8 additional markers also considered by Branicki et al.29

Because of its recency we have not been able to determine whether the
HIrisPlex produces better results than the smaller model in the
Northern German population.
For simplicity and comparability, phenotype prediction employed a

probability threshold of 0.5 in our analyses. Possibly, other thresholds

Table 4a Predictive capability of several prediction models for pigmentation phenotypes (stage 2 only). Capability of selected models to predict

dichotomous pigmentation phenotypes

Phenotype Prevalence Predictors Sensitivitya Specificitya Accuracya AUCa

Eye colour (blue) 73 rs12913832 (HERC2)
rs1800407 (OCA2)

93 (85–97) 59 (41–75) 84 (76–90) 77 (67–88)

rs12913832 (HERC2)
rs1800407 (OCA2)
hair colour (blond)

92 (83–96) 62 (43–78) 84 (76–90) 79 (67–91)

Hair colour (red tint) 31 rs1805007 (MC1R)
rs1805008 (MC1R)

19 (9–36) 99 (92–100) 74 (65–82) 75 (65–85)

rs1805007 (MC1R)
rs1805008 (MC1R)
skin type (fair, I–II)

32 (19–50) 97 (90–99) 77 (65–82) 74 (63–85)

Hair colour (blond) 53 rs12913832 (HERC2)
rs12203592 (IRF4)

83 (70–91) 67 (53–79) 76 (66–83) 76 (67–85)

rs12203592 (IRF4)
eye colour (blue)

67 (54–78) 67 (53–79) 67 (58–76) 71 (62–80)

Skin type (fair, I and II) 54 rs1805008 (MC1R)
rs1805007 (MC1R)
rs4778138 (OCA2)

9 (3–20) 100 (92–100) 51 (41–61) 64 (54–74)

hair colour (red)

hair colour (blond)

25 (15–38) 91 (79–96) 55 (45–65) 66 (56–77)

Abbreviation: AUC: area under the receiver operating characteristic curve.
The predictive capabilities were estimated from stage 2 individuals only (n=100). Two individuals with pure red hair were excluded from the analysis of blond hair colour. All numerical figures are
percentages.
aFigures in brackets denote the respective 95% confidence interval.

Table 4b Predictive capability of several prediction models for pigmentation phenotypes (stage 2 only). Comparative analysis of prediction

models for pigmentation phenotypes (present study, Walsh et al,30 Branicki et al29)

Model Sensitivitya Specificitya Accuracya AUCa

Eye colour (blue)
Walsh et al30 90 (82–95) 63 (44–78) 83 (74–89) 89 (81–96)

Present study 93 (85–97) 59 (41–75) 84 (76–90) 77 (67–88)

rs12913832 (HERC2) 90 (82–95) 63 (44–78) 83 (74–89) 77 (67–87)

Hair colour (blond)
Branicki et al29 67 (54–78) 43 (30–58) 56 (46–66) 57 (45–69)

Present study 83 (70–91) 67 (53–79) 76 (66–83) 76 (67–85)

rs12913832 (HERC2) 88 (77–95) 57 (42–70) 73 (64–81) 73 (64–81)

Hair colour (red tint)
Branicki et al29 26 (14–43) 88 (78–94) 69 (59–77) 62 (50–75)

Present study 19 (9–36) 99 (92–100) 74 (65–82) 75 (65–85)

rs1805007 (MC1R) 29 (16–47) 96 (88–99) 75 (66–82) 62 (54–71)

Abbreviation: AUC, area under the receiver operating characteristic curve.
Predictive capabilities were estimated from stage 2 individuals only (n=100). Two individuals with pure red hair were excluded from the analysis of blond hair colour. All numerical figures are
percentages.
aFigures in brackets denote the respective 95% confidence interval.
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might produce better results for some of the models. Another aspect is
that individuals with a phenotype probability around 0.5 are difficult
to classify correctly anyway. One possibility to overcome this problem
would be to apply a high and a low threshold in the first place, and to
treat individuals between these thresholds as ‘undetermined’.29,46 In
this case, specificity and sensitivity of the prediction model could be
increased but would result in a large proportion of cases where no
prediction is possible. A second option would be to discard thresholds
altogether and for the scientist or forensic expert to merely commu-
nicate the actual phenotype probability.
Several methods are available for statistical model selection with the

aim of prediction. We used regression models with backward selection
based upon a likelihood ratio test of the association between influential
variables (ie, candidate SNPs) and an outcome of interest. Another
popular method is maximisation of the AUC as employed in the
studies by Walsh et al30 and Branicki et al.29 Here, the individuals of
the two different outcome groups are ordered by the predictive
probability to belong to group 1, and the AUC measures how well the
individuals can be differentiated by individuals of group 1 having
higher probabilities than individuals of group 2 (as would be
desirable). Maximisation of the AUC is perhaps the most widely used
but its applicability has come under critical debate lately.51,52 In
addition, for small marker sets, estimation of the AUC is imprecise
because the corresponding receiver operating curve has only few
supporting points. For our study including 12 markers in the full
model, but only two to three markers in the final models, we
consequently chose a regression approach. Note that the marker sets
of Walsh et al30 and Branicki et al29 included a higher number of
markers, therefore the estimation of the AUC is easier in those studies.
We noted that a more refined definition of the pigmentation

phenotypes yielded more significant genetic associations. This was
most pronounced for hair colour which was analysed as a dichot-
omous (blond versus non-blond), ordinal and quantitative trait
(types I–IX). Thus, fine phenotyping may facilitate the detection of
more moderate genotype–phenotype associations in the future.
Fine phenotyping has been applied with favourable results to eye
colour before by Liu et al.24 In the same vein, Candille et al11

successfully measured pigmentation of eye, skin and hair colour on
a quantitative scale.
Our study also highlights that pigmentation, even of one and the

same part of the body, is genetically complex. This is best illustrated by
hair colour which was decomposed into two different sub-phenotypes
lacking significant association with one another in our data. Further-
more, whereas the light-dark component was associated with SNP
rs12913832 in the HERC2 gene (the SNP that had a very strong effect
on eye colour), red tint was associated with SNP rs1805007 in the
MC1R gene. Variation in MC1R, in turn, was also shown to be
associated with skin colour.
Of all pigmentation traits investigated in our study, eye colour

turned out to be best predictable by SNP genotypes. Even for eye
colour, however, these predictions were far from being very reliable.
Moreover, as was illustrated by the comparison between our models
and those of Walsh et al30 and Branicki et al,29 the incorporation of
additional SNPs is likely to achieve only small improvements, if any, in
terms of the predictive power in a specific population. For skin colour,
no reliable gene-based prediction model could be developed at all.
These findings, together with the supposedly highly polygenic nature
of the pigmentation traits, suggest that it may simply not be possible in
a specific population to predict some of the pigmentation phenotypes
with sufficient certainty from a handful of SNP genotypes. Instead,
reliable prediction may require the use of a high number of SNPs, for

example, as formatted on available DNA microarrays. Not least,
similar approaches have been used successfully to facilitate the
inference of population affiliation in Europe.43,44,53 Finally, our study
also revealed that the prediction of one pigmentation phenotype may
benefit from using information on other pigmentation phenotypes, if
and when such information is available. In the future our method
might also be combined with other SNP-based assays, eg, for the
determination of human origin.
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