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Genome-wide gene–gene interaction analysis for
next-generation sequencing

Jinying Zhao1, Yun Zhu1 and Momiao Xiong*,2

The critical barrier in interaction analysis for next-generation sequencing (NGS) data is that the traditional pairwise interaction

analysis that is suitable for common variants is difficult to apply to rare variants because of their prohibitive computational time,

large number of tests and low power. The great challenges for successful detection of interactions with NGS data are (1) the

demands in the paradigm of changes in interaction analysis; (2) severe multiple testing; and (3) heavy computations. To meet

these challenges, we shift the paradigm of interaction analysis between two SNPs to interaction analysis between two genomic

regions. In other words, we take a gene as a unit of analysis and use functional data analysis techniques as dimensional

reduction tools to develop a novel statistic to collectively test interaction between all possible pairs of SNPs within two genome

regions. By intensive simulations, we demonstrate that the functional logistic regression for interaction analysis has the correct

type 1 error rates and higher power to detect interaction than the currently used methods. The proposed method was applied to

a coronary artery disease dataset from the Wellcome Trust Case Control Consortium (WTCCC) study and the Framingham Heart

Study (FHS) dataset, and the early-onset myocardial infarction (EOMI) exome sequence datasets with European origin from the

NHLBI’s Exome Sequencing Project. We discovered that 6 of 27 pairs of significantly interacted genes in the FHS were

replicated in the independent WTCCC study and 24 pairs of significantly interacted genes after applying Bonferroni correction in

the EOMI study.
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INTRODUCTION

Complex diseases are caused by multiple genes and their
interactions.1 Interaction analysis provides a complementary strat-
egy to the genome-wide association studies (GWAS).2,3 Many
statistical methods including logistic regression and linkage
disequilibrium (LD)-based methods have been developed to detect
interaction.2,4–8 However, these methods were originally designed
to detect interaction for common variants and are difficult to apply
to rare variants because of their high type 1 error rates and low
power to detect interaction between rare variants.
The rapidly developed next-generation sequencing (NGS) technol-

ogies detect ten million genomic variants including both common and
rare variants.9–11 The critical barrier in interaction analysis for rare
variants is the curse of dimensionality of the data and the low
frequencies of rare variants in the data. The high dimension of the
data for interaction analysis poses two great challenges. The first
challenge is to reduce prohibitive amount of computational time. An
all-pairs scan of the SNPs genome wide may take many years to
complete.5 The second challenge for genome-wide interaction analysis
with NGS data arises from the multiple statistical tests.
The current paradigm of pairwise interaction analysis is lack of

power to detect interaction between rare variants in a population due
to the low frequencies of the rare variants. Interactions may be present
in only a few samples, or even no sampled individuals at all will
display the interaction effects. Large discrepancies in the number of
observations between different combinations of rare variants will cause
serious problems in identifying interactions in the population.

The development of novel concepts and statistics for testing
interaction between rare variants and between rare and common
variants, which can reduce the dimensionality of the data, the number
of tests and the time of computations, and improving the power to
detect interaction are urgently needed. To meet this challenge, we first
change a basic unit of interaction analysis from a pair of SNPs to a pair
of genes (or genomic regions). We take a gene as a basic unit of the
interaction analysis and collectively test interaction between all
possible pairs of SNPs within two genes. This new paradigm of
interaction analysis has two remarkable features. First, it uses all
information in the gene to collectively test interaction between
multiple SNPs within the gene. Second, it will largely reduce the
number of tests and will alleviate multiple testing problems.
After we change the unit of interaction analysis, we then use

functional data analysis techniques to further reduce the dimension-
ality of the data. We use genetic variant profiles, which will recognize
information contained in the physical location of the SNP as a major
data form.12 The densely typed genetic variants in a genomic region
for each individual are so close that these genetic variant profiles can
be treated as observed data taken from curves.13 The genetic variant
profiles are called functional. Since standard multivariate statistical
analyses often fail with functional data,14,15 we formulate a test for
interaction between two genes as a functional logistic regression
model. Functional logistic regression is a natural extension of the
standard logistic regression for traditional interaction analysis.
The functional logistic regression for interaction analysis can

properly combine all pairwise interaction tests to obtain an overall
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test for interaction between all variants in two genes (or genomic
regions). The functional logistic regression uses data reduction
techniques to compress the signal into a few functional principal
components. Since rare variants are infrequent and irregularly spaced,
each individual has relatively little information available. The func-
tional logistic regression can effectively pool the data across all
individuals to maximize the available information.
To evaluate its performance for interaction analysis, we use large-

scale simulations to calculate the type I error rates of the functional
logistic regression for testing interaction between two genes and to
compare its power with pairwise interaction analysis, logistic regres-
sion on principal components and collapsing method. To further
evaluate its performance, the functional logistic regression for inter-
action analysis is applied to three datasets: (1) the early-onset
myocardial infarction (EOMI) exome sequence datasets with
European origin (EA) from the NHLBI’s Exome Sequencing Project
(ESP), (2) coronary artery disease (CAD) dataset from the Wellcome
Trust Case Control Consortium (WTCCC) study and (3) the
Framingham Heart Study (FHS) dataset. We find that the functional
logistic regression for interaction analysis substantially outperforms
the current pairwise interaction analysis method and collapsing
method in both power analysis and real data applications.

MATERIALS AND METHODS

Functional logistic regression model for gene–gene interaction
analysis
We first define the genotypic function. Consider two genomic regions [a1, b1]
and [a2, b2]. Let xi(t) and xi(s) be genotypic functions of the i-th individual defined in
the regions [a1, b1] and [a2, b2], respectively. Let t and s be a genomic position in the
first and second genomic regions, respectively. Define a genotype profile xi(t) of the
i-th individual as an indicator variable for genotype at a SNP.
Next, we extend the traditional logistic regression model to the functional

logistic regression for modeling main and interaction effects (Supplementary
Note 1):
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where α(t) and β(t) are the putative genetic additive effects of two SNPs located
at the genomic positions i and s, respectively, γ(t,s) is the putative interaction
effect between two SNPs located at the genomic positions t and s.
We expand genotype functions in terms of eigenfunctions (Supplementary

Note 1):
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The traditional odds ratio concept defined for locus can also be
extended to the genomic region. The odds ratio associated with the
first genome region and the second genome region are, respectively,

defined as OR1 ¼ e
R
T
aðtÞxðtÞdt

;OR2 ¼ e
R
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bðsÞxðsÞds. The odds ratio associated

with susceptibility in both first and second genomic regions is then
computed as OR12 ¼ OR1OR2e

R
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S
gðt;sÞxðtÞxðsÞdsdt . Define a multi-

plicative interaction measure between two genomic regions as
I12 ¼ log OR12=OR1OR2ð Þ ¼ R

T
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Sgðt; sÞxðtÞxðsÞdsdt. If we assume that each

genomic region has only one SNP, then we have OR1= eα, OR2= eβ, OR12=
OR1OR2e

γ and I12= γ, which are consistent with the standard results for
traditional analysis of interaction between two SNPs.

Test statistics
Assume that the total number of individuals in cases and controls is n. Let yi,
i= 1, 2,… n denote the disease status of the i-th individual. A value of 1 (yi= 1)
is used to indicate ‘disease’ and a value of 0 (yi= 0) to indicate ‘normal’. From
equation (4), it follows that
pi ¼ E½yi ¼ 1jWi� ¼ eW

T
i b= 1þ eW

T
i b

� �
. The likelihood function is given by
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The maximum likelihood method will be used to estimate parameters b.16 Let
W ¼ W1 ? Wn½ �T . The variance–covariance matrix of the estimate b̂ is
given by

Varðb̂Þ ¼ ðWTDWÞ�1; ð6Þ
where D=diag (π1, …, πn).
Now we study to test interaction between two genomic regions (or genes).

Formally, we investigate the problem of testing the following hypothesis:
γ(t, s)= 0, ∀ t∈ [a1, b1], s∈ [a2, b2], which is equivalent to testing the

hypothesis in equation (4):

g ¼ 0

Let Λ be the matrix corresponding to the parameter γ of the variance matrix
Var (b̂) in equation (6). Define the test statistic for testing the interaction
between two genomic regions [a1, b1] and [a2, b2] as

TI ¼ ĝTL�1ĝ ð7Þ
Then, under the null hypothesis H0: γ= 0, T1 is asymptotically distributed as a
central χ2(JK) distribution.

RESULTS

Null distribution of test statistics
In the previous section, we showed that the test statistics T1 is
asymptotically distributed as a central χ2(JK) distribution. To examine
the validity of this statement, we performed a series of simulation
studies to compare their empirical levels with the nominal ones. We
first consider the common variants. We used the MS software17 to
generate a population of 2 000 000 chromosomes with 500 SNPs in a
genomic region, including 150 (30%) common with MAF≥ 0.05, 50
(10%) low frequency with 0.01oMAFo0.05 and 300 (60%) rare with
MAF≤ 0.01 SNPs, under a neutrality model. We randomly selected
10% of the variants as risk variants. Two haplotypes were randomly
sampled from the population and assigned to an individual. The
number of sampled individuals identified as controls ranges from 1000
to 3000. We consider two scenarios to sample cases: (1) βG= 0, βH= 0
and βGH= 0; and (2) βG= log2, βH= log2 and βGH= 0. We assume
baseline penetrance 0.001, where p0= 0.01, eα= p0=ð1� p0Þ. In
evaluation of type 1 error rates of functional logistic regression, we
selected top of the functional principal components in the expansion
of genotypic functions, which account for 80% of the genetic variation
in the genomic regions being tested. In addition to functional logistic
regression, we also examined the null distribution of the collapsing
method,18 pairwise logistic regression and PCA logistic regression in
which the number of principal components was selected such that
they account for 80% of genetic variations in the genomic regions
being tested.
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Table 1 and Supplementary Tables S1 and S2 summarize the type I
error rates of the functional logistic regression for testing the
interaction between two genes with common, rare and all variants,
respectively, at the nominal levels α= 0.05, α= 0.01 and α= 0.001.
Supplementary Tables S3–S5,S6–S8 and S9–S11 summarized the type I
error rates of the collapsing method, pairwise logistic regression and
PCA logistic regression for testing the interaction between two genes
with common variants, rare variants and all variants, respectively.
These tables showed that the type I error rates of the functional logistic
regression and PCA logistic regression for testing interaction between
two genomic regions in any cases were not appreciably different from
the nominal levels. However, we observed that the type 1 error rates of
the collapsing method for interaction analysis were inflated and the
type 1 error rates of the pairwise logistic regression for testing
interaction were deflated.

Power evaluation
To evaluate the performance of the functional logistic regression for
testing the interaction between two genomic regions for a qualitative
trait, we used simulated data to estimate their power to detect a true
interaction. We also used MS software to simulate 1 000 000 indivi-
duals with 120 variants in the first gene and 80 variants in the second
gene. An individual’s disease status was determined based on the
individual’s genotype, disease interaction models and the penetrance
for each locus. We consider three disease interaction models:
dominant × dominant, recessive× recessive and additive× additive
models as shown in Supplementary Table 12. We assumed α=− 4.60,
βG= log2 and βH= log2. We also assumed that the parameters in the
disease interaction models across all pairs of risk variant sites are equal
and the risk variants were assumed to influence disease susceptibility
jointly. However, we only consider pairwise interactions between two
risk SNPs that were located in different genomic regions. Each
individual was assigned to the group of cases or controls depending
on their disease status. The process for sampling individuals from the
population of 2 000 000 haplotypes was repeated until the desired
samples were reached for each disease model. We assumed that 2000
cases and 2000 controls were sampled.
We first study the power of statistics for testing interaction between

two genomic regions with rare variants. Figure 1 and Supplementary
Figures S1 and S2 plotted the power curves of four statistics: the
functional logistic regression, the PCA logistic regression, collapsing
method and the pairwise logistic regression, where permutations were
used to adjust for multiple testing for testing interaction between two
genomic regions as a function of an interaction measure at the
significance level α= 0.05 under the additive ∪ additive, dominant ∪
dominant and recessive ∪ recessive interaction models, respectively.
We assumed 2000 cases and 2000 controls, and 10% of risk variants.
We observed that the functional logistic regression had the highest
power and that the pairwise regression where we tested the interaction
between all possible pairs of SNPs in two genomic regions (genes) had

the lowest power among four statistics under all scenarios. The power
of functional logistic regression was substantially higher than that of
the pairwise logistic regression tests. Difference in power between the
functional logistic regression and the other three test statistics
dramatically increased with the interaction measure.
Next, we evaluate the power of tests for common variants. Figure 2

and Supplementary Figures S3 and S4 showed the power curves of
four statistics for testing the interaction between two genomic regions
with common variants under the additive ∪ additive, dominant ∪
dominant and recessive ∪ recessive interaction models, respectively.
The sample sizes and proportion of risk variants were assumed as
before. The power of all tests for interactions between the genomic
regions with common variants were higher than that with rare variants

Table 1 Type 1 error rates of functional logistic regression for testing interaction between two genes with common variants

Sample size βG= βH=0 βG=2, βH=0 βG= βH=2

0.05 0.01 0.001 0.05 0.01 0.001 0.05 0.01 0.001

1000 0.0480 0.0103 0.0010 0.0569 0.0098 0.0010 0.0524 0.0109 0.0011

1500 0.0513 0.0105 0.0010 0.0510 0.0098 0.0009 0.0492 0.0107 0.0010

2000 0.0497 0.0102 0.0010 0.0493 0.0105 0.0010 0.0532 0.0101 0.0011

2500 0.0518 0.0099 0.0010 0.0516 0.0096 0.0010 0.0532 0.0101 0.0011

3000 0.0519 0.0103 0.0010 0.0504 0.0102 0.0010 0.0501 0.0105 0.0011
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Figure 1 Power curves of four statistics: the functional logistic regression,
the PCA logistic regression, collapsing method and the pairwise logistic
regression, where permutations were used to adjust for multiple testing for
testing interaction between two genomic regions that consist of rare variants
as a function of an interaction measure at the significance level α=0.05
under the additive ∪ additive model, assuming 2000 cases and 2000
controls, and 10% of risk variants.
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under the same conditions, but the power patterns of the four tests for
the common variants were similar to that for rare variants except for
the PCA logistic regression under the additive ∪ additive and
dominant ∪ dominant. We observed that the power of the functional
logistic regression was the highest, followed by the PCA logistic
regression and collapsing method. The power of the pairwise logistic
regression tests was the lowest.
To further evaluate the power of the tests, we plotted the

Supplementary Figures S5–S7 showing the power curves of four
statistics for testing the interaction between two genomic regions with
all variants (common, low-frequency and rare variants) under the
additive ∪ additive, dominant ∪ dominant and recessive ∪ recessive
interaction models, respectively. The power of the functional logistic
regression is still highest among the four statistics.
The number of variants has a large impact on the power of the tests

for interaction. Figure 3 and Supplementary Figures S8 and S9 showed
the power curves of the four statistics for testing interaction between
two genomic regions with rare variants as a function of the proportion
of risk alleles under the additive ∪ additive, dominant ∪ dominant
and recessive ∪ recessive interaction models, respectively. We
assumed 2000 cases and 2000 controls, and the interaction measure
of 2 for the additive ∪ additive, dominant ∪ dominant interaction
models, 3000 cases and 3000 controls, and interaction measure of 3

for the recessive ∪ recessive interaction model. We observed that the
power of the functional logistic regression for testing the interaction
was the highest among the four statistics, followed by the collapsing
method, PCA logistic regression and the pairwise logistic regression.
Since the collapsing method had large type 1 error rates, when the
proportion of risk variants was close to zero (0.02), the power of
collapsing method under the additive ∪ additive interaction model
was higher than that of the functional logistic regression.
To examine the power pattern for common variants, we plotted

Figure 4 and Supplementary Figures S10 and S11 that showed the
power curves of the four statistics for testing interaction between two
genomic regions with common variants as a function of the proportion
of risk alleles under the additive ∪ additive, dominant ∪ dominant
and recessive ∪ recessive interaction models, respectively. We
observed that the power of the functional logistic regression for
testing interaction between genes with common variants was the
highest for all proportion of risk variants, followed by the PCA logistic
regression, collapsing method and pairwise logistic regression.

Application to real data examples
To further evaluate their performance, the four statistics for testing
interaction were first applied to the FHS for cardiovascular disease
(CVD) and then to the WTCCC for CAD study. We included all SNPs
(the SNPs in introns and exons) in 5 kb frank of the gene in the
analysis. We used gene annotation database hg19/NGRCh37 build,
which match our datasets to define the gene/snp annotation. The FHS
included 2827 individuals (633 individuals with CVD and 2194
controls) in the interaction analysis.19 The WTCCC CAD study
included 1929 cases and 2938 controls.20 A total of 8108 genes that
were common in FHS and WTCCC CAD datasets were included in
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Figure 2 Power curves of four statistics: the functional logistic regression,
the PCA logistic regression, collapsing method and the pairwise logistic
regression, where permutations were used to adjust for multiple testing for
testing interaction between two genomic regions that consist of common
variants as a function of an interaction measure at the significance level
α=0.05 under the additive ∪ additive model, assuming 2000 cases and
2000 controls, and 10% of risk variants.
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Figure 3 Power curves of four statistics: the functional logistic regression,
the PCA logistic regression, collapsing method and the pairwise logistic
regression, where permutations were used to adjust for multiple testing for
testing interaction between two genomic regions that consist of rare variants
as a function of proportion of risk variants at the significance level α=0.05
under the additive ∪ additive model, assuming 2000 cases and 2000
controls, and the interaction measure of 2.5.
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the interaction analysis. A P-value for declaring significant interaction
after applying the Bonferroni correction for multiple tests was
1.52× 10− 9. The results for the FHS were summarized in Table 2.
In total, 27 pairs of genes consisting of 54 distinct genes showed
significant evidence of interaction with P-values o1.22×10− 9, which
were calculated by the functional logistic regression method.
Supplementary Table S2 also listed P-values for testing interactions
between genes by PCA logistic regression, collapsing method (group-
ing all variants with MAF≤ 0.1) and the minimum of P-values for
testing all possible pairs of SNPs between two genes and P-values of
pairwise logistic regression by permutation using standard logistic
regression. If none of the variants with MAF≤ 0.1 exists, the statistics
based on the collapsing method cannot be calculated, therefore we put
NA in Table 2. We investigated whether these interacted genes in the
FHS can be replicated in the WTCCC datasets. Since, we will carry out
27 tests, the P-value for declaring replication after the Bonferroni
correction for multiple tests was 0.0019. We observed that 6 of the 27
pairs of significantly interacted genes in the FHS were replicated in the
independent WTCCC study (Table 3). In Table 3, we also listed an
additional six pairs of genes. Although they did not reach significant
levels, the P-values were quite small in the two independent studies.
We observed several remarkable features from these results. First,

we often observed the pairwise interaction between common and

common variants (74%), rare and common variants (13%), rare and
rare variants (4%) and low-frequency and common variants (9%), but
less observed was the significant pairwise interaction between low
frequency and low-frequency variants, and low-frequency and rare
variants with P-values for testing interaction o1.0× 10− 4 in Tables 2
and 3, where variants with MAFo0.01 were defined as rare variants,
variants with 0.05≥MAF≥ 0.01 defined as low-frequency variants and
variants with MAF≥ 0.05 were defined as common variants. Second,
pairs of SNPs between two genes jointly had significant interaction
effects, but individually each pair of SNPs made mild contributions to
the interaction effects as shown in Supplementary Table S13. Third,
the FLR often had a much smaller P-value to detect interaction than
PCA logistic regression, collapsing method and the minimum of
P-values of pairwise logistic regression tests. Fourth, Tables 2 and 3
showed that genes may not show even mild marginal association, but
they did demonstrate significant evidence of interaction.
It is interesting to note that many genes in Table 3 were reported

that they were either associated with diseases or their protein products
form protein–protein interaction networks.21–28

To investigate interaction between genes with NGS data, the four
statistics were applied to the EOMI exome sequence data from the
NHLBI’s ESP (that can be downloaded from dbGaP), where a total of
1126 individuals (786 cases and 376 controls) with EA were exome
sequenced. A total of 12 675 genes were included in the analysis.
A P-value for declaring significant interaction after applying the
Bonferroni correction for multiple tests was 622×10− 10. In total, 24
pairs of genes showed significant evidence of interaction with P-values
o1.23× 10− 11, which were calculated by the functional logistic
regression (Table 4). In Table 4, we also listed P-values for testing
interactions between genes by PCA logistic regression, collapsing
method and the minimum of P-values for testing all possible pairs
of SNPs between two genes using standard logistic regression. For the
majority of the pairs of genes, the collapsing method could not be
applied and hence the P-values for these pairs of genes were not listed
in Table 4. In contrary with the FHS and WTCCC studies, we often
observed the pairwise interaction between rare and rare variants
(69%), rare and common variants (19%), but less observed was
significant pairwise interaction between common and common
variants (12%). The variation of all pairs of SNPs between genes
TMEM52 and TET3 could not been observed in either cases or
controls. Therefore, in Table 4 NA to indicate that that the logistic
regression for all pairs of SNPs could not been carried out. Again,
Table 4 demonstrated that the P-values by the functional logistic
regression were much smaller than that by the PCA logistic regression,
collapsing methods and by the traditional pairwise logistic regression
test. Similar to the CVD in the FHS and WTCCC studies, we also
observed that pairs of SNPs between two genes jointly had significant
interaction effects, but individually each pair of SNPs made mild
contributions to the interaction effects as shown in the Supplementary
Table S14 where P-values of 8 out of 25 pairs of SNPs were o0.0373.
However, deep analysis revealed that the traditional logistic regression
for interaction analysis was designed for common variants and should
be extended to meet the challenge arising from rare variants
(Supplementary Note 2). In other words, if the risk alleles at the
two loci do not jointly appear in the cases, but are jointly presented in
the controls then the interaction measure will become negative infinite
IGH=−∞. Again, if the risk alleles at the two loci are jointly present in
cases, but never appeared in controls then interaction measure will be
assigned positive infinite IGH=∞. They are strongly interacted with
each other to cause disease. Supplementary Table S15 listed the
interaction measure of 13 pairs of rare variants that were not present
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Figure 4 Power curves of four statistics: the functional logistic regression,
the PCA logistic regression, collapsing method and the pairwise logistic
regression, where permutations were used to adjust for multiple testing for
testing interaction between two genomic regions that consist of common
variants as a function of proportion of risk variants at the significance level
α=0.05 under the additive ∪ additive model, assuming 2000 cases and
2000 controls, and the interaction measure of 2.5.
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in Supplementary Table S14 by the extended logistic regression
analysis. In the functional logistic regression analysis, these rare
variants were compressed into a few functional principal components
and hence their interaction information were preserved in the
interaction analysis between two genes and the P-value for testing
interaction between TMX4 and C20orf7 were very small (P-value
o1.09× 10− 18).
From the literature, we know that genes ZBTB7A, ZNF770, HES7

and STRADB formed protein–protein interaction networks with other
proteins.26,30,35–37 ZSCAN1, UBE2J2, GDPD3, TET3, SERPINA9,

ABHD2 and CYP1A1 were involved in the interaction with other
proteins and associated with Alzheimer's disease, neurodegeneration,
type 2 diabetes, ischemic stroke and CAD.29,31–34,38,39

DISCUSSION

The widely used methods for interaction analysis are based on pairwise
interaction analysis. The pairwise interaction analysis was originally
designed for testing the interaction between common variants and is
difficult to apply to genome-wide interaction analysis for NGS data
due to its lack of power to detect interaction between rare variants and

Table 2 P-values of 27 pairs of significantly interacted genes identified by FLR

Gene 1 Chr P-value Gene 2 Chr P-value P-value

Gene 1 Gene 2 FLR PCALR Collapsing Pairwise (minimum) Pairwise (permutation)

NR2F2 15 8.4E−01 CEP192 18 9.8E−01 6.9E−24 6.8E−07 NA 3.98E−02 5.05E−02

SSPN 12 1.0E−01 Nbla00526 12 5.9E−01 1.0E−20 3.2E−06 NA 1.61E−02 7.01E−02

GRIK2 6 3.8E−01 ATG5 6 2.6E−01 1.5E−20 4.3E−06 NA 2.75E−04 6.41E−02

ZEB2 2 2.9E−01 SETMAR 3 4.8E−02 1.4E−18 4.3E−06 7.9E-02 1.32E−02 5.75E−02

DMGDH 5 6.6E−01 FHL5 6 1.3E−01 2.0E−17 3.3E−06 NA 7.76E−02 9.97E−02

PTPN22 1 8.1E−01 SMARCAL1 2 7.0E−01 2.5E−17 5.1E−03 NA 8.26E−04 1.27E−02

CASC4 15 6.6E−01 ARIH1 15 3.0E−01 2.1E−16 4.3E−07 NA 3.11E−02 6.87E−02

RHOBTB3 5 3.2E−01 BAI3 6 3.6E−01 4.8E−16 8.5E−06 NA 8.98E−03 9.60E−02

PADI3 1 4.8E−01 CHIA 1 7.1E−01 8.4E−16 1.6E−02 1.7E-01 1.97E−05 6.00E−05

PCDHAC2 5 5.8E−01 CYP39A1 6 9.2E−01 1.4E−15 5.6E−06 1.7E-01 4.49E−02 6.34E−02

DPP4 2 2.9E−01 CHMP2B 3 2.1E−02 3.5E−15 6.2E−03 4.4E-01 7.46E−04 1.44E−03

KIF24 9 3.5E−03 SLC16A12 10 3.4E−02 1.0E−14 1.2E−02 NA 6.04E−04 1.38E−02

GANC 15 1.7E−01 CIB2 15 7.7E−01 1.2E−14 2.7E−03 NA 3.73E−03 5.34E−03

IFFO2 1 6.0E−01 AKT3 1 7.1E−01 4.1E−14 1.8E−06 NA 4.26E−03 7.03E−02

TTC23L 5 6.5E−01 RICTOR 5 2.2E−01 7.6E−14 7.4E−06 NA 4.47E−03 2.79E−02

SCRN1 7 7.3E−01 FRMD3 9 4.6E−01 1.0E−13 2.6E−07 NA 8.79E−03 7.43E−02

STX8 17 4.4E−01 C2CD2 21 5.5E−01 1.3E−13 8.3E−04 NA 1.66E−03 1.78E−02

IGSF11 3 6.9E−01 BST1 4 7.6E−01 9.0E−13 8.8E−07 NA 2.11E−03 4.81E−02

CSNK1A1P 15 8.7E−01 NCOA3 20 2.5E−01 1.0E−12 3.6E−03 NA 1.13E−05 3.60E−04

NT5C1B 2 4.1E−01 POU1F1 3 3.4E−03 1.3E−12 8.4E−06 1.3E-01 2.06E−02 2.33E−02

LPIN1 2 5.9E−01 KAT2B 3 2.4E−01 1.4E−12 9.0E−06 NA 1.09E−02 1.00E−01

TPO 2 7.5E−01 PRKCE 2 1.9E−03 2.6E−12 2.3E−06 NA 1.26E−03 8.84E−02

NUP188 9 7.4E−01 APBB1IP 10 6.0E−01 6.8E−12 6.3E−06 NA 1.54E−02 9.99E−02

LRRC40 1 3.4E−01 ST6GALNACV 1 1.0E+00 7.0E−12 1.3E−01 NA 1.40E−05 9.79E−05

FANK1 10 2.3E−01 UBE4A 11 3.9E−01 2.4E−11 1.3E−06 NA 6.77E−02 7.74E−02

XRCC2 7 1.6E−01 TTF1 9 4.9E−01 6.0E−10 1.0E−05 NA 2.05E−01 9.24E−02

SGCG 13 4.2E−01 TUBGCP3 13 9.8E−01 1.2E−09 9.5E−02 NA 1.35E−03 7.24E−03

Table 3 A list of genes showing significant interaction in FH and WTCCC studies

P-value

FHS WTCCC

Gene 1 Chr Gene 2 Chr FLR Pairwise (minimum) FLR Pairwise (minimum)

PTPN22 1 SMARCAL1 2 2.46E−17 8.26E−04 9.69E−04 2.25E−03

PADI3 1 CHIA 1 8.40E−16 1.97E−05 1.58E−08 5.18E−02

DPP4 2 CHMP2B 3 3.51E−15 7.46E−04 9.13E−09 2.05E−02

GANC 15 CIB2 15 1.20E−14 3.73E−03 2.53E−06 7.18E−02

CSNK1A1P 15 NCOA3 20 1.00E−12 1.13E−05 3.21E−08 1.02E−03

LRRC40 1 ST6GALNACV 1 7.04E−12 1.40E−05 4.04E−08 1.58E−02

TTBK2 15 TSHZ2 20 5.94E−09 1.39E−03 1.09E−08 8.44E−04

LIPJ 10 PCBP2 12 8.22E−09 9.04E−04 1.68E−08 2.10E−02

WIRE 17 KCNJ15 21 1.79E−08 2.25E−04 2.21E−07 5.23E−03

CTBP2 10 KCNJ1 11 2.27E−08 2.09E−03 1.08E−07 6.29E−03

PNLIPRP1 10 C11orf64 11 1.09E−07 3.28E−04 6.21E−07 2.42E−02

IL22RA1 1 CAPN8 1 1.15E−07 1.37E−04 1.70E−08 1.18E−02
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rare and common variants, prohibitive computational time, and thus
extremely large number of tests being conducted. To address these
central themes in interaction analysis with NGS data, we shift the
paradigm of interaction analysis from the pairwise test to the collective
group test where we take a genome region (or gene) as a basic unit of
interaction analysis and collectively test interaction between all
possible pairs of SNPs within two genome regions (or genes). The
purpose of this paper is to address several issues in the gene-based new
paradigm of interaction analysis.
The first issue is how to use all genetic information in the genome

region. To overcome limitations of pairwise interaction analysis, we
proposed the functional logistic regression for collectively testing
interactions between two genomic regions. The functional logistic
regression first expands the genotype profiles in a genomic region
(gene) in terms of orthonormal eigenfunctions. Genetic information
across all variants in the genomic region including all single variant
variation and their LD is compressed into a few functional principal
component scores. We use genetic information compressed into
functional principal component scores to globally test interaction
between two genomic regions (genes).
The second issue is how to reduce the number of tests and save

computational time in genome-wide interaction analysis. To reduce
the dimensionality of the data, the number of tests, the time of
computations and improving the power to detect interaction, we take
a genomic region (or a gene) as a unit of interaction analysis and use
functional data analysis to compress high-dimensional genetic data.
Using large simulations and real data analysis, we showed that the
proposed functional logistic regression for interaction analysis

substantially improve the power and dramatically save the amount
of computational time.
The third issue is how to unify the tests that can be used to test the

interaction between rare and rare, rare and common, and common
and common variants. The traditional pairwise logistic regression is
designed for testing interaction between common variants and unable
to deal with these extremely low-frequency variants. There is an
increasing need to develop statistics that can be used to test interaction
among the entire allelic spectrum of variants. From large-scale
simulations and real data analysis, we showed that the functional
logistic regression for testing interaction had the correct type 1 error
rate and higher power than pairwise tests in all scenarios.
Owing to the lack of power of the widely used pairwise tests for

interaction and the computational intensity, the number of genome-
wide gene–gene interaction analysis has been limited. Many geneticists
question the universe presence of significant gene–gene interaction.
Very few genome-wide interaction analyses with NGS data and very
few results of significant interaction have been replicated. To our
knowledge, we are among the first to conduct genome-wide interac-
tion analysis with exome sequencing data. From genome-wide
interaction analysis of CVD and the EOMI, we have several important
observations.
First, in interaction analysis with NGS data, we often observed large

proportions of interactions between rare and rare variants, and rare
and common variants, but observed less significant pairwise interac-
tion between common and common variants. Second, we demon-
strated that the interactions between genes can be replicated in the two
independent GWAS although less interaction between SNPs can be
replicated in the two studies. Third, we observed that the P-values by

Table 4 P-values of 24 pairs of significantly interacted genes identified by FLR in EOMI dataset

Gene 1 Gene 2 Interaction

P-value

Gene symbol Chr P-value Gene symbol Chr P-value FPCA PCA Collapsing Pairwise

SLC25A11 17 6.10E−01 C17orf76 17 6.65E−01 9.29E−37 4.84E−03 NA 2.14E−03

OR1M1 19 7.47E−01 LILRA5 19 2.25E−01 5.62E−28 1.15E−04 NA 3.96E−03

NUFIP2 17 7.78E−01 BECN1 17 5.34E−01 8.50E−27 3.05E−03 NA 1.90E−02

ZBTB7A 19 9.25E−01 ZSCAN1 19 7.89E−01 1.24E−26 1.03E−02 NA 1.14E−02

ENTPD5 14 7.85E−02 C14orf180 14 6.96E−01 2.32E−26 1.90E−03 NA 7.21E−03

TMX4 20 5.50E−01 C20orf7 20 8.93E−01 1.09E−18 1.96E−05 NA 6.25E−05

ZNF770 15 8.06E−01 SPATA5L1 15 3.06E−01 1.03E−17 1.85E−05 NA 4.79E−03

UBE2J2 1 1.35E−01 CCDC108 2 NA 1.56E−17 1.29E−05 6.85E−01 8.59E−04

FAM100A 16 4.36E−02 GDPD3 16 9.19E−01 2.05E−17 5.35E−06 NA 8.24E−05

TMEM52 1 7.02E−02 TET3 2 NA 2.44E−17 1.52E−13 4.51E−01 NA

SLC35E2 1 8.39E−01 TRAK2 2 NA 4.11E−17 4.63E−07 9.41E−01 1.80E−05

UBE2J2 1 1.35E−01 GRHL1 2 NA 1.01E−16 8.58E−06 NA 8.59E−04

OR4Q3 14 8.87E−01 SERPINA9 14 7.05E−01 1.20E−16 4.37E−06 NA 9.93E−04

UBE2Q2 15 8.02E−01 ABHD2 15 1.31E−01 1.66E−16 2.22E−03 NA 1.23E−02

C1orf174 1 6.75E−01 FAM128B 2 4.51E−01 1.21E−15 1.53E−05 2.26E−01 7.54E−04

SLC35E2 1 8.39E−01 STRADB 2 6.25E−01 6.51E−15 2.68E−06 5.18E−01 1.80E−05

ZNF317 19 5.28E−01 TMEM145 19 6.01E−01 1.24E−14 2.68E−06 NA 1.05E−02

TNFRSF14 1 1.96E−01 UXS1 2 4.32E−02 1.58E−14 1.05E−05 7.26E−01 4.45E−03

HES7 17 4.48E−01 KPNA2 17 6.13E−01 2.55E−14 1.90E−05 NA 5.20E−04

CD209 19 2.24E−01 NFIX 19 3.56E−01 2.73E−14 1.61E−05 NA 3.63E−04

FAM57A 17 2.85E−01 CBX1 17 3.79E−01 3.68E−14 1.18E−06 NA 1.11E−06

CYP1A1 15 1.30E−01 C15orf58 15 6.58E−01 6.43E−14 3.11E−06 NA 2.90E−07

TM4SF5 17 8.95E−01 G6PC3 17 2.78E−01 1.23E−11 5.89E−06 NA 6.04E−06
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the functional logistic regression were much smaller than that by other
existing tests in all real data analyses. Forth, there is a difference in
pairwise testing two SNPs for interaction, and testing two genes. The
extra power comes from the point that multiple SNPs within a gene
may contribute to the disease risk.
Transition of analysis from low-dimensional data to extremely high-

dimensional data demands on changes in the concept of interaction
and exploration of dimensional data reduction techniques. The
paradigm shift from pairwise interaction analysis to gene–gene
interaction analysis with a gene as a unit of analysis and functional
data analysis will provide a powerful tool for interaction analysis with
NGS data. However, the results in this paper are considered
preliminary. The number of eigenfunctions in the expansion of the
genetic variant function will influence the performance of
the functional logistic regression for interaction analysis. Although
the propose approach can largely reduce the dimension of data for
interaction analysis, genome-wide gene–gene interaction analysis still
needs intensive computations. We are facing great challenges in
genome-wide interaction analysis with NGS data. The main purpose
of this paper is to stimulate research in developing novel concepts,
methods and algorithms for genome-wide interaction analysis with
NGS data.
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