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Improving power for robust trans-ethnic meta-analysis
of rare and low-frequency variants with a partitioning
approach

Sergii Zakharov1,2, Xu Wang1, Jianjun Liu2 and Yik-Ying Teo*,1,2,3,4,5

While genome-wide association studies have discovered numerous bona fide variants that are associated with common diseases

and complex traits; these variants tend to be common in the population and explain only a small proportion of the phenotype

variance. The search for the missing heritability has thus switched to rare and low-frequency variants, defined as o5% in the

population, but which are expected to have a bigger impact on phenotypic outcomes. The rarer nature of these variants coupled

with the curse of testing multiple variants across the genome meant that large sample sizes will still be required despite the

assumption of bigger effect sizes. Combining data from multiple studies in a meta-analysis will continue to be the natural

approach in boosting sample sizes. However, the population genetics of rare variants suggests that allelic and effect size

heterogeneity across populations of different ancestries is likely to pose a greater challenge to trans-ethnic meta-analysis of rare

variants than to similar analyses of common variants. Here, we introduce a novel method to perform trans-ethnic meta-analysis

of rare and low-frequency variants. The approach is centered on partitioning the studies into distinct clusters using local

inference of genomic similarity between population groups, with the aim to minimize both the number of clusters and between-

study heterogeneity in each cluster. Through a series of simulations, we show that our approach either performs similarly to or

outperforms conventional and recently introduced meta-analysis strategies, particularly in the presence of allelic heterogeneity.

European Journal of Human Genetics (2015) 23, 238–244; doi:10.1038/ejhg.2014.78; published online 7 May 2014

INTRODUCTION

Meta-analyses of genome-wide association studies (GWAS) have
identified hundreds of common genetic variants associated with
complex diseases.1,2 Indeed, meta-analysis of multiple data sets
improves the chance of discovering associated variants with
moderate or low effect size, which were missed in individual studies
due to insufficient power at a stringent genome-wide significance
level. Given the development of next-generation sequencing
technologies3 and the fact that for many traits the discovered
common genetic variants explain only a small proportion of
variability attributable to genetic factors,4 researchers have recently
devoted much attention to rare variants that may hold a clue to the
problem of missing heritability. Indeed, evidence that rare variants are
associated with complex traits are starting to emerge.5–7 Given the
potential of whole-exome and whole-genome sequencing studies to
become as commonplace as GWAS today, it is natural to foresee
meta-analysis methods to be applied for the identification of rare
variants with moderately larger effect sizes.
Meta-analyses of studies across different populations and ethnic

groups have the potential to improve the statistical power to identify
rare variants association by increasing the number of samples in the
joint analyses.8 However, when doing trans-ethnic meta-analysis, one
faces the problem of effect size heterogeneity, defined as a difference
in the effect size across studies, which may stem from: (i) differences
in study design (eg, in the definition of the phenotype); (ii) varying

impact of genetic variants due to interaction with other variants
found at different frequencies across populations; and (iii) different
environmental and lifestyle factors. In addition, the analysis of rare
variants typically adopts a region-based approach to evaluate the joint
genetic burden from multiple variants, given that single-variant
statistical methods tend to be underpowered because of stringent
multiple testing correction and low allele frequency of individual rare
variants. Thus, one also faces the problem of allelic heterogeneity
within a region as rare variants are more likely to be population-
specific.9,10 Given these challenges it is important to develop powerful
methodologies for trans-ethnic rare-variant meta-analysis that will
perform well in the presence of both effect-size heterogeneity and
allelic heterogeneity.
In this paper, we introduce a method for performing a region-

based trans-ethnic meta-analysis of rare variants that is centered on
identifying appropriate partitions of the input data. The method aims
to cluster the input studies based on a population genetics argument,
before proceeding to measure the association evidence within each
cluster. The within-cluster evidence is subsequently combined across
clusters to yield a single measurement of statistical evidence of
phenotype association for each genomic region. Our method is
compared against conventional meta-analysis methodologies, such
as those by Fisher and Stouffer, and two of the recently proposed
rare-variant meta-analysis methods (MetaSKAT11 and MV SKAT12)
with a series of simulations that assumed different extent of
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heterogeneity between ancestry groups. The results from our
simulations indicated that our method was either comparable to or
outperformed existing methodologies for performing trans-ethnic
rare-variant meta-analyses.

MATERIALS AND METHODS

Apcluster meta-analysis
Let us assume we have n study groups in a meta-analysis with group-level P-

values p1,...,pn for a genomic region of interest (P-values are obtained using

some region-based rare variants association test). Let us define the study group

similarity matrix S as follows:

S ¼ sij
� �n

i;j¼1
¼ # ðSi\SjÞ

# ðSi[SjÞ

� �n

i;j¼1

;

where Si is the set of all variants (both common and rare) observed in the ith

study group, and the operator # maps a set to a number of elements in this set.

The numerator thus measures the number of variants that are jointly present

in both study i and study j, while the denominator measures the number of

variants that at least in one of study i or study j. The similarity measure thus

varies between 0 and 1. The intuition behind this similarity measure is based

on the population genetics assumption that the shorter the time to the most

recent common ancestor (TMRCA) between two populations, the greater the

proportion of variants they will share, compared with those populations with a

longer TMRCA.

Next, the study groups are partitioned with the use of an affinity

propagation clustering algorithm.13 Let sij denote the similarity measure

between the ith and jth study groups, subsequently known as the ith and

jth nodes. The affinity propagation algorithm considers sij as a measure of

how well the jth node is suited to be an exemplar for the ith node (the

exemplar is defined as the center of a cluster). A priori, all nodes are

equally likely to be exemplars. Two kinds of messages are passed between

the nodes, namely:

1. The responsibility rij is sent from the ith node to a candidate jth node,

reflecting the evidence for how well the jth node is as an exemplar for the

ith node over all other exemplars.

2. The availability aij is sent from the jth node to the ith node, measuring how

appropriately the jth node is chosen by the ith node as an exemplar,

relative to the support from other nodes that the jth node is already an

exemplar for.

The initial values of all aij are set to 0, and the algorithm proceeds

recursively between the following two updates:

1. Update rij¼ sij�maxj’ a j{aij’ þ sij’};

2. Update aij¼min{0, rjj þ Si0e{i,j}max{0, ri’j} when iaj, and

ajj¼Sj’ajmax{0, rj’j}.

At each iteration, the algorithm identifies the jth node as an exemplar for

the ith node if aij þ rij is maximized, except when the maximum is attained

when j¼ i, in which case the ith node itself becomes the exemplar. We utilized

the algorithm implemented in the R package ‘Apcluster’ (http://cran.

r-project.org/web/packages/apcluster/index.html), where by default the algo-

rithm terminates if the exemplars have not changed after 100 consecutive

iterations, or when the exemplars have not converged after 1000 iterations.

When the latter occurs in our implementation, we assume a single cluster

containing all the nodes, equivalent to applying the Fisher method to all the

studies without partitioning.

Let us denote the obtained clusters of study groups C1,...,CK. The test

statistic is obtained with the following:

(1) within each cluster Ck, for k A {1, 2,y, K}, calculate the Fisher test

statistic as:

X
i2Ck

� 2 logðpiÞð Þ

where the corresponding P-value p̂k can be calculated from a w2 distribution at

2|Ck| degrees of freedom.

(2) Combine the P-values p̂k across all K clusters using another round of

Fisher meta-analysis:

T ¼
XK
k¼1

� 2logðp̂kÞ;

which under the null hypothesis is distributed as a w2 random variable with 2K

degrees of freedom. This step assumes that the constituent studies within each

cluster are homogeneous and thus the evidence is integrated within a single

framework.

Other methodologies for performing rare-variant meta-analyses
We compared our rare-variant meta-analysis setup (Apcluster) with some

of the existing approaches: (i) two P-value-based approaches were

considered, namely the conventional Fisher combination and the Stouffer

inverse standard normal transform method.14 These two approaches relied

on the statistical evidence from two underlying group-level tests: SKAT15

with the linear kernel and the default beta weights in the R package ‘SKAT’,

and a burden test, which is a likelihood ratio test of a regression coefficient

for a collapsed score defined as a number of rare minor alleles within a

region of interest born by an individual; (ii) Hom-Meta-SKAT and

Het-Meta-SKAT by Lee et al11 for meta-analyzing output from SKAT

across studies from homogeneous and heterogeneous ancestry groups

respectively, where the R implementation of these methods is available in

a package ‘MetaSKAT’ and the specific function ‘MetaSKAT_wZ’ was used

because we assumed the availability of individual-level data; (iii) the MV

SKAT method recently introduced by Hu et al,12 where we only considered

the MV method but not the other two approaches (SV-I and SV-E), as these

latter methods use additional reference data that would potentially make

the comparison of the methods unfair. The authors of MV SKAT also

indicated that the MV method performs the best and the performance of

the two other approaches (SV-I, SV-E) closely resembled that of MV.12

We implemented MV SKAT in R because there was no readily available

source code by the authors of MV SKAT.

Population genetics simulations for calculating power and
false-positive rates
To estimate the type 1 error and power associated with the different methods

for performing rare-variant meta-analyses, we performed a series of population

genetics simulations with the coalescent simulator cosi assuming the best-fit

population history model.16 Specifically, we generated 12 haplotype pools, each

containing 10 000 chromosomes across a 1-Mb region, where four of the

haplotype pools were generated by random sampling from a background

assumed to be of European ancestry, four assumed to be of East Asian ancestry

and four of African ancestry. We considered two classes of scenarios,

corresponding to the ‘non-admixed’ and ‘admixed’ classes (Table 1). In the

scenarios under the ‘non-admixed’ class, the 12 studies in the meta-analysis

corresponded to data generated from the 12 haplotype pools (four African

studies Af1, Af2, Af3 and Af4; four East Asian studies denoted EA1, EA2, EA3

and EA4; and four European studies denoted E1, E2, E3 and E4). In the

scenarios under the ‘admixed’ class, we generated data for seven studies with

different degree of admixture, with three single-ancestry studies conducted

assuming Africa (Af), East Asian (EA) and European (E) ancestry respectively,

and four studies in admixed populations across the four possible ways of

admixture: African and East Asian (Af–EA), African and European (Af–E), East

Asian and European (EA–E), and across all three ancestry groups (Af–EA–E).

Haplotype pools for the two-ancestry admixed populations were generated

by mixing the haplotypes from the respective populations with an admixture

proportion that is drawn independently for each data replicate from a Uniform

(0.2, 0.8) distribution. To generate the admixture proportions for Af–EA–E,

we sampled a random vector v¼ (v1, v2, v3) uniformly from the simplex

{(x1, x2, x3): x1þ x2þ x3¼ 1, xiZ0.2, i¼ 1,2,3} according to the algorithm

presented by Onn and Weissman.17

Following Wu et al,15 we simulated 1000 data replicates of 30-kb region each

under the assumption of (i) the null hypothesis of no association with a
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quantitative phenotype to calculate the false positive rate and (ii) the

alternative hypothesis where the region carried variants that are functionally

associated with the phenotype to calculate power.

To calculate power, we randomly chose 5% of the L rare variants (each with

observed minor allele frequency r 1%) that existed within the corresponding

haplotype pool in each study to be causal. Note that this meant different rare

variants may be selected to be causal in the different studies; thus, our

simulation setup naturally models the situation of allelic heterogeneity. For the

purpose of presentation, let us enumerate the causal variants for a study

population by the index range 1rlrL0 (with L’¼ round[0.05L]) and other

rare non-causal variants by L0 þ 1rlrL. We randomly sampled 2000

chromosomes from the respective haplotype pool to form the genotype data

for 1000 individuals, and generated a quantitative trait yi for the ith individual

as yi ¼
PL0

l¼1 blgil þ ei with i¼ 1,...,1000, bl and gil are the effect size and minor

allele count at the genotype for the ith individual at the lth causal variant (for

l¼ 1,...,L0), respectively, and ei follows a standard normal distribution.

Following Wu et al,15 we assigned bl¼ 0.4|log10MAFl|, where MAFl is a

minor allele frequency of the lth causal variant calculated from a respective

haplotype pool. To simulate the quantitative trait under the null model of no

association, yi is simply obtained by sampling from a standard normal

distribution.

Across the two classes that assumed no admixture and admixed populations

respectively, we considered different scenarios of effect size heterogeneity

(Table 1). Under the class of ‘non-admixed’ populations, we considered five

scenarios where the simulated genomic region is associated: (1) in all twelve

studies (N12); (2) only in the non-African studies (N8); (3) only in the

European studies (N4); (4) in two African, three East Asian and three

European studies (compound heterogeneity, abbreviated N8C); and (5) in

one African, one East Asian and two European studies (N4C). Under the class

of ‘admixed’ populations, we considered three scenarios where the simulated

region is associated: (1) in all the seven studies (A7); (2) only in the studies

with at least some European ancestry (A4); and (3) only in European and

East-Asian studies (A2).

The power is calculated from the 1000 data replicates in each scenario as the

proportion of data replicates with meta-analysis P-value o10�6. To model the

false-positive rate when the significance threshold was kept at 10�6, we

adopted the procedure described by Lee et al11 to avoid the computationally

intensive manner of performing at least 107 iterations: we simulated 2000

genomic regions under each scenario and 10000 phenotype replicates under

the null model for each genomic region. This approach provided 2� 107

P-values to estimate the empirical Type 1 error associated with a significant

threshold of 10�6.

For P-value-based methods the two group-level tests (SKAT and

burden test) were applied to variants with MAFr1% in a data replicate.

For Hom-Meta-SKAT and Het-Meta-SKAT, if a variant was rare in one

population but not rare (MAF 41%) in another population group, we

treated this variant as missing for all the study groups for which it was

found to be not rare. This procedure ensured a fair comparison

between the P-value-based meta-analysis methods and those developed

by Lee et al.11

Theoretical power simulations assuming non-central w2 distributions
In addition to population genetics simulations, we considered a theoretical

model to evaluate the performance of the Apcluster approach for combining

P-values against the Fisher approach. We first assumed that, without loss of

generality, the test statistic for each study under the null hypothesis was

distributed as a w2 distribution with 1 degree of freedom, whereas under the

alternative hypothesis, the test statistic followed a non-central w2 distribution
with a non-centrality parameter a. Instead of simulating genetic and

phenotypic data, we can simulate the resultant test statistics of the association

analyses directly from the distributions under the null and alternative

hypotheses according to the eight simulation scenarios that we assumed for

the non-admixed and admixed classes (see Table 1). For example, under the

N8 scenario, eight test statistics will be drawn from a non-central w2

distribution with a non-centrality parameter a while the remaining four test

statistics will be drawn from a w12 distribution. The P-values corresponding to

these test statistics are obtained after mapping against the quantiles of a

w12 distribution. The power of the Fisher and Apcluster methods is derived as

the proportion of 5000 iterations where the meta-analysis P-value is more

significant than 10�6. For the Apcluster partitioning, we combined the

P-values by mimicking the study partitionings that were most often observed

in our population genetics simulations in the respective scenarios (see

Supplementary Table S1)—in the non-admixed case, the African, East Asian

and European studies were always clustered by ancestry and thus we

partitioned our test statistics accordingly; in the admixed case, we selected

the two most common partitionings to consider in our theoretical considera-

tions, denoted as P1 and P2 (Table 2).

Apcluster method website
The R functions for the Apcluster method is packaged together with a sample

data set and accompanying codes for performing the association analysis. The

simulated data sets for comparing power and the R package can be

downloaded from http://www.statgen.nus.edu.sg/Bsoftware/apcluster.html.

RESULTS

Type 1 error rates
We evaluated the false-positive rate of our approach (Apcluster) for
combining P-values against two classical strategies: (i) the Fisher
method and (ii) the Stouffer inverse-normal method, with 20000 000
simulations under the null hypothesis of no association. At a
significance threshold of 10�6, we observed that the empirical false-
positive rates of the Apcluster approach when applied to the output of
SKAT ranged between 4.5� 10�7 and 5.5� 10�7 for the two classes
of simulations that assumed 12 populations without admixture and 7
populations with some admixture, respectively (Table 3). These
figures were comparable to those obtained by the Fisher method
(3.0� 10�7, 6.5� 10�7) and by the Stouffer method (5.0� 10�7,
6.5� 10�7). Similar results were observed with the output from the
burden analyses, with empirical false-positive rates of 1.9� 10�6 and

Table 1 Scenarios considered in population genetics simulations

Scenario annotation Simulated population heterogeneity a Studies in meta-analysisb Studies under the alternative hypothesis

N12 Non-admixed Af1–Af4, EA1–EA4, E1–E4 All

N8 Non-admixed Af1–Af4, EA1–EA4, E1–E4 EA1–EA4, E1–E4

N4 Non-admixed Af1–Af4, EA1–EA4, E1–E4 E1–E4

N8C Non-admixed Af1–Af4, EA1–EA4, E1–E4 Af1–Af2, EA1–EA3, E1–E3

N4C Non-admixed Af1–Af4, EA1–EA4, E1–E4 Af1, EA1, E1, E2

A7 Admixed Af, EA, E, Af–EA, Af–E, EA–E, Af–EA–E All

A4 Admixed Af, EA, E, Af–EA, Af–E, EA–E, Af–EA–E E, Af–E, EA–E, Af–EA–E

A2 Admixed Af, EA, E, Af–EA, Af–E, EA–E, Af–EA–E EA, E

aUnder the non-admixed case, all studies were simulated uniquely from one ancestry group without admixture, whereas under the admixed case, three studies were simulated uniquely from one
ancestry group without admixture, and the remaining four studies were simulated considering all possible ways of admixture between three ancestry groups.
bIndicative of the ancestry group in which the study was simulated in, consisting of African (Af), East Asian (EA) and European (E). Study symbols with hyphens indicate the ancestries
contributing to the admixture, where Af–EA indicates a study simulated with admixed samples of African–East Asian ancestry.

Trans-ethnic meta-analysis of rare variants
S Zakharov et al

240

European Journal of Human Genetics

http://www.statgen.nus.edu.sg/~software/apcluster.html


1.2� 10�6 by Apcluster for the two corresponding classes, compared
with those by the Fisher method (1.9� 10�6, 1.3� 10�6) and the
Stouffer method (1.6� 10�6, 1.2� 10�6). There was no significant

elevation of false positives by these three approaches. We did not
evaluate the empirical Type 1 error rates of Hom-Meta-SKAT,
Het-Meta-SKAT and MV SKAT as the computation burden of these
methods were extremely high for the number of simulations we
performed, but evidence from the original publications of these
methods indicated that these approaches are well calibrated to control
Type 1 error.11,12

Power comparisons
In evaluating the power of the different meta-analytic procedures, we
chose 5% of the rare variants in each region to be functional and
assigned the values of a quantitative trait as a function of the number
of copies of the causal alleles carried. Power was then estimated as the
proportion of the 1000 simulations where the specific meta-analysis
approach yielded statistical evidence of P-value o10�6. We consid-
ered two classes of scenarios in the simulations involving populations
from three ancestry groups mimicking Africans, East Asians and
Europeans. The first class assumes scenarios where studies originated
from populations in these three ancestry groups without any
admixture, whereas the second class assumes scenarios where studies
originated from populations that are admixed between these three
ancestry groups with different degrees of admixture.
We observed that the burden tests yielded lower power in all the

scenarios in our simulations when meta-analyzed with P-value-based
methods (Figure 1). This was unsurprising as the burden test was
expected to perform well when a high proportion of rare variants
were associated with the outcome, whereas our simulations only
assumed 5% of the rare variants to be causal. Our simulations
assumed the presence of allelic heterogeneity across the different
ancestry groups, which probably explained why MV SKAT and
Hom-Meta-SKAT yielded consistently poorer performance than
Het-Meta-SKAT. Intriguingly, we observed the Fisher method in
combining the output from SKAT consistently outperformed

Table 2 Direct simulation from distributions of test statistics

Scenario

annotation

Number of

studies under H0

Number of

studies under H1 Apcluster partitioninga

N12 0 12 (4A), (4A), (4A)

N8 4 8 (4N), (4A), (4A)

N4 8 4 (4N), (4N), (4A)

N8C 4 8 (2A, 2N), (3A, 1N), (3A, 1N)

N4C 8 4 (1A, 3N), (1A, 3N), (2A, 2N)

A7 0 7 P1: (3A), (4A)

P2: (A), (2A), (4A)

A4 3 4 P1: (2A, 1N), (2A, 2N)

P2: (1N), (2A), (2A, 2N)

A2 5 2 P1: (2A, 1N), (4N)

P2: (1A), (1A, 1N), (4N)

aIndicates the number and constituents of partitions observed from the population genetics
simulations for the respective scenario, where the constituents refer to whether the study was
under the null hypothesis (N) or under the alternative hypothesis (A). An example partition of
{(2A, 2N), (3A, 1N), (3A, 1N)} indicates that three clusters were observed, where the first
cluster consisted of two studies under the alternative, and two studies under the null; the
second and third clusters each consisted of three studies under the alternative and one under
the null.

Table 3 Empirical Type 1 error rates of P-value-based meta-analysis

methods at a significance threshold of P-value o10�6

Number of

studies

Fisher

SKAT

Stouffer

SKAT

Fisher

burden

Stouffer

burden

Apcluster

SKAT

Apcluster

burden

12 3.0�10�7 5.0�10�7 1.9�10�6 1.6�10�6 4.5�10�7 1.9�10�6

7 6.5�10�7 6.5�10�7 1.3�10�6 1.2�10�6 5.5�10�7 1.2�10�6

Figure 1 Empirical power of different methods to perform meta-analysis. Empirical power to identify genomic regions simulated with 5% of the rare variants

to be associated with a quantitative phenotype, as calculated from 1000 iterations. We consider eight different scenarios corresponding to different degrees

of allelic heterogeneity and admixture between populations from three ancestry groups between 12 studies (in scenarios N12, N8, N4, N8C and N4C) and

7 studies (in A7, A4 and A2). Two approaches (burden test, SKAT) were used to perform the association analysis within each study prior to meta-analyzing

with Apcluster, the Fisher method or Stouffer inverse-normal method. We additionally included three recently introduced methods: MV SKAT, Hom-Meta-

SKAT and Het-Meta-SKAT.
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Het-Meta-SKAT, a finding that contradicted the results of Lee et al.11

This remained so even when we attempted to reproduce their
findings by limiting the simulations to only three study groups
under the alternative hypothesis for 3-kb genomic regions with rare
variants defined as those with MAFr3% (Supplementary Table S2,
Supplementary Figures S1 and S2), although we did replicate their
finding that Hom-Meta-SKAT was superior to Fisher SKAT when we
assumed allelic homogeneity between the populations.
Our proposed approach with the output from SKAT (Apcluster

SKAT) yielded either comparable or higher power to Fisher SKAT,
where the largest gain in power were achieved in the N8, N4 and A2
scenarios with 3.2%, 6.4% and 3% increase in power, respectively,
compared with the next best method respectively. These three
scenarios corresponded to the situations where there were greater
degrees of heterogeneity between the 12 non-admixed and 7 admixed
studies. To explore the origins of the power gain, we investigated the
partitioning of the studies as derived by the affinity propagation
clustering algorithm. We observed that in the non-admixed class, all
12 studies were always clustered into three partitions each containing
four studies from an ancestry group. In the N8 scenario, this
partitioning separated the four African studies under the null
hypothesis from the other eight non-African studies under the
alternative hypothesis, and presented a meta-analysis framework with
only six degrees of freedom compared with the traditional 24 degrees
of freedom.
In addition, we have performed simulations for the non-admixed

scenarios where we assumed allelic homogeneity for studies from the
same ancestry, but allelic heterogeneity for studies from different
ancestries. Specifically, the same causal variants were assumed for
studies originating from populations in the same ancestry. Our results
indicated that while the methods that explicitly relied on allelic
homogeneity (Hom-Meta-SKAT, MV SKAT) produced higher power
in the N12, N8 and N4 scenarios than what was observed in the
previous set of simulations, Apcluster always yielded performance
comparable to these methods (Supplementary Figure S3). However,
in scenarios that assumed heterogeneity in the effect sizes (N8C and
N4C), the former two methods yielded significantly lower power than
Apcluster.

Theoretical power simulations
We simulated the test statistics directly from corresponding
probability distributions under the null and alternative hypotheses
according to the eight scenarios we have assumed in our population
genetics simulations, and combined the P-values obtained
from mapping the test statistics against a w12 distribution with the
Fisher method and Apcluster. Overall, the trend in the power
difference between the two approaches was independent of
the non-centrality parameter a, although the actual magnitude of
the power difference depended on the size of a. We observed that the
Fisher method yielded marginally higher power for the N12, A7 and
A4 scenarios, where the power difference was never more than 5%
even at the most penalizing a (Figure 2a, d and e). For scenarios N12
and A7, all of the test statistics were simulated under the alternative
hypothesis, and thus the partitioning by Apcluster did not contribute
any useful information to minimize heterogeneity in terms of
association evidence. However, Apcluster yielded substantially higher
power in scenarios N8, N4 and A2 (Figure 2b, c and f) with a
potential power gain of 4.3, 16.7% and 13% in the N8, N4 and A2
scenarios, respectively, because the partitioning by Apcluster separated
the studies simulated under the null and alternative hypotheses. The
powers of Apcluster and Fisher method were around the same when

the partitioning was less informative, such as when each partition
contained studies simulated under both the null and alternative
hypotheses in the compound heterogeneity scenarios (N8C, N4C).
The two most frequently observed partitionings of the seven studies
(P1, P2) in the A2 model both yielded higher power than the Fisher
method, because four out of the five studies under the null hypothesis
were clustered together in both P1 and P2, thus significantly reducing
the degrees of freedom for the test statistic under the null hypothesis.

DISCUSSION

We have introduced a simple procedure for meta-analyzing genetic
association studies of rare and low-frequency variants. Our approach
partitions the studies into distinct clusters according to the extent of
similarity surrounding the locality of each genomic region, before
combining the evidence from standard burden-based or region-based
analysis of rare variants with the Fisher method. We show from our
simulations that this additional step of partitioning increases the
power to identify regions that contain variants that are genuinely
associated with a phenotype, without elevating the false discovery
rate. In addition, our method is robust to the presence of allelic
heterogeneity across studies, especially when the pattern of allelic
heterogeneity correlates with background genomic heterogeneity.
The intuition behind our method is straightforward: the meta-

analysis of studies under the null hypothesis yields a measure of
statistical evidence that is no different from a single study under the
null hypothesis, but the conventional meta-analysis wastes valuable
degrees of freedom in accounting for the multiple studies, whereas the
meta-analysis of studies under the alternative hypothesis yields
substantially stronger evidence against the null hypothesis, and
clustering only such studies for a joint analysis avoids attenuating
the evidence that can be brought about when studies under the null
are included. In designing our method to cluster the studies, we have
leveraged on the principle that rare and low-frequency functional
variants have the tendency to segregate according to ancestry, and this
appears to be a reasonable assumption in light of recent reports from
whole-genome sequencing at the population level.18,19 This is very
much akin to the approach utilized in MANTRA that groups
populations by FST.

20

Our Apcluster approach provides a framework to perform the
meta-analysis, although it relies on association evidence produced by
methods such as SKATor the burden test. The approach can naturally
be applied to new methods for analyzing associations. The current
setup assumes that study-level information such as the list of variants
present within each study is available, in order to derive the extent of
sharing between studies for every genomic locus to identify the
partitions. In this manner, the partitionings obtained may differ
according to the region under consideration and in principle provide
a more informative manner to represent the localized genetic diversity
between the population groups. Sharing study-level information is
straightforward because no individual-level information is exchanged.
However, this is not strictly necessary and prior information on the
degree of relatedness between study groups can be incorporated to
cluster the studies.
We emphasize that our method provides an additional scheme to

discover phenotype associations, especially in light of the stringent
criterion in defining genome-wide significance where including a few
studies in a naive meta-analysis can attenuate the overall signal below
the threshold of significance. Findings that emerge from this scheme
need to be subject to the same scrutiny and need further validation
just as regions that emerge from the conventional Fisher method or
other more sophisticated approaches. The partitioning of the studies
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may guide the selection of the populations in which the replication
experiment can be performed , as there may be natural population or
ancestry clades that are carrying the association signals. At the very
least, it can help to put in perspective the failure to reproduce a
finding, if validation was carried out in populations that coincided
with those studies in a cluster that yielded evidence in favor of the
null hypothesis.
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