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Rare variants in β-Amyloid precursor protein (APP)
and Parkinson’s disease

Eva C Schulte1,2, Akio Fukumori3,4, Brit Mollenhauer5,6, Hyun Hor7, Thomas Arzberger8, Robert Perneczky9,10,
Alexander Kurz9, Janine Diehl-Schmid9, Michael Hüll11, Peter Lichtner2,12, Gertrud Eckstein2,
Alexander Zimprich13, Dietrich Haubenberger13, Walter Pirker13, Thomas Brücke14, Benjamin Bereznai15,
Maria J Molnar15, Oswaldo Lorenzo-Betancor16,17,18, Pau Pastor16,17,18, Annette Peters19, Christian Gieger20,
Xavier Estivill7, Thomas Meitinger2,12,21, Hans A Kretzschmar8, Claudia Trenkwalder5,6, Christian Haass3,4,21

and Juliane Winkelmann*,1,2,12,21

Many individuals with Parkinson’s disease (PD) develop cognitive deficits, and a phenotypic and molecular overlap between

neurodegenerative diseases exists. We investigated the contribution of rare variants in seven genes of known relevance to

dementias (β-amyloid precursor protein (APP), PSEN1/2, MAPT (microtubule-associated protein tau), fused in sarcoma (FUS),
granulin (GRN) and TAR DNA-binding protein 43 (TDP-43)) to PD and PD plus dementia (PD+D) in a discovery sample of 376

individuals with PD and followed by the genotyping of 25 out of the 27 identified variants with a minor allele frequency o5% in

975 individuals with PD, 93 cases with Lewy body disease on neuropathological examination, 613 individuals with Alzheimer’s

disease (AD), 182 cases with frontotemporal dementia and 1014 general population controls. Variants identified in APP were

functionally followed up by Aβ mass spectrometry in transiently transfected HEK293 cells. PD+D cases harbored more rare

variants across all the seven genes than PD individuals without dementia, and rare variants in APP were more common in PD

cases overall than in either the AD cases or controls. When additional controls from publically available databases were added,

one rare variant in APP (c.1795G4A(p.(E599K))) was significantly associated with the PD phenotype but was not found in

either the PD cases or controls of an independent replication sample. One of the identified rare variants (c.2125G4A

(p.(G709S))) shifted the Aβ spectrum from Aβ40 to Aβ39 and Aβ37. Although the precise mechanism remains to be elucidated,

our data suggest a possible role for APP in modifying the PD phenotype as well as a general contribution of genetic factors to

the development of dementia in individuals with PD.
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INTRODUCTION

Linkage analyses as well as genome-wide association and exome
sequencing studies have uncovered at least 20 genes associated with
idiopathic Parkinson’s disease (PD). Still, to date, the identified genes
only explain a small portion of the genetic burden in PD. It is likely
that genetic factors involved in bringing about a PD phenotype
comprise both genetic variants of strong effect, which alone are
causative, as well as variants of weaker effect, which contribute to
disease risk or phenotypic modification.
A significant overlap between different neurodegenerative diseases

has been described on the neuropathologic, the genetic and the
phenotypic level.1–4 Neuropathologically, the overlap is exemplified by

the coexistence of hallmark features of both Alzheimer’s disease
(AD) and PD in individuals with Lewy body disease.1 On the
genetic level, common genetic variants in microtubule-associated
protein tau (MAPT) represent risk factors for PD3,4 whereas, at
the same time, rare variants of strong effect in MAPT have long
been recognized as a cause of frontotemporal dementia (FTD).2

Phenotypically, it is known that at least 30% of individuals with
PD develop dementia5,6 and that age has been described as a major
predisposing factor for the development of cognitive impairment.7

Accordingly, we sought to assess the contribution of genetic factors
known to be involved in dementias such as AD8–11 or FTD2,12–14 to
the PD phenotype.
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METHODS

Standard protocol approvals, registrations and patient consents
Ethics review board approval was obtained at all participating institutions, with
the primary review board located at the Technische Universität München,
Munich, Germany. All the participants provided written informed consent for
participation in the study.

Participants, variant screening and genotyping
We used Idaho LightScanner (BioFire Defense, Salt Lake City, UT, USA) melting
curve analysis to screen the coding regions and exon–intron boundaries of
β-amyloid precursor protein (APP), presenilin 1 and 2 (PSEN1 and PSEN2), tau
(MAPT), TAR DNA-binding protein 43 (TDP-43), granulin (GRN) and fused in
sarcoma (FUS) in 376 individuals with PD (188 with PD without dementia, 188
with PD plus dementia as diagnosed according to the guidelines set forth by the
task force of the Movement Disorder Society15) and 376 KORA-AGE controls
(APP and MAPT only; Supplementary Figure 1). In the case of altered melting
patterns suggestive of variants, Sanger sequencing ensued.
Variants identified during the screening phase were genotyped in 975 PD

cases, 93 independent neuropathologically confirmed cases of Lewy body
disease, 613 AD, 182 FTD cases and 1014 controls using Sequenom MALDI-
TOF mass spectrometry. For technical reasons, MAPT c.1637G4A
(p.(R546H)) and PSEN2 c.211C4T (p.(R71W)) were not included. Two 3
base pair (bp) deletions in APP were assessed by fragment analysis as described
previously.16 One variant (APP c.1795G4A (p.(E599K))) that showed
significant association in the first sample was also assessed in a second
independent sample of 715 PD cases and 948 healthy controls from Spain.
Significance was judged using the χ2-test. For the genotyping experiments,
P-values were corrected using the Bonferroni method. P-values given for
burden tests represent nominal P-values. For a detailed description, see
Supplementary Figure 1.
The following transcripts and genomic sequences were used in primer

design and variant annotation: APP—NM_000484.3, NG_007376.1;
PSEN1—NM_000021.3, NG_007386.2; PSEN2—NM_000447.2, NG_007381.1;
FUS—NM_004960.3, NG_012889.2; GRN—NM_002087.2, NG_007886.1;
MAPT—NM_001123066.3, NG_007398.1; TDP-43—NM_007375.3, NG_
008734.1. Primer sequences are available upon request.

Immunohistochemistry
Cortical and midbrain sections of the individual harboring the APP
c.1795G4A (p.(E599K)) variant were stained for Aβ and alpha-synuclein.
Staining procedure and antibodies can be found in the supplement.

Cloning, transfections and analysis of Aß-spectrum
cDNA of the pCDNA3.1+APP695sw vector containing all identified APP
variants were transiently transfected into HEK293 cells and Aβ was analyzed by
mass spectrometry as depicted in the supplement in the culture medium.

RESULTS

Variant screening of ‘dementia genes’ in individuals with PD
Within the coding regions and exon–intron boundaries (±10 bp) of
APP, PSEN1, PSEN2, MAPT, FUS, TDP-43 and GRN, we identified a
total of 27 rare variants with minor allele frequency (MAF) o5% in
376 individuals with PD (n= 188; 70.4± 11.73 years, 28.4% female) or
PD+D (n= 188; 72.0± 6.1 years, 33.0% female). Interestingly, more
individuals with PD+D (10.11%) than solely PD (4.26%) harbored a
rare variant with MAF o5% in any of the seven ‘dementia genes’
(19 PD+D individuals with a variant vs 8 PD individuals with a
variant; P= 0.0027, χ2-test). Four individuals harbored the GRN
c.1297C4T (p.(R433W)) (rs63750412) variant and one GRN
c.103G4A (p.(G35R)). One novel variant in PSEN1 (c.442A4G
(p.(I148W))) within two amino acids of variants known to affect the
function as well as three previously reported variants in PSEN2
(c.185G4A (p.(R62H)) (rs58973334), c.211C4T (p.(R71W))
(rs140501902), c.389C4T (p.(S130L)) (rs63750197)) were found.

No variants were identified in either TDP-43 or FUS. Nine were also
found by the NHLBI-GO exome sequencing project.17 (Table 1) For a
detailed discussion of the phenotype of variant carriers, please refer to
the supplement. (Supplementary Table 1)
For APP and MAPT, the screening was performed in the above 376

PD cases and 376 KORA-AGE controls. In APP, 11 rare variants with
MAF o5% (seven missense, two 3-bp deletions, two nearsplice
variants) were seen. In total, 10 cases but only 4 general population
controls carried a rare APP variant. None of these variants have
previously been reported in individuals with a neurodegenerative
condition. In MAPT, we identified a total of 10 rare variants
(9 missense, 1 stop). Overall, seven cases and five controls harbored
a rare MAPT variant. (Table 1,Supplementary Table 1). Analysis by
common prediction algorithms yielded contradicting results for most
variants (Table 1), thus warranting additional frequency assessment
and functional study.

Frequency assessment in individuals with PD, AD and FTD
Frequency assessment for 25 of the 27 variants identified in the
screening phase was carried out in a sample consisting of 975 PD
patients (including the 376 used above), 613 AD patients, 182 FTD
patients, 93 neuropathologically confirmed cases of Lewy body disease
and 1014 controls (also including the 376 used above). 68.0% of the
variants were very rare with MAF o0.1% in the control sample.
When compared with controls, the APP c.1795G4A (p.(E599K))
variant was significantly more frequent in the PD phenotype than in
controls (P= 0.009, χ2-test; Supplementary Table 2) prior to correc-
tion for multiple testing. When publically available data from the
NHLBI-ESP exomes17 (APP c.1795G4A (p.(E599K)) MAF= 0.15%
in KORA and 0.11% in NHLBI-ESP exomes vs 0.66% in PD cases)
were added to the controls, the finding remained significant even after
Bonferroni correction for multiple testing (14 out of 1068 cases vs 12
out of 5310 controls; Pnominal= 3.8× 10− 7, Pcorrected= 9.5× 10− 6,
χ2-test). Exclusion of the 376 PD cases and 376 controls used in the
discovery phase of the study did not alter this finding (11 out of 692
cases vs 11 out of 4934 controls; Pnominal= 4.0 × 10− 7, Pcorrected= 1.0
× 10− 5, χ2-test). However, when trying to replicate this finding in a
Spanish PD case/control sample, we did not find any APP c.1795G4A
(p.(E599K)) carriers in either cases or controls, possibly suggesting a
population-specific effect of APP c.1795G4A (p.(E599K)) in Central
Europeans. APP c.1795G4A (p.(E599K)) was the only variant
identified in the 93 Lewy body disease cases. Neuropathologically,
this case was indistinguishable from other LBD cases and showed no
obvious special pathology. Clinically, this individual had suffered from
classical, levodopa-responsive PD with an age of onset at 59 years. Her
mother had also had PD. Histology revealed both Lewy bodies in the
substantia nigra (SN) and some amyloid plaques in the frontal and
parietal cortex and the hippocampus, in line with a diagnosis of
idiopathic PD (Figure 1).
Burden tests analyzing the load of rare variants were performed for

both APP and MAPT. This revealed an excess of rare variants with
MAF o5% in APP in PD (27 individuals with a variant out of 975)
when compared with either controls alone (13 out of 1014, P= 0.018,
χ2-test), AD cases (4 out of 613, P= 0.002, χ2-test) or the combined
sample of controls, AD and FTD cases (P= 2.22× 10− 4, χ2-test). This
excess of variants with MAFo5% in APP in PD (17 individuals with a
variant out of 599) was also seen after exclusion of the ‘discovery’
samples when compared with the joined sample of controls, AD and
FTD cases (14 out of 1433, Pcorrected= 0.014, χ2-test) and to AD cases
alone (4 out of 613, Pcorrected= 0.014, χ2-test). When compared with
the controls only (9 out of 638), variants were nearly twice as frequent
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Figure 1 Location of rare variants in APP, GRN, MAPT, PSEN1, PSEN2 and histological features of an individual harboring the c.1795G4A (p.(E599K))
variant of APP. (a) Variants with MAF o5% found in PD cases are depicted above the schematic illustration of each gene, those found in controls – if the
gene was analyzed in controls – below the gene. If variants were present more than once in the discovery sample, the number of occurrences is given in
parentheses. Domain annotations were taken from Uniprot (accessed 12 December, 2012). HeP, heparin; AA, amino acids. (b) Depiction of a classical nigral
Lewy body (left, antibody: anti-alpha-synuclein KM51, 1:1000, Novocastra/NCL-ASYN, counter stain: hematoxylin–eosine) and cortical Aβ plaques (right,
antibody: 4G8, 1:2000, Signet) found in an individual with classical idiopathic PD and the APP c.1795G4A (p.(E599K)) variant. The neuropathology was in
line with a cases of Lewy body disease (Braak stage 6) with additional Alzheimer-associated alterations (Braak and Braak Stage II), cerebral amyloid
angiopathy (Thal stage 1) and beginning argyrophillic grain disease.
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(MAFPD= 1.41% vs MAFKORA= 0.71%) but this result fell short of
statistical significance (Pcorrected= 0.24, χ2-test). The frequency of rare
variants in MAPT was similar in all the groups and remained
unchanged after the omission of the initial 376 PD cases and 376
controls.

Impact of rare variants in APP on Aβ processing
Aβ spectral analysis was performed to further evaluate a potential
functional effect of the identified coding variants in APP. In all but
one, the Aβ spectrum reflected the wild-type situation. However, APP
c.2125G4A (p.(G709S)), located within the Aβ domain, shifted the
spectrum from Aβ40 as the main species to Aβ39 and – to a lesser
extent – Aβ37 (Figure 2, Supplementary Figure 2).

DISCUSSION

Screening of seven genes known to be strong genetic factors in AD or
FTD in a sample comprising both individuals with PD and PD+D
revealed a number of rare variants not previously described. Interest-
ingly, identified variants in APP were more common in PD with and
without dementia than in either controls or AD. Next, to a mere
chance occurrence, there are several possible explanations for this
finding. For one, rare variants in known dementia genes could
represent phenotype modifiers in PD. This is supported by the fact
that in the screening sample, rare variants were more frequent in the
PD+D group than in the PD group when all seven genes were
analyzed together. Also, the ‘dementia gene’ variants could contribute
to the overall ‘neurodegenerative burden’, which reflects an increased
susceptibility for neurodegenerative conditions in general. In this
scenario, an excess of genetic alterations in a specific pathway plus
additional non-genetic factors could then tip the balance toward one
neurodegenerative phenotype or the other or create phenotypes in
which features of multiple neurodegenerative diseases and symptoms
coexist. Alternatively, this could also mean that the phenotypic
spectrum of AD or FTD is broader than previously recognized and
could include PD-like aspects.
The boldest proposal would be that rare variants of strong effect in

APP or MAPT alone could cause PD. Mapt− /− mice have recently
been shown to develop not only memory deficits but also PD-specific

features such as a loss of neurons in the SN and reduced locomotion.18

Common variants in MAPT are an established risk factor for PD3,4

and the relevance of allelic series – that is, both common variants of
weak effect and rare variants of strong effect in one gene – to PD has
already be shown.4,19 Yet, in our sample, rare variants in APP, not
MAPT, were enriched in PD. However, since a physical interaction
between MAPT and APP and a role of MAPT in trafficking APP to the
cell membrane has been reported,18,20 rare variants in APP could have
a similar effect with regard to PD as MAPT variants.
One of the identified APP variants (c.2125G4A (p.(G709S))) shifts

the Aβ proteome spectrum from Aβ40 to Aβ39 and Aβ37 indicating
that it likely interferes with γ-secretase cleavage. This could possibly be
due to an alteration in the site at which APP interacts with
γ-secretases, a mechanism recently postulated for increased Aβ37
production in response to an artificial APP variant (c.2095A4G
(p.(K699E))) 10 amino acids N-terminal of our variant.21 None of the
other APP variants showed an altered Aβ spectrum. However, further
studies are necessary to exclude that these variants could affect the
structure and, accordingly, the aggregation potential of generated
Aβ as has been demonstrated for some AD-linked variants (reviewed
in Haass et al22).
Yet, from our data we cannot conclude that an Aβ-related function

is truly relevant to a potential (modifying) role in PD. Next to the
well-recognized role in amyloid production, recently several other
functions have been identified.23,24 APP has been described to serve as
a neuronal ferroxidase, which oxidizes Fe2+ and loads Fe3+ on to the
iron transport protein transferrin.24 Moreover, iron accumulates in
mice lacking App.24 As iron accumulation in the SN is a known feature
of PD,25 it would be imaginable that APP dysfunction could also
predispose to increased iron accumulation in the SN. App− /− mice
also show increased cerebral levels of dopamine and catecholamines
owing to a lack of amine catabolism via the amine oxidase function of
App.23 Increased APP expression due to APP variants potentially
related to PD could lead to cerebral dopamine deficits and a PD
phenotype. Accordingly, APP’s ferroxidase24 and amine oxidase23

activities could even more plausibly fit a potential role in PD
pathogenesis or phenotype modification and should be explored
further.
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