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Where is the causal variant? On the advantage of the
family design over the case–control design in genetic
association studies

Claire Dandine-Roulland*,1,2 and Hervé Perdry1,2

Many associated single-nucleotide polymorphisms (SNPs) have been identified by association studies for numerous diseases.

However, the association between a SNP and a disease can result from a causal variant in linkage disequilibrium (LD) with the

considered SNP. Assuming that the true causal variant is among the genotyped SNPs, other authors demonstrated that the

power to discriminate between it and other SNPs in LD is low. Here, we propose to take advantage of the information provided

by family data to improve the inference on the causal variant: we exploit the linkage information provided by affected sib pairs to

discriminate the causal variant from the associated SNPs. The family-based approach improves discrimination power requiring

up to five times less individuals than its case–control equivalent. However, the main advantage of family design is the possibility

to carry out the procedure one step further: the linkage information allows inference on causal variants, which are not genotyped

but in LD with tag-SNPs displaying association, which is impossible with case–control design. By means of Bayesian methods,

we estimate the LD between the observed SNPs and an unobserved causal variant, as well as the allelic odds ratio at the

unobserved causal variant. The proposed procedure is illustrated on a multiple sclerosis (MS) family data set including genotypes

of SNPs in IL2RA, confirming the advantage of using a family design to identify causal variants. The results of our method on

this data suggest the existence of two distinct causal variants in this gene for the MS.
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INTRODUCTION

Association studies aim to identify variants associated with a disease,
usually focusing on single-nucleotide polymorphisms (SNPs). They
are able to detect the variants with modest effect, which are implied in
complex diseases, contrarily to linkage analysis.1 In genome-wide
association studies (GWAS), the considered variants are tag-SNPs,
which capture most common SNPs of the genome through linkage
disequilibrium (LD).2 However, the association between a SNP and a
disease does not prove the causality link between the two: the
association can result from a causal effect of the SNP itself or from
the LD with another causal variant. Consequently, a significant
association signal indicates a set of correlated variants associated with
the disease. Discriminating between the causal variant and variants in
LD with it by using case–control data was addressed by Udler et al.3

Under the hypothesis that the causal variant is among the genotyped
SNPs, the proposed method allows to select a minimal subset of
potentially causal SNPs among disease-associated variants. Family data
convey more information than case–control data, and their use can
improve the performance of this selection process; moreover, family
data allow to address a limitation of the discrimination method with
case–control data, which is that the causal variant among
genotyped SNP.
Here, we propose a method exploiting family data to select a

minimal subset of associated SNPs and to make inference on putative
causal variants in LD with those SNPs. This method uses an association
framework, which takes advantage on the linkage information

existing in affected sib-pairs (ASPs) data.4 The first step is to select
a minimal subset of potentially causal SNPs among disease-associated
variants; assuming that the causal SNP is among the genotyped SNPs,
we compare the performance of this discrimination step with the
method using case–control data.3 The second step of the method
addresses the situation where the causal variant is not directly
genotyped, but is in LD with genotyped SNPs. In this situation,
case–control data do not convey enough information to make the
difference between a SNP in strong LD with the unobserved causal
variant, and a truly causal variant. Using a sample of ASPs, the
number of alleles that shared identical-by-descent (IBD) by the two
affected siblings allows to make inference about the causal variant, to
estimate its allelic frequencies, the allelic odds ratio (OR) and the LD
between it and an observed SNP.
The advantage of the family method is illustrated on a sample of

multiple sclerosis (MS) data. MS is a chronic autoimmune neuro-
logical disease of the central nervous system, which affects about
1–2 per 1000 people in Europe and North America.5 It is manifested
by demyelination of nerve fibers in the brain, spinal cord and optic
nerve. The disease is progressive and may lead to the loss of walking
and eventually death. It is a multifactorial disease and has environ-
mental and genetic factors. Several associations with genes involved in
the immune response have been found. In particular, in the literature,
there are associations with various genes in the human leukocyte
antigen (HLA) region, and various non-HLA genes, for example,
CD58, IL2RA and IL7R.6 Our data set consists of french ASP and
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controls data from a previous study7 and collected through REFGEN-
SEP. It comprehends the genotypes of 26 SNPs in IL2RA on the
chromosome 10. Several studies find association between MS and this
gene in Caucasian populations.8–13 The method using case–control
data selects a minimal subset of seven associated SNPs, which reduces
to three SNPs when using family data. The second step shows that
none of these SNPs is causal, and that the association signal is due to
at least two different ungenotyped variants in the region.

MATERIALS AND METHODS
In the first two paragraphs below, we give an overview of the method proposed
by Udler et al3 to identify causal variants in case–control association studies.
The reader is referred to the original paper for details. In the third paragraph,
we present the discrimination method that uses family data in two steps;
selection of a subset of associated SNPs and inference about a putative causal
variant not genotyped in the sample. In the last paragraph, we describe the MS
data set used to illustrate this approach.

Discrimination procedures
Consider n highly correlated variants in a genomic region. Under the
hypothesis that one of these variants is causal, the aim is to select a subset of
these variants that is likely to contain the causal variant. The method relies on
Bayesian principles: if Li for i= 1,…, n is the likelihood that the ith variant is
the causal variant, the variants selected are those of index i such that

maxjLj
Li

> K;

or, equivalently,

2ln maxjLj
� �� 2lnLi > k;

where k= ln(K2)= 2lnK. Following Udler et al,3 we take K= 100 (ie,
k= 2ln100≈9.21), which is interpreted as excluding variants with odds greater
than 100:1.
For example, for two SNPs A and B, the SNP B is not retained if

2lnLA− 2lnLB4k. As asymptotically

2lnLA � 2lnLBEY2
A � Y2

B

where Y2
A and Y2

B are association test statistics corresponding to the
likelihoods LA and LB, such as the Armitage Trend Test statistic14–16 for
case–control design, and a score statistic adapted to the family design,4 this is
equivalent to not retaining B is

Y2
A � Y2

B > k ð1Þ
Both these association statistics Y are approximately standard normal, Y∼N

(0,1), under the hypothesis of no association with the disease. Otherwise, it is
approximately decentered normal: assuming that the causal variant for the
disease is A with ψ its per-allele OR,

YABN Z;1ð Þ
where η is a decentered parameter, which will depend on the sample sizes, on

the allele frequencies and on ψ. This parameter η also depends on the
association statistic test used. Being in LD with the variant A, the variant B is
also associated with the disease. Then,

YBBN rZ;1ð Þ and cov YA;YBð ÞEr;

where r is the correlation coefficient between the two variants, measuring the
intensity of the LD. The distribution of the discrimination statistic (equation 1)
is approximately

Y 2
A � Y2

BBN Z2 1� r2
� �

; 4 1� r2
� �

1þ Z2
� �� �

(see details in section 1 of Supplementary Information).
Then, we can rely the power of discrimination 1− β with the decentered

parameter η by

Z2 1� r2
� �� z1�b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 1þ Z2ð Þ 1� r2ð Þ

p
¼ k ð2Þ

where z1− β is the quantile of level 1− β of the standard normal distribution.

Discrimination with case–control data
Here we consider case–control data: the association statistic is the Armitage
statistic.14–16 Udler et al show that in this case

Z ¼
ffiffiffiffiffiffiffiffiffiffiffi
2f af A

p
c� 1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f acþf Að Þ
m þ c

n

q ð3Þ

where, m and n are the number of controls and cases, fA and fa the frequencies
of the reference and alternative alleles, A and a, and ψ the per-allele OR of a.
The demonstration is given in section 2 of Supplementary Information. Then, if
we assume that the number of controls and cases are equal, the total sample
size needed to achieve power 1− β is

nþm ¼ Z2 f A þ f ac
� �2 þ c

f af A c� 1ð Þ2 ð4Þ

where η2 can be computed from β using equation 2.

Family design
Here, we propose a method in two steps. The first step is the selection of a subset
of variants that is likely to contain the causal variant using the same
discrimination procedure that in the case–control design, but using an association
statistic designed for family data. We compute the power of discrimination of this
procedure, assuming that the causal SNP is among the genotyped SNPs.
The second step uses the selected variants to make inference on causal

variants in LD with them, relying on Bayesian principles. This step allows to
retrieve information on a causal variant even if it is not genotyped.

First step: discrimination with family data
First, we use the same discrimination statistic (equation 1) based on a statistic
Y, which has been proposed for ASPs and controls.4 The data considered
include genotypes of controls, genotypes of the index cases and the number of
IBD alleles in each sib-pair. Hereafter, we denote the three possible genotypes
by the number of alternative alleles: 0, 1 and 2.
We denote nki as the number of ASPs in which the index genotype is k and

the number of IBD alleles is i, mk as the number of controls with genotype k,
and n and m as the total number of ASPs and controls. The association statistic
is Y ¼ U=

ffiffiffiffiffi
s2

p
where U is the score

U ¼
X

k;iA 0;1;2f g
2þ ið Þnki

0
@

1
Af̂ þ 1

2

X
k;iA 0;1;2f g

2þ ið Þknki

with

f̂ ¼ 1

2 mþ nð Þ
X

iA 0;1;2f gn1i þ 2
X

iA 0;1;2f gn2i þm1 þ 2m2

� �

the estimator of the alternative allele frequency, and

s2 ¼
1
4 ´ 1� f̂

� �
f̂ 19mþ n� 1ð Þn
nþm

the estimator of the variance of U under the hypothesis of no association. In
absence of association, the distribution of Y is standard normal Y∼N(0,1).
We consider the causal variant A with allele frequencies fA and fa and OR ψ.

The association statistic is decentered: YA∼N(η,1), where η is approximately

Z ¼ E UAð Þffiffiffiffiffiffiffiffiffiffiffiffi
E σ̂2Að Þp : ð5Þ

Formulas for E(UA) and E ŝA2ð Þ (depending on fA, fa, ψ and sample sizes n and
m) are given in section 3 of Supplementary Information. Then, we can calculate
power of discrimination for a given set of parameters, or total sample size
needed to achieve a given power, with equation 2.

Second step: Bayesian inference on the causal variant
Second, we propose to use the SNPs selected by the discrimination step to
retrieve information on the causal variants of the region. Let’s assume that a
variant B in LD with the causal variant A is observed. In this case, we want to
make inferences on A, in particular to estimate the LD between A and B, and
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the OR of A. This task is undoable with case–control data, as an OR for variant
B can always be computed, which explains fully the observations under the
hypothesis that B is the causal variant. However, the advantage of family data
lies in the linkage information provided by the IBD state of the sib-pairs, which
allows to discriminate between observations made directly at a causal variant A,
and observations made at a variant B in LD with A.
In section 4 of Supplementary Information, we write a likelihood for the

family data Lψ(fa,fb,d) (where ψ is the OR in A, fa and fb the alternative allele
frequencies in A and B and d is the LD between A and B). In section 5 of
Supplementary Information, we show that all parameters are identifiable,
provided that ψ41 and d≠0.
This likelihood can be used to define the posterior distribution of

parameters, from which we sample using Metropolis–Hastings algorithm17

(cf section 6 of Supplementary Information for details). In particular, we can
estimate the posterior distribution of the disequilibrium r2= d2/(fa(1− fa)fb
(1− fb)). We also find simultaneous credibility regions for fa and fb, or for ψ
and r2, using the posterior joint density of these parameters as estimated from
the values sampled by the Metropolis–Hastings algorithm.

MS data
These two methods of discrimination are illustrated on MS data described in
full details in Babron et al.7 This data include 26 tag-SNPs on the IL2RA gene
for french families with at least one affected child collected through
REFGENSEP. All affected people were reviewed by a board-certified neurologist
and diagnosed according to Poser criteria.18 All individuals signed informed
consent in accordance with the European Union and Country Laws and the
Helsinki Convention. The sample comprises 522 trio families (one affected with
two living parents) and 101 multiplex families (at least two affected sibs).
The trio families are used to create pseudo-control genotypes consisting of

the alleles untransmitted by the parents to their affected child. Pseudo-control
genotypes are known to represent general population genotypes.19 ASPs are
obtained from multiplex families, randomly selecting two affected sibs in each
family. The IBD states are calculated using the software Merlin,20 which
calculates the probability of each IBD state. Only ASPs for which one IBD state
has probability higher than 0.8 are kept, assigning the IBD state with probability
exceeding 0.8 to them.
Overall, the data set comprises 522 pseudo-controls and 82 ASPs with case

index genotypes and IBD states. In addition to applying the family-based
descrimination method on the data set, we will also use the case–control
method on the 82 index sibs as cases and the 522 pseudo-controls.

RESULTS

Power of the family and case–control discrimination methods
The power of the two discrimination methods depends on the
expression of the decentered parameter η (equation 2). In Figure 1,
we display η values for an OR ψ varying from 1–5. For all OR, the η
parameter in a family design is higher than that of a case–control
design.
The total sample size required to achieve 90 power to exclude

variants at 100:1 odds assuming an equal number of controls and
unrelated cases or ASPs for different values of alternative allele
frequency, OR ψ and LD, r2 is reported in Figure 2. For identical
parameters, the family discrimination method needs a smaller sample
size than the case–control method. For example, when ψ= 3, r2= 0.9
and fa= 0.1, the case–control method needs the genotypes of 1500
controls and 1500 cases, whereas the family discrimination method
needs only the genotypes of 300 controls and 300 sib-pairs (genotype
of the index case and IBD state, which can be obtained with a low-
density genotyping of the second sib).

Inference on a causal variant with family data
Using Metropolis–Hastings algorithm, we simulate data composed of
1000 ASPs and 1000 controls. The theoretical distribution used for
these simulations is described in section 4 of Supplementary

Information. The posterior distribution of fa,fb,ψ, and r2, obtained
from 107 distribution samples, are displayed in Figures 3 and 4. Each
shade of gray represents the credibility region for one level. The
lightest gray corresponds to all sampled values.
In Figure 3, the data are simulated under a model with total LD

(r2= 1), alternative allele frequencies fa= fb= 0.2, and an OR ψ= 2 for
the causal variant A. The 95 credibility regions of fa, fb, ψ, and r2 are
~ (0.17,0.215), (0.08,0.29), (1.8,3) and (0.31), respectively. They
contain the true values of parameters, and the mode of the
distribution is near to the true values. Note that the allele frequency
is best estimated at the variant that is directly observed, which
corresponds to a certain amount of uncertainty on r2.
In Figure 4, the data are simulated with r2= 0.8, fa= 0.435,

fa= 0.448 and ψ= 3. The 95 credibility regions of fb, fa, ψ and r2 are
(0.415,0.47), (0.3,0.55), (2.5,5) and (0.5,1), respectively. Again, they
contain the true values of parameters. Interestingly, although the
causal variant is not directly observed, some inference of its
characteristics is possible.

Application to MS data
Discrimination methods. The values of association statistics and
P-values for the two discrimination methods at all SNPs are displayed
in the Table 1. For the SNPs with the smallest P-values (SNPs 1–4, 21
and 24), the family-based P-values are lower than the case–control
ones. However, the use of family data does not decrease P-value for all
SNPs: for example, the SNP reported in the literature21–25 as
associated with MS, rs2104286 (SNP 23 in our numbering), is not
associated using case–control data, and adding the IBD information
does not decrease its P-value. After Bonferroni correction, the
association is significant association only with rs3118470 (SNP 24)
for both case–control and family designs, and, with rs12359875 (SNP 1)
for family design only.
To apply discrimination methods on these data, we compute the

difference of association statistics between the most associated SNP,
that is, SNP 24, and others (Table 1). Comparing these values with the
threshold k= 9.210, we select the set of SNPs 1, 2, 3, 4, 20, 21 and 24
as likely to contain the causal variant, using the case–control

Figure 1 The parameter η according to the OR ψ for 0.1 alternative allele
frequency, r2=0.8 and 500 cases and 500 controls.
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discrimination method, whereas the selected set contains only SNPs 1,
4 and 24, for the family discrimination method.

Metropolis–Hastings on SNPs 24 and 1. Applying the Metropolis–
Hastings algorithm on the most associated SNP, that is, SNP 24, the
posterior distributions are displayed in Figure 5. The frequency fa
corresponds to the SNP 24 and fa to the hypothetical causal variant.
The 95 credibility region of fa and OR ψ are (0.24,0.31) and (1.4,3.2),
respectively. The LD r2 is not well estimated, as its 95 credibility region
containing almost all possible values. Finally, for the parameter fa, the
disease allele frequency is bimodal, with two modes near 0.3 and 0.8.
Also applying the Metropolis–Hastings algorithm on the second

associated SNP, that is, SNP 1, the posterior distributions are displayed
in Figure 6. Graphically, the 95 credibility regions of fb, fa, ψ and r2 are
~ 0.68,0.76), (0.6,0.95), (1.5,5) and (0.1,1), respectively. The mode of
fa is ~ 0.8.

We have also applied the Metropolis–Hastings algorithm on
rs9663421 (SNP 4), which is in the subset of SNPs selected by the
family method. The results are similar with those obtained for SNP 1.
This is consistent with the observed LD between the SNPs 1 and 4 in
our data (r2= 0.85).

DISCUSSION

Nowadays, research on complex diseases focuses on massive case–
control designs, neglecting family designs. However, the joint use of
linkage and association information in families allows efficient designs
for complex diseases. Using linkage information in association studies
results not only in a gain of power in association testing, but also in an
increased ability to estimate the risk conferred by the allelic variants, as
illustrated in previous papers on Rheumatoid Arthritis26,27 and MS.7

The MASC method28 was developed to exploit all information in
family data. The association test from Perdry et al4 is built on the
same idea.

Figure 2 The sample size needed to achieve 90 power to exclude variants at 100:1 odds is plotted as function of r2, for various values of ψ and for
(a) fa=0.1 and (b) fa=0.5. The number of cases and controls are assumed to be equivalent.

Figure 3 Posterior distributions with Metropolis–Hastings for a simulated sample of 1000 sib-pairs and 1000 controls. The parameters used for simulation
are r2=1, fa= fb=0.2 and ψ=2.
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In this paper, we have shown that sib-pairs provide a gain of power
to discriminate between several SNPs associated with a disease. For
example, with an OR of 3, r2= 0.9 and 0.1 alternative allele frequency,
the family method needs five times less individuals than the case–

control method to achieve similar power. This illustrates well the gain
of information provided by family data, as the sib-pairs test uses
simultaneously association information comparing control and index
cases and linkage information through the IBD. Note that in many

Figure 4 Posterior distributions with Metropolis–Hastings for a simulated sample of 1000 sib-pairs and 1000 controls. The parameters used for simulation
are r2=0.8, fa=0.435, fb=0.448 and ψ=3.

Table 1 Association test statistics and P-values; discrimination statistics of all SNPs with SNP 24

Association test statistics and P-values Discrimination statistic with SNP 24

SNP name Case–control P-value Family P-value Case–control Family

SNP 1 rs12359875 8.75 0.0031 9.63 0.0019 2.617 5.383

SNP 2 rs12722605 4.04 0.044 4.88 0.027 7.323 10.133

SNP 3 rs12244380 2.25 0.13 3.11 0.078 9.117 11.910

SNP 4 rs9663421 5.28 0.022 7.62 0.0058 6.086 7.399

SNP 5 rs12722596 1.00 0.32 1.70 0.19 10.364 13.315

SNP 6 rs2386841 0.04 0.84 0.01 0.93 11.324 15.009

SNP 7 rs12722588 1.33 0.25 0.64 0.42 10.031 14.374

SNP 8 rs2076846 0.10 0.75 0.21 0.65 11.264 14.805

SNP 9 rs12722561 0.13 0.72 0.27 0.60 11.235 14.743

SNP 10 rs6602392 0.20 0.65 0.26 0.61 11.163 14.757

SNP 11 rs7072398 0.29 0.59 0.53 0.47 11.074 14.484

SNP 12 rs11256456 0.05 0.82 0.002 0.96 11.316 15.014

SNP 13 rs11256457 0.01 0.92 0.17 0.68 11.356 14.843

SNP 14 rs4749924 1.97 0.16 2.11 0.15 9.398 12.904

SNP 15 rs11598648 0.02 0.88 0.31 0.58 11.342 14.702

SNP 16 rs11256497 0.04 0.85 0.13 0.71 11.325 14.883

SNP 17 rs791587 2.03 0.15 3.05 0.081 9.339 11.967

SNP 18 rs791589 0.38 0.54 0.16 0.69 10.989 14.860

SNP 19 rs791590 0.37 0.54 0.61 0.44 10.995 14.409

SNP 20 rs10905669 2.31 0.13 2.39 0.12 9.051 12.629

SNP 21 rs2476491 3.72 0.054 4.13 0.042 7.642 10.889

SNP 22 rs2256774 0.85 0.36 1.48 0.22 10.513 13.534

SNP 23 rs2104286 1.26 0.26 0.35 0.55 10.110 14.663

SNP 24 rs3118470 11.37 0.00075 15.02 0.00011 0.000 0.000

SNP 25 rs12722489 0.33 0.57 0.44 0.51 11.035 14.581

SNP 26 rs12722486 0.10 0.74 0.004 0.95 11.259 15.013

The bold numbers represent the significant tests. We used Bonferroni correction for association tests and k=2ln(100) for discrimination methods.
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cases, the IBD information is already available from previous linkage
studies that have been performed using the same sib-pair sample. If it
is not available, it can be obtained through low-density genotyping,
which has a negligible cost as compared with the high-density
genotyping of the index cases.
Moreover, Udler et al's method for case–control data assumes that

the causal variant is genotyped, which is unlikely to be true when using
tag-SNPs. Imputation methods, which have been widely used in
GWAS, can help to reach a fine enough mapping scale. Nevertheless,
we have shown that with family data, thank to the IBD information,
we can capture information on the unobserved causal variants through
the linked observed variants. This was first done formally, by proving
the identifiability of the parameters (section 5 of Supplementary
Information). This allows in theory to assess whether the observed

variant is the causal variant, or if it is only in LD with the causal
variant. Sampling from the posterior distribution of the different
parameters allows to obtain credibility regions for allele frequencies,
per-allele risk and LD between observed and causal variants. We
showed on simulated data that these credibility regions are reasonably
accurate.
These methods were illustrated on a real data set, consisting of

IL2RA genotypes on MS cases and controls, which were first
considered in Babron et al.7 Both discrimination methods provide
subsets of SNPs, which likely contain the causal variants. However, the
subset obtained using case–control data contains seven SNPs, whereas
the subset obtained using the family method contains only three SNPs.
This reduced size illustrates the increase of discrimination power. In
addition, the family data were additionally used to estimate the risk

Figure 5 Posterior distributions with Metropolis–Hastings using SNP 24 (rs3118470).

Figure 6 Posterior distributions with Metropolis–Hastings using SNP 1 (rs12359875).
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allele frequency and the OR of a putative causal variant in IL2RA:
when using rs12359875 (SNP 1), the method infers a causal variant
with a risk allele frequency ~ 0.8, likely different from SNP 1; the value
of the LD between SNP 1 and the causal variant and the allelic OR are
not well identified. When using rs3118470 (SNP 24), the posterior
distribution of the risk allele frequency of the causal variant is
bimodal, with one mode ~ 0.8 and another ~ 0.3. This pleads in favor
of the existence of a second causal variant with a risk allele frequency
near 0.3, in LD with SNP 24 but not with SNP 1, whereas the first
causal variant with a risk allele frequency near 0.8 is in LD with both
SNPs. In the previous study,7 the association signal in IL2RA was best
captured by an haplotype of rs2256774 (SNP 22) and rs3118470 (SNP
24). Besides that we agree on the fact that the association signal is not
due to a single SNP in the region, it is difficult to compare our results
with their results, as our approach does not allow to consider several
markers at the same time. Also, we considered only a multiplicative
risk model, which was not the case in the previous study.7

Our approaches could be extended in these directions: considering
haplotypes instead of isolated SNPs, droping the multiplicative risk
hypothesis, and allowing for multiple disease alleles. If this can
improve the disease model inference, a compromise has, however,
to be found between the complexity of the model considered and the
amount of available information. Considering larger nuclear families
or even multiplex families can be a solution to improve the precision
of the inference. Another interesting strategy would be to use the
difference of LD pattern between cases and controls in the vicinity of
the causal variant29 at the same time as the IBD information.
Identifying variants helps both to improve disease risk prediction

and to uncover biological mechanisms involved in human diseases. A
better statistical modeling of the effect of the variants in an associated
genomic region is a crucial step on this way. In this regard, family
design should not be neglected.

Software
The proposed method is accessible in the R package ASPBay available
on the Comprehensive R Archive Network (CRAN).
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