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Heritability estimates on Hodgkin’s lymphoma:
a genomic- versus population-based approach

Hauke Thomsen*,1, Miguel Inacio da Silva Filho1, Asta Försti1,2, Michael Fuchs3, Sabine Ponader3,
Elke Pogge von Strandmann3, Lewin Eisele4, Stefan Herms5,6, Per Hofmann5,6, Jan Sundquist7,
Andreas Engert3 and Kari Hemminki1,2

Genome-wide association studies (GWASs) have identified several single-nucleotide polymorphisms (SNPs) influencing the risk of

Hodgkin’s lymphoma (HL) and demonstrated the association of common genetic variation for this type of cancer. Such evidence

for inherited genetic risk is also provided by the family history and the very high concordance between monozygotic twins.

However, little is known about the genetic and environmental contributions. A common measure for describing the phenotypic

variation due to genetics is the heritability. Using GWAS data on 906 HL cases by considering all typed SNPs simultaneously,

we have calculated that the common variance explained by SNPs accounts for 435% of the total variation on the liability scale

in HL (95% confidence interval 6–62%). These findings are consistent with similar heritability estimates of ∼0.40 (95%

confidence interval 0.17–0.58) based on Swedish population data. Our estimates support the underlying polygenic basis for

susceptibility to HL, and show that heritability based on the population data is somehow larger than heritability based on the

genomic data because of the possibility of some missing heritability in the GWAS data. Besides that there is still major evidence

for multiple loci causing HL on chromosomes other than chromosome 6 that need to be detected. Because of limited findings in

prior GWASs, it seems worth checking for more loci causing susceptibility to HL.
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INTRODUCTION

Hodgkin’s lymphoma (HL) is a malignancy of the lymphatic system
with an incidence of 2–3/100 000/year in developed countries.1 It is
characterized through malignant Hodgkin and Reed–Sternberg (HRS)
cells mixed with a dominant background population of reactive
lymphocytes and other inflammatory cells.2 Epstein–Barr virus
(EBV) infections may be causally related to a number of cases as well
as a personal history of autoimmune diseases.3,4 However, there is
limited evidence to the involvement of other specific environmental
risk factors, although there is a distinctive pattern of incidence rates
and risk profiles by age, race/ethnicity, sex and economic levels.2 Some
evidence for inherited genetic influence on susceptibility is provided
by the increased familial risk and the very high concordance between
monozygotic twins.5 Recently, several genome-wide association studies
(GWASs) have identified a couple of loci for HL.6,7 These studies have
shown that the risk of HL is highly influenced by the human leukocyte
antigen (HLA) genotype variation, but the familial risk is also a
consequence of non-HLA genotype variation.6 However, all the
genetic variants identified so far only capture a minor percentage of
the estimated heritability of the disease.8 Yet, a great deal remains to be
understood regarding the remaining heritability.9,10 Some plausible
explanation include unidentified gene–gene interactions, unidentified
contributions of rare genetic variants or overestimating the total
heritability for HL in population-based studies, resulting in a

‘phantom heritability’,9,11,12 that cannot be dissolved on the molecular
basis.13,14

Thus, our aim is to provide reliable estimates for the genetic
variation of the disease derived either from the quantification of
resemblance between close relatives or the dissection of genetic
variation from genomic loci.15

The knowledge of the heritability estimates for the susceptibility to
HL based on genomic data and on population data will then provide
further insights in the proportion of genetic variation hidden so far
but still detectable on the genomic level.16

MATERIALS AND METHODS

Genomic data: quality control of SNP genotyping
The study population comprised a total of 2227 individuals, with 1001 cases
and 1226 controls. Cases were sampled all over Germany, whereas controls
were sampled within the Ruhr area in North Rhine-Westphalia as part of the
Heinz Nixdorf Recall Study.17 All individuals were genotyped using the
Illumina Human Omni Express 12v1 chip (Illumina, San Diego, CA, USA).
(733 202 markers).
To counteract artificial differences in allele frequencies between cases and

controls causing spurious genetic variation, GWAS data have undergone a very
stringent quality control procedure.16 After checking the gender based on
genotypes, 11 individuals were excluded because of inconsistencies. Three
individuals were excluded because of low genotype calling rates (o0.99). In
total, 27 individuals were excluded, because their heterozygosity was 43 SD
apart from the mean heterozygosity of the sample. Principal component
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analysis indicated a presence of population outliers, especially in the cases,
because cases represent a more diverse group than controls. After excluding
these 46 outliers, the remaining individuals were genetically well matched.
Seventeen individuals having a relatedness score of 40.05 were excluded. The
final set consisted of 906 cases and 1217 controls. All data were checked for
differential missingness between cases and controls, and single-nucleotide
polymorphisms (SNPs) were excluded with Po0.05. SNPs were also excluded
after applying the Hardy–Weinberg equilibrium test with Po0.001. A detailed
overview of the study material, the identification of samples of non-European
origin, the plots of the principal components and the results is given in our
previous paper.6 The genome-wide Armitage trend test χ2 values showed
minimal inflation of the test statistics proving the absence of substantial cryptic
population substructure (genomic control inflation factor λgc= 1.09).6

By using PLINK software18 we finally produced two subsets of data with
SNPs in cases and controls that had either a minor allele frequency (MAF) of
40.01 or MAF of 40.05.

Statistical analysis on genomic data
For the statistical analyses on the genomic data, the approach of Yang et al19

was used. Their method has been completed by an approach of Speed et al,20

who presented an improved method for the heritability estimation on GWAS
data with a new adjustment for linkage disequilibrium (LD). Both methods
provide an estimate of the additive genetic variance explained by SNPs but are
accounting for LD between the genotyped SNPs and unknown causal variants
in different ways (ie, correlations between SNP genotypes).19,20 Both
approaches fit a linear mixed model of the form: y=μ+g+e,16,19 whereby y
is the vector of the disease status, μ is the mean vector, g is a vector of random
additive genetic effects obtained from SNP data and e is a vector of residual
effects. The covariance structure fitted in the data is the individual relationship
estimated from the SNPs; covðyj; ykÞ ¼ Ajks2g þ s2e , where Ajk is the genetic
relationship between individuals j and k derived from the SNPs, s2g is the
additive genetic variance and s2e is the residual variance. With this model
disease heritability, h20, can be defined as: s2g=ðs2g þ s2e Þ.20 Because phenotypes
in case–control studies are measured on the 0–1 scale, the relationship between
observations on the observed scale and liabilities on the unobserved continuous
scale are modeled through the liability threshold model. The liability for HL on
the underlying scale follows a standard normal distribution whereby if liability
exceeds a certain threshold, t, then individuals will be affected. The estimate of
variance explained by the SNPs on the observed 0–1 scale is linearly
transformed to that on the unobserved continuous liability scale such that
h2l ¼ h20Kð1� KÞ=z2,21 where K is the prevalence of the disease and z is the
value of the standard normal probability density function at the threshold t.
Given an incidence of 2–3/100 000/year will result in a cumulative risk of ~ 1 in
1000, which can be considered as an estimate of the prevalence. The
relationship between additive genetic variance on the observed 0–1 and
unobserved liability scales is extended to account for ascertainment bias in a
case–control study.16 Estimation of the additive genetic variance was performed
using restricted maximum likelihood (REML) via the genome-wide complex
trait analysis (GCTA) software.22 Because the MAF spectrum of the unobserved
causal variants may be different from the genotyped SNPs, the estimation of the
variance explained by SNPs was performed in two ways. (1) the estimate of the
variance explained by SNPs was adjusted to account for missing LD between
the genotyped SNPs and unknown causal variants.19 SNPs were randomly
assigned into two different groups with one of the groups being treated as
representing ‘true’ causal variants. The covariance between both groups is
supposed to reflect the true variance of relatedness between individuals,
whereas the variance derived from the SNP group equals the variation of
relatedness plus estimation error. The prediction error can then be derived by
regressing the relationships of the ‘true’ causal variants on the SNPs. (2) In
contrast to the method of Yang et al,19 which suggests a uniformly scaling of the
usual SNP-based kinship coefficients, Speed et al20 proposed a different
adjustment, in which SNPs are weighted according to how well they are tagged
by their neighbors. The kinship coefficients corrected for LD are obtained in a
two-step procedure: first, weightings for each predictor given the local patterns
of correlations are calculated, and second these weightings are used to estimate
relatedness values across all pairs of individuals.20 The final estimation of the

additive genetic variance was again performed by using REML via the software
tool GCTA.22

In addition, the approach of Guan and Stephens23 has been applied to
estimate the proportion of phenotypic variance explained (PVE) by the
genotypes. It implements the Markov chain Monte Carlo (MCMC)-based
inference methods for Bayesian variable-selection regression based on standard
normal linear regression with the following model:

yjm; b;X; tBNn mþ Xb; t�1In
� �

;

relating a response variable y to covariates X. Here y is an n-vector of
observations on n individuals, μ is an n-vector with components all equal to the
same scalar μ, X is an n by p matrix of covariates, β is a p-vector of regression
coefficients, τ denotes the inverse variance of the residual errors, Nn (·, ·)
denotes the n-dimensional multivariate normal distribution and In the n by n
identity matrix. The variables y and X are observed, whereas μ, β and τ are
parameters to be inferred. Because GWAS applications involve binary
phenotypes, the probit link function is used and allows direct comparisons
to the estimates of variance explained by SNPs on the liability scale. The total
proportion of variance in y explained by the relevant covariates Xγ, or PVE, is
commonly used to summarize the results of a linear regression.
The PVE is closely related to the ‘heritability’ of the phenotype and reflects

the optimal predictive accuracy that could be achieved for a linear combination
of the measured genetic variants, whereas heritability reflects the accuracy that
could be achieved by all genetic variants.23

Population data: Swedish Family-Cancer Database
To compare the variance explained by SNPs to new estimates of heritability
from family-based studies, variance components were estimated for the
susceptibility to HL on the basis of the 2010 update of the Swedish Family-
Cancer Database that includes all individuals born after 1931 who are residing
in Sweden, together with their biological parents, totaling ∼ 12.1 million
individuals.24 The Database was created in 1996 by combining the Swedish
Cancer Registry and the Swedish Multigenerational Register, and has been
updated regularly. The Database includes information about the cancers,
socioeconomic data and death causes. In total, 7438 individuals (4441 males
and 2997 females) have been diagnosed with the HL (ICD-7 code 201). The
R-stat package and DmuTrace25,26 were used to extract all related individuals of
the patients from the large pedigree file back to the base population as well as
all offspring of the patients and their relatives in future generations until the
current population. This resulted in a pedigree of 133 544 individuals (67 059
males and 66 485 females). The entire pedigree consisted of 6755 families across
6 generations with a family size ranging from 2 to 490 individuals. The total
number of founders was 59 679 with a range of 2 to 203 individuals per family.
Each family contained at least one and up to eight cases.

Statistical analysis on population data
A generalized linear mixed effect threshold model with a binary response
variable using MCMC Carlo techniques was applied.27 In such a standard
threshold (probit) model, the observed binary records (Yij) are assumed fully
determined by an underlying liability (λit), such that: for Yij= 0 for λij≤ 0 and
Yij= 1 for λij40 and the threshold value is set to 0. The model can be written as

l ¼ Xbþ Zaþ e

where λ= vector of all λij, b= vector of ‘fixed’ effects, a= vector of random
additive genetic effects of all individuals, e= vector of random residuals and X
and Z are the appropriate incidence matrices. Var(a)=Aσa2 and Var(e)= Inσe2,
where A is the additive genetic relationship matrix of all individuals, In is an
identity matrix with dimension equal to number of records and σa2 and σe2 are
the additive genetic and the residual variances, respectively. As usual for probit
threshold models, σe2 is restricted to be 1. Fixed effects included in the model
were gender, birth year, country of birth, social economic index and number of
children.
Marginal estimates of the genetic parameters were obtained in the underlying

scale using Bayesian inference, implemented via the Gibbs sampling procedure
and a data augmentation approach. The model included a Gibbs sampling
chain of 10 150 000 rounds with a conservative 150 000 iterations as burn-in
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and 10 million sampling rounds. Every 1000th sample was drawn, resulting in
10 000 samples. For each sample of the Gibbs chain, narrow-sense heritability
was calculated after as: h2=σa2/(σa2+σe2), where σe2= 1 for probit link
model.28,29

Posterior marginal means of heritability were derived and the 95% highest
marginal posterior density region of the heritability range determined. The
algorithm to estimate genetic (co)variance components has been implemented
in the Gibbs sampling module of the DMU statistical software package30 that
has been developed to handle multivariate genetic analyses including binary,
ordered categorical and Gaussian traits. Results have been proven by the R
package MCMCglmm31 that has also been used to prove convergence diagnosis
and output analysis. Heritability estimates on the liability scale have been
transformed to the observed scale by using the linear transformation of
Dempster and Lerner.21

RESULTS

Estimates of the variance explained by SNPs
The analysis on genomic data was restricted to the autosomes of the
GWAS data set and based on the final set of 906 cases and 1217
controls. For both primary subsets of genomic data with either MAF
40.05 or MAF 40.01, the threshold for SNP missingness was raised
stepwise starting from 0.05 up to 0.001. This resulted in a reduced
number of SNPs from 583 333 to 442 325 (MAF 40.01). Both the
crude proportions of variance and the adjusted estimates only dropped
slightly, whereas the transformed estimate was stable across all subsets
with different numbers of SNPs (Table 1). We only included adjusted
estimates according to Yang et al19 in our tables as they did not show
any difference to the adjustment according to Speed et al.20 Standard
errors were slightly larger for the adjusted estimates and the
transformed estimates. In contrast to stable estimates across different
numbers of SNPs, the PVE showed moderate differences when using
the Bayesian variable selection approach (Table 2). For data sets with
less SNPs, the PVE values decrease and the high posterior density
interval is shrinking. This fact is also presented in Figures 1 and 2 that
show the posterior distributions of PVE from the MCMC runs for the
corresponding MAF and each SNP subset. Values for PVE were larger
when compared with the transformed estimate in Table 1.
Although the genomic control inflation factor was still small and

mainly influenced by the distribution of cases collected across
Germany,6 genomic partitioning was used to check the final influence
of the population structure.20,32 Estimates were derived for chromo-
somes 1–7 and for the remaining chromosomes (8–22). For any

threshold shown in Table 1, estimates of the two parts of the genome
added up to the total estimates of common variance explained by
SNPs as described in Table 1. The influence of the population
structure has then also been tested with an additional REML analysis
by fitting the first 2, 4 and 10 eigenvectors from the PCA as covariates.
The results in Table 3 show little to no difference in the crude
estimates of the variance explained by SNPs compared with original
results in Table 1.
As many SNPs on chromosome 6 had extremely significant

associations, one analysis was performed by excluding chromosome
6, or by analyzing chromosome 6 separately just as in the genome
partitioning approach.20 The results in Table 4 show that estimates
(crude and adjusted) decreased by ∼ 15–20% when excluding chro-
mosome 6 (as compared with Table 1), whereas estimates based on
SNPs on chromosome 6 solely account for ∼ 5% of the variance
explained by SNPs. This analysis shows that a substantial proportion
of genetic variation is explained by risk loci on chromosome 6, yet
another big proportion of the genetic variation is still explained by
SNPs on other chromosomes.
Even though the incidence of 2–3/100 000/year has been stable for a

long time,2 any variation over time because of changes in the

Table 1 Estimated genetic variances for different setups

Threshold No. of SNPs Estimate (SE)a Adjusted (SE)b Transformed (SE)c

MAF d40.01
GENOe40.05 583333 0.24 (0.03) 0.24 (0.05) 0.35 (0.06)

GENO 40.01 579445 0.23 (0.03) 0.23 (0.05) 0.35 (0.06)

GENO 40.005 566831 0.23 (0.03) 0.23 (0.05) 0.35 (0.06)

GENO 40.001 442325 0.22 (0.03) 0.22 (0.05) 0.35 (0.05)

MAF 40.05
GENO 40.05 540228 0.23 (0.03) 0.23 (0.05) 0.35 (0.05)

GENO 40.01 536668 0.23 (0.03) 0.23 (0.05) 0.35 (0.05)

GENO 40.005 525248 0.22 (0.03) 0.22 (0.05) 0.35 (0.05)

GENO 40.001 410973 0.21 (0.03) 0.21 (0.05) 0.35 (0.05)

aEstimated genetic variance on the observed scale with SE.
bEstimated genetics variance and SE on observed scale adjusted for LD after Yang et al.19
cEstimated genetic variance and SE transformed to the liability scale after Dempster and Lerner.21
dMinor allele frequency.
eMaximum per-SNP missing rate.

Table 2 Proportion of estimated variance (PVE)

Threshold No. of SNPs Interations sampled PVE meansa

Highest posterior

density (CI=0.95)b

MAFc40.01
GENOd40.05 583 333 10000 0.45 0.13–0.62

GENO 40.01 579 445 10000 0.44 0.16–0.61

GENO 40.005 566 831 10000 0.39 0.17–0.53

GENO 40.001 442 325 10000 0.42 0.19–0.55

MAF 40.05
GENO 40.05 540 228 10000 0.43 0.06–0.60

GENO 40.01 536 668 10000 0.48 0.09–0.62

GENO 40.005 525 248 10000 0.40 0.07–0.57

GENO 40.001 410 973 10000 0.39 0.11–0.54

aMeans of PVE.
b95% Confidence interval of the highest posterior density.
cMinor allele frequency.
dMaximum per-SNP missing rate.
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environment would result in changes of the prevalence. Cutting the
used prevalence in half to ~ 0.5 in 1000 or doubling it to ~ 2 in 1000
did not have any influence on the estimates of the common variance at
any threshold shown in Table 1, but for a prevalence of ~ 0.5 in 1000,
the transformed estimate dropped to 0.33 (SE: 0.04), whereas it
increased to 0.40 (SE: 0.05) for a prevalence of ~ 2 in 1000.
According to Wray et al33 we could interpret our result of the

common genetic variance explained by SNPs on the liability scale to
mean that we must expect many genetic variants underlying the
disease. As the risks of common variants are too small to be used
individually as risk predictors, the overall transformed estimate of 0.35

(Table 1) can be translated to a sibling relative risk of 5.58 being
associated with common genetic variation.33

Heritability estimates based on population data
Figure 3 shows a trace plot of the heritability values along the
iterations. There is no trend in the trace and values spread widely with
a reasonable parameter space. The plot clearly illustrates good mixing,
and a Gibbs sampler that ‘converges’ fast. The right side of Figure 3
shows the posterior density of the heritability estimate as a result of the
model described earlier applied to the data set. Averaged across
the 10 000 samples, posterior means of the heritability were 0.40 on
the liability scale with a corresponding 95% highest posterior density
region (HPD95) ranging from 0.17 to 0.58. The heritability on the
observed scale is z2/K(1−K) times the heritability on the underlying
normally distributed liability scale that is then 0.24. According to the
convergence criteria, the effective sample size for estimating the mean
derived from our data set was ∼ 7186, representing a sufficient
number, given the fact that we had 10 000 samples from the Gibbs
sampler.31

DISCUSSION

Results from the genomic analysis as well as the population-based
analysis show the proportion of variance explained by SNPs and
heritability values for the susceptibility to HL in an overlapping range
from 0.21 to 0.48, whereas estimates on the liability scale are ranging
from 0.35 to 0.48 only. Most of these values represent simply the
proportion of the total variance that is attributable to the pure additive
genetic variance. Estimates of the PVE as a result of the probit-based
approach ranged from 0.39 to 0.48, and were somehow higher
compared with estimates of the genetic variance explained by SNPs
on the liability scale shown in Table 1. This can be explained by a
slightly different concept of the PVE compared with the approaches of
Yang et al19 and Speed et al20: PVE reflects the optimal predictive
accuracy achieved for a linear combination of the measured genetic
variants, whereas heritability reflects the accuracy that one can achieve
by using all genetic variants.23 Simulations of Guan and Stephens23

have proven that the uncertainty in PVE is greater with a larger
number of SNPs, presumably because of the increased difficulty in
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Figure 1 Proportion of estimated variance for MAF 40.01 with maximum
per-SNP missing rate: red=0.001; blue=0.005; black=0.01;
green=0.05.
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Figure 2 Proportion of estimated variance for MAF 40.05 with maximum
per-SNP missing rate: red=0.001; blue=0.005; black=0.01;
green=0.05.

Table 3 Genetic variances explained by all SNPs by fitting first 2, 4

and 10 principal components (PCs) as covariates in the REML

analysis

Threshold

First 2 PCsa

estimate (SE)b
First 4 PCs

estimate (SE)b
First 10 PCs

estimate (SE)b

MAFc40.01
GENOd40.05 0.24 (0.04) 0.23 (0.04) 0.22 (0.04)

GENO 40.01 0.24 (0.04) 0.23 (0.04) 0.22 (0.04)

GENO 40.005 0.24 (0.04) 0.23 (0.04) 0.21 (0.04)

GENO 40.001 0.24 (0.04) 0.23 (0.04) 0.21 (0.04)

MAF 40.05
GENO 40.05 0.24 (0.04) 0.23 (0.04) 0.22 (0.04)

GENO 40.01 0.24 (0.04) 0.23 (0.04) 0.22 (0.04)

GENO 40.005 0.24 (0.04) 0.23 (0.04) 0.22 (0.04)

GENO 40.001 0.24 (0.04) 0.23 (0.04) 0.22 (0.04)

aPrincipal components.
bEstimated genetic variance on the observed scale with SE.
cMaximum per-SNP missing rate.
dMinor allele frequency.
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reliably identifying relevant variants. When data contain no SNPs with
strong individual effects, it remains difficult to rule out the possibility
that many SNPs may have very small effects that combine to produce
an appreciable PVE.23 This uncertainty is also represented by the
rather large confidence intervals in the right column of Table 2. It will

be even greater when the true PVE is smaller.23 Nonetheless, the range
of the posterior on PVE nicely spans the estimates provided by the
other methods equally to both sides, proving the ability of the PVE
method to quantify uncertainty in multivariate problems by assessing
the full joint posterior distribution of the model parameters compared

Table 4 Analysis without chromosome 6 or chromosome 6 only

Threshold No. of SNPs Estimate (SE)a Adjusted (SE)b Transformed (SE)c

Analysis without chromosome 6
MAF 40.01

GENO 40.05 539 581 0.19 (0.03) 0.20 (0.03) 0.35 (0.05)

GENO 40.01 536 307 0.19 (0.03) 0.19 (0.03) 0.35 (0.05)

GENO 40.005 525 240 0.19 (0.03) 0.19 (0.03) 0.35 (0.05)

GENO 40.001 410 698 0.19 (0.03) 0.19 (0.03) 0.35 (0.05)

MAF 40.05

GENO 40.05 500 018 0.19 (0.03) 0.19 (0.03) 0.35 (0.05)

GENO 40.01 497 100 0.19 (0.03) 0.19 (0.03) 0.35 (0.05)

GENO 40.005 486 988 0.19 (0.03) 0.18 (0.03) 0.35 (0.05)

GENO 40.001 381 802 0.19 (0.03) 0.18 (0.03) 0.35 (0.05)

Analysis of chromosome 6 only
MAFd40.01

GENOe40.05 43 752 0.05 (0.01) 0.04 (0.01) 0.10 (0.01)

GENO 40.01 43 138 0.05 (0.01) 0.04 (0.01) 0.10 (0.01)

GENO 40.005 41 591 0.05 (0.01) 0.04 (0.01) 0.10 (0.01)

GENO 40.001 31 627 0.05 (0.01) 0.04 (0.01) 0.10 (0.01)

MAF 40.05

GENO 40.05 40 210 0.04 (0.01) 0.04 (0.01) 0.10 (0.01)

GENO 40.01 39 568 0.04 (0.01) 0.04 (0.01) 0.10 (0.01)

GENO 40.005 38 260 0.04 (0.01) 0.04 (0.01) 0.10 (0.01)

GENO 40.001 29 171 0.04 (0.01) 0.03 (0.01) 0.10 (0.01)

aEstimated genetic variance with SE on the observed scale.
bEstimated genetic variance with SE on observed scale adjusted for LD after Yang et al.19
cEstimated genetic variance with SE transformed to the liability scale after Dempster and Lerner.21
dMinor allele frequency.
eMaximum per-SNP missing rate.

Figure 3 Trace (left) and posterior density (right) of heritability estimate.
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with the current simplistic ‘one SNP at a time’ testing paradigm,34,35

because analyzing all SNPs simultaneously will detect more of the
genetic variation because of the identification of multiple causal
variants.36

In contrast to the results of Enciso-Mora et al,37 our estimates of the
variance are almost constant across the different numbers of SNPs and
do not decline after a more stringent exclusion of missing genotypes.
This is in agreement with the results by Yang et al19 and Lee et al.38

Thus, our QC has been stringent enough beforehand.
Inflation of the estimated variances explained by SNPs due to

population stratification has been investigated by genomic partition-
ing. Results did not provide any evidence of stratification. Estimates of
the two parts of the genome added up to the corresponding estimates
on the full set (right column in Table 1). Our stringent QC helped to
keep the genomic control inflation factor low.6

A cause for concern in estimating the common genetic variance
explained by SNPs is created by LD that can lead to large biases.
Contributions to heritability estimates from causal variants might be
overestimated because of regions with strong LD or underestimated in
regions with low LD.20 We also followed the proposal of Speed et al20

to analyze our data, but we did not detect any perceptible deviations
in our estimates compared with the method of Yang et al.19

It seems like any underestimation of contributions to the heritability
in low-LD regions is balanced by overestimation elsewhere as shown
by Speed et al.20

Trends in cancer prevalence reveal the dynamics of cancers in the
population. To test the influence of changes on the estimates of the
common genetic variance explained by SNPs, we have halved and
doubled the prevalence. Differences to the original prevalence could
only be seen in the transformed variance, but standard estimates
stayed constant. Thus, variation in the transformed estimates may
reflect changes in the environment over time.
The estimates of the common genetic variance explained by SNPs

are based on ∼ 410 000 to almost 600 000 SNPs. A significant effect on
HL is harbored in the MHC region on chromosome 6.7,39 After
excluding SNPs mapped to the MHC region (6p21, at 28–33Mb),
Enciso-Mora et al39 remained only with a limited number of loci
influencing the risk of HL. Nonetheless, Enciso-Mora et al39 and
Frampton et al6 were able to identify suggestive associations on
another eight autosomes. After we excluded chromosome 6 from
our analysis, the estimates dropped by ∼ 20%. A rather high
proportion of the variance is thus explained by chromosome 6 only
as shown in Table 4, but still a descent proportion of variance is
explained by the remaining autosomes. We therefore conclude that
many additional loci may contribute to the susceptibility of HL.
The link function for binary data most widely used is the probit

link, also known as the threshold model.40 Modeling a random
variable by using the probit function assumes that the latent variable
(liability) possesses a standard normal distribution. The major
advantage is that the liability is treated as a polygenic trait that is
determined by many genes with small effects, and therefore heritability
of liability is independent of the disease prevalence and can be directly
compared.40

Our heritability estimates on the liability scale based on the Swedish
population are larger than estimates by Shugart et al,8 who calculated
heritability for HL to be 28.4%. A reason for their lower estimate is a
bias in Falconer’s method8 that is a result of common familiar
environmental factors and ascertainment.41 Generally, by using the
extensive pedigree with its whole range of relationships in the
population, the so-called animal threshold model provides the most
accurate approximation of the heritability.42 Our estimates are larger,

but still conservative, because the applied threshold model only
estimated the contributions of genes that act additively: the effects
of genes with nonadditive effects, such as dominance or epistasis, will
not contribute to the heritability estimates reported here. And even
though statistical models are available for the estimation of non-
additive genetic variance, much larger sets of suitably structured data
would be required to obtain reliable estimates.
Heritability estimates on the liability scale are slightly larger for the

population-based data than estimates of the common genetic variance
explained by SNPs (0.40 compared with 0.35 for the GCTA approach),
but they were in a very similar range to PVE (Table 2) that gave larger
estimates because of reasons explained above. Nonetheless, heritability
estimated from pedigree data is not the same as the proportion of
phenotypic variation explained by all SNPs because the former
includes the contribution of all causal variants, but the latter only
includes the contribution of causal variants that are in LD with the
genotyped SNPs. Thus, we also face the problem of missing heritability
known for analysis of GWAS data.11 Our population-based estimates
and the estimates from SNP data still do not differ too much as
estimates for other traits.16 We therefore conclude that our genotypic
data is a well-formed sample to draw sufficient conclusion about the
genetic determination of the disease. Even though estimates of the
common genetic variance explained by SNPs and the population-
based heritability are similar, we must point out that many reasons for
missing heritability have been widely accepted in the scientific
community. This knowledge is supported by our findings of different
estimates of the genetic variance explained by SNPs on chromosome 6
compared with other chromosomes. Genes detected on chromosome
6 in earlier studies do not account for much of the heritability of HL
in our study.7,39 The susceptibility to HL is rather a combined effect of
multiple genes on several chromosomes than that of a few disease
genes on a single chromosome.
The common genetic variance explained by SNPs and the herit-

ability on the liability scale of HL show that a reasonable proportion of
the variation observed in both the German and the Swedish popula-
tion is caused by variation in genotypes, but it also indicates that the
environment is still the principal causative role in HL, and suscept-
ibility genes described so far for HL are likely to explain only part of
the genetic effects.
An important fact is the interpretation of the sibling relative risk

that has be derived through the incidence of the disease and the
estimates of common variation explained by SNPs. Based on our
results, siblings of people with HL are ∼ 5.6 times more likely to
develop the disease than others. These results are in agreement with
studies showing up to a sevenfold increased risk in people with a
parent or sibling diagnosed with HL.43 It therefore seems to be clear
that besides the environment, genetic factors have strong influence on
the etiology of HL.
In conclusion, there is genetic variation for the susceptibility to HL.

Heritability based on the population data is somehow larger than for
the genomic data showing the possibility of some missing heritability
in the GWAS data. Besides that, there is still major evidence for
multiple loci causing HL on chromosomes other than chromosome 6.
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