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Kernel canonical correlation analysis for assessing
gene–gene interactions and application to ovarian
cancer

Nicholas B Larson1, Gregory D Jenkins1, Melissa C Larson1, Robert A Vierkant1, Thomas A Sellers2,
Catherine M Phelan2, Joellen M Schildkraut3, Rebecca Sutphen4, Paul PD Pharoah5, Simon A Gayther6,
Nicolas Wentzensen7, Ovarian Cancer Association Consortium, Ellen L Goode1 and Brooke L Fridley*,1,8

Although single-locus approaches have been widely applied to identify disease-associated single-nucleotide polymorphisms

(SNPs), complex diseases are thought to be the product of multiple interactions between loci. This has led to the recent

development of statistical methods for detecting statistical interactions between two loci. Canonical correlation analysis (CCA)

has previously been proposed to detect gene–gene coassociation. However, this approach is limited to detecting linear relations

and can only be applied when the number of observations exceeds the number of SNPs in a gene. This limitation is particularly

important for next-generation sequencing, which could yield a large number of novel variants on a limited number of subjects.

To overcome these limitations, we propose an approach to detect gene–gene interactions on the basis of a kernelized version of

CCA (KCCA). Our simulation studies showed that KCCA controls the Type-I error, and is more powerful than leading gene-based

approaches under a disease model with negligible marginal effects. To demonstrate the utility of our approach, we also applied

KCCA to assess interactions between 200 genes in the NF-jB pathway in relation to ovarian cancer risk in 3869 cases and

3276 controls. We identified 13 significant gene pairs relevant to ovarian cancer risk (local false discovery rate o0.05). Finally,

we discuss the advantages of KCCA in gene–gene interaction analysis and its future role in genetic association studies.

European Journal of Human Genetics (2014) 22, 126–131; doi:10.1038/ejhg.2013.69; published online 17 April 2013

Keywords: association studies; canonical correlation; gene–gene interaction; kernel methods

INTRODUCTION

Genome-wide association studies (GWAS) have identified hundreds
of loci that harbor genetic variants that influence predisposition to a
particular phenotype. Such studies involve the characterization of a
large number of single-nucleotide polymorphisms (SNPs) across the
genome and comparison of the frequency of variants across disease
states. Initial GWAS analysis strategies involved single locus models,
whereby individual markers were tested independently for association
with a given phenotype. Although this approach has successfully
identified regions of disease susceptibility, some contend it has failed
to fully explain the heritability of complex phenotypes.1,2 As common
complex diseases and traits are thought to be a result of complex
interactions and multiple low-penetrance variants,3,4 multi-locus SNP
models, as opposed to single SNP models, may better capture the true
underlying genotypic–phenotypic relationship.
One strategy for multi-locus modeling is to jointly model the

effects all SNPs within a given gene (eg, multivariable logistic
regression models). However, this approach may lack power as the
degrees of freedom of the model could be large and may require
filtering or shrinkage approaches. Another drawback to the joint
modeling of multiple SNPs within a gene is possible model fitting
issues due to multicollinearity between SNPs (ie, linkage

disequilibrium (LD)), as well as the lack of inclusion of LD
information in the analysis. Recently, this idea of gene-level analysis
has led to the concept of gene–gene interaction analysis, as opposed to
SNP–SNP interaction approaches. Gene–gene interactions are not
only hypothesized to have a large role in explaining missing
heritability,5 they can also serve to provide biological information
through construction of novel gene pathway topologies. Although
classically gene–gene interactions have been defined statistically as
deviance from additive marginal effects, such as in the case of logistic
regression model, this type of model is limiting with respect to
statistical power. Moreover, the results of such SNP–SNP interaction
analyses lack clear biological interpretability.
Zhao et al6 proposed testing for interactions between two unlinked

loci using measures of LD, which can be extended to case-control
design by comparing such measures across case or disease status. This
concept was adapted to gene-level analysis by Peng et al,7 which used
a Wald-type U-statistic based on canonical correlation analysis8

(CCA) to detect gene–gene coassociation in case-control studies. As
an LD-based procedure, the CCA approach obtains the maximal
correlation of the linear combinations of the SNPs, coded as 0, 1 or 2
in terms of the minor allele, between two genes across case-control
status, and tests whether the difference in the first canonical
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correlations is statistically significant. Although there are many
benefits to this approach, it is limited to analyses where the number
of observations exceeds the number of markers. Moreover, the use of
CCA can only be used to detect linear relationships, which may limit
power in the presence of nonlinear correlations between genes.
Finally, CCA generally requires a large sample-to-feature ratio to
avoid issues with overfitting the data, which raises questions of model
regularization.
One solution to the above limitations involving the use of CCA for

assessing gene–gene interactions is the use of kernels. Kernel methods
are generally defined as algorithms that analyze data represented by
similarity matrices, which are derived through the use of positive
definite kernel functions.9 By mapping the original data to a
nonlinear feature space, traditional linear methods involving dot
products have been extended to nonlinear applications through the
use of the ‘kernel trick’.10 The application of kernel machines is quite
popular as a method to derive metrics of genomic similarity,11 and
their use has been successful in the area of gene-level association
analyses such as SKAT12,13 and SPA-3G.14 Kernelized version of
CCA (KCCA) provides a straightforward generalization of CCA to
nonlinear correlations by applying CCA to kernel-generated feature
spaces.
In this article, we develop a KCCA procedure for identifying

coassociation between genes using genome-wide SNP data from a
case-control study of complex phenotypes. We briefly discuss sample
CCA and its kernelized version. We further outline and address the
statistical and computational issues that accompany this approach,
including concerns of regularization. To evaluate the properties of this
method, we examine control of Type-I error rate and the power of
our KCCA method compared with other existing methods for gene–
gene interaction detection by a simulation study. Finally, we apply our
KCCA approach to a study case-control study of invasive epithelial
ovarian cancer to determine gene–gene interactions between genes
within the NF-kB gene pathway.

MATERIALS AND METHODS

Data definition
Let sg be the number of SNPs corresponding to the gth gene in a given gene

list of size G. Define xDgjk to be the genotype value for the jth SNP in gene g in

the kth case subject, for g ¼ 1; . . . ;G, j¼ 1; . . . ; sg , and k¼ 1; . . . ;ND, where

xDgjk 2 f0; 1; 2g is the number of copies of the minor allele for SNP j in gene g

under an assumed joint additive-additive genetic model. Similarly, we define

xCgjk for the control subjects, where k¼ 1; . . . NC. This genotypic information

can in turn be represented by the respective ND�sg and NC�sg matrices XD
g

and XC
g . These matrices may also contain adjusted genotype values that have

been corrected for various covariates and population stratification.

Hypothesis testing
To test whether there is a statistical interaction between two genes across case-

control status, we use KCCA to generate measures of genetic coassociation for

both case and control status. For given genes l,mA{1,...,G}, such that lam,

consider the genotype matrices XD
1 , X

D
m, X

C
1 , and XC

m, with corresponding

reduced kernel representations KD�
1 , KD�

m , KC�
1 , and KC�

m . Define

rDlm ¼CCAðKD�
1 ;KD�

m Þ and rClm ¼CCAðKC�
1 ;KC�

m Þ to be the respective maximal

kernel canonical correlations for cases and controls between genes l and m

(see Appendices I–III in Supplementary Material for details). We then define a

statistic based upon an analog of the Fisher variance stabilizing transformation

of the Pearson’s correlation coefficient,15 given as

zðrÞ¼ 1

2
logð1þ rÞ� logð1� rÞð Þ:

The transformation of the canonical correlation rClm is written as z rClm
� �

¼ zClm,

which is approximately distributed as standard normal. A Wald-type statistic

for assessing the statistical significance of the difference in gene–gene

coassociation between cases and controls for genes l and m is defined by

Peng et al7 as

Tlm ¼ zDlm � zClmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðzDlmÞþ varðzClmÞ

q ;

which is asymptotically distributed as N(0, 1) under the null hypothesis that

zDlm ¼ zClm, and the cases and controls are independent. For estimating the

transform variances varðzDlmÞ and varðzClmÞ, we apply a robust resampling

procedure, the trimmed jackknife16 (Appendix IV in Supplementary Materials).

Multiple testing
For applications involving exhaustive hypothesis testing of all pairwise gene

comparisons in a given gene list, multiple testing and test statistic correlation

become problematic issues. To address both of these directly, we apply Efron’s

empirical null method17 for estimating the local false discovery rate (IFDR) for

each hypothesis test conducted.

Simulation study
To assess the properties of our KCCA procedure for gene–gene interaction

testing, we consider simulation studies that evaluate type-I error control and

power. We generated a population of haplotypes for two genes using real

genotype data from our case study. fastPHASE18 was applied to the genotypes

from the controls to estimate haplotypes for two genes of comparable size

(25.9 and 30.6 kb), followed by use of HapSim19 to simulate 10 000 haplotypes

for each gene. The respective numbers of polymorphic sites for each gene were

79 and 92. Genotype data for a hypothetical individual were simulated by

combining pairs of randomly selected haplotypes for each gene.

Let mgj represent the derived minor allele frequency (MAF) from our

simulated haplotype populations for marker j in gene i. Next, we randomly

selected a fixed number of common (mgj 4 0:05) markers to be causal for each

gene. We then used a similar approach to effect size definition used by Wu

et al,12 in which effects are a function of the MAF. Let bintðm1j;m2j0 Þ for an

interaction effect, such that bintðm1j;m2j0 Þ ¼ ln tð Þ
16 log10 m1jm2j0

� ��� ��. Here t
defines the maximum possible interaction effect. For example, for two

markers with MAF¼ 0.20 and t¼ 5, the interaction effect is

bintðm1j;m2j0 Þ ¼ 0:141.

Given the difficulty in genome-wide detection of gene–gene interactions

without the presence of marginal effects, we only considered disease models

with solely epistatic effects. We defined the probability of being a case

conditional on genotype PðY ¼ 1 j X1;X2Þ via a logistic regression frame-

work, such that

logitðPðY ¼ 1 jX1;X2ÞÞ¼b0 þ
X
j2O1

X
j02O2

bintðm1j;m2j0 Þx1jx2j0

where O1 and O2 define the subsets of markers which are causal, and b0
represents the disease prevalence. Sampling of cases and controls was then

completed from a sufficiently large number of simulated genotype-phenotype

pairs.

To comparatively evaluate the performance of our KCCA method, we

included additional methods on the basis of similar analysis principles: the

original CCA-based approach, PC-based logistic regression20 (PC-LR), and a

composite-LD method21 (CLD). PC-LR obtains principal components from

SNP measurements for each gene, which are then fit in simple logistic

regression. The CLD method is a covariance-based approach, which evaluates

the difference between block interactions across case-control status. Additional

details for each approach can be found in their respective publications. For

PC-LR, we evaluate the significance of the interaction coefficient between the

first principal component of each gene, and for the CLD approach we use 5000

permutations to characterize the reference distribution of the test statistic. All

declarations of statistical significance are made at an a-level of 0.05. For both
Type-I error and power simulations, we consider whether or not explicit

marginal effects are included in the disease model. Each simulation scenario is

conducted with case-controls status sample sizes of 500, 1000, and 1500, with a

total of 1000 iterations each.
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Ovarian cancer study
We applied the KCCA approach to detect gene–gene interaction within the

NF-kB pathway, using data from a case-control study of invasive epithelial

ovarian cancer as part of the GAME-ON Follow-up Ovarian Cancer Genetic

Association and Interaction Studies collaboration (described elsewhere22,23).

Participants were enrolled in the Mayo Clinic Ovarian Cancer Study, North

Carolina Ovarian Cancer Study, the Tampa Bay Ovarian Cancer Study, the

Toronto Ovarian Cancer Study, the National Cancer Institute Ovarian Case-

Control Study in Poland, the UK Ovarian Cancer Population Study, the

Studies of Epidemiology and Risk Factors in Cancer Heredity Ovarian Cancer

Study, the Familial Ovarian Cancer Registry Study, and the Royal Marsden

Hospital Ovarian Cancer Study.24,25 Study protocols were approved by the

appropriate institutional review board or ethics panel, and all patients

provided written informed consent. Genotypes were from the Illumina (San

Diego, CA, USA) 610-Quad SNP arrays, with imputation to HapMap v 26

using MACH.26 For 200 autosomal genes within the NF-kB pathway, this

resulted in B13 000 observed or imputed markers available on 3869 cases and

3276 controls of European descent. For genotyped markers, we coded

genotypes as 0, 1, or 2 in terms of the number of observed minor alleles;

for imputed markers, we used the expected genotype or ‘dosage’. Marker

assignment to genes was determined on the basis of NCBI-build 36 gene

location data, using a 20-kb buffer region on both the 50 and 30 ends of the
defined gene location. Information on location, size, and number of SNPs in

each of the 200 autosomal genes can be found in Supplementary Table S1.

To address the effects of possible confounding variables, we adjusted the

genotypes for age, study site, and the first five principal components from an

eigen analysis.27 Each unique gene pair was tested using the KCCA procedure,

resulting in
200
2

� �
¼ 19900 total hypothesis tests. For purposes of

comparison, we also applied the CCA-based procedure defined by Peng

et al7 to the data, using 1000 bootstraps for variance estimation. Comparisons

involving gene pairs with overlapping regions were removed from our analysis

to avoid complications involving shared marker data.

RESULTS

Type-I error
For our simulations, we considered six levels of trimming within the
jackknife procedure for SE estimation to determine which level was
appropriate. A plot of the empirical Type-I error rate for all trim levels
across each sample size are found in Figure 1. The KCCA results
derived from o¼ 0.15 yield near nominal Type-I error rate levels
across all sample sizes. Detailed statistics on the empirical distribu-
tions of the test statistics can be found in Table 1. These results
indicate that the test statistic follows the assumed standard normal
distribution under the null.

Power
For our power simulations, we set t¼ 5 and randomly selected five
markers from each gene to be causal at each iteration, performing all
KCCA tests with o¼ 0.15. Bar graphs of the results are found in
Figure 2. From this plot, we observe that KCCA outperforms the
other methods across all sample sizes, particularly the CCA approach.
As the poor performance of CCA is likely due to issues with
overfitting, we considered additional simulations where sample sizes
were fixed at 1000 and the number of markers per gene was set to
values of 10, 20, 30, 40, or 50, randomly subsetted from the total
number of markers used in our simulations. Keeping all the other
settings of our simulation design the same, the empirical power for
each method across number of markers per gene is found in Table 2.
Although the resulting power is much closer for low marker numbers,
the KCCA approach is still consistently more powerful than the
remaining methods.

Application to ovarian cancer study
For the ovarian cancer study of the NF-kB pathway, we identified 13
statistically significant (lFDRo0.05) gene pairs of interest (Table 3) in
applying our KCCA method, using the trimmed jackknife SE
estimate with o¼ 0.15, with the top coassociated gene pair with
case-control status occurring between CASP8 and MAP3K3. Applica-
tion of the CCA-based procedure resulted in 37 significant gene pairs;
however, none of these overlapped with those detected by the KCCA
method.
To explore one of the top coassociation hits at the SNP level, we

analyzed the CASP8–MAP3K3 interaction by generating pairwise
marker Pearson’s correlations. These are presented by case-control
status in Figure 3 as gradient colorized images of the correlation
coefficients. The figure demonstrates that although the Pearson’s
correlation coefficients themselves are small (|r|o0.10), there exist
distinct differences between the two correlation structures. Of note is
the discrepancy across case-control status with the correlation
between marker rs12940055 in MAP3K3 (located at bp 59 075 874)
and a large number of SNPs toward the 50 end of CASP8, indicated by
the horizontal band in the lower half of the correlation plots.

DISCUSSION

The identification of interactions between genes and their impact on
complex diseases is adding to our understanding the genetic
component. Although SNP-based interaction analysis methods are
relatively well developed, the large number of SNPs in association
studies makes exhaustive pairwise SNP-SNP analyses increasingly
infeasible. By addressing the problem at the gene level, the scope of
the analyses is not only computationally tenable, but also reduced to a
biologically interpretable unit of interest.28 Peng et al7 presented a
novel statistical method that allows for such analyses in their CCA
statistic. However, as the number of genotyped markers increases, the
application of CCA may be inappropriate, because the number of
genotyped SNPs may approach or exceed the number of observations,
especially for smaller experimental designs. This is of particular
concern with post-GWAS whole exome and genome sequencing
association studies, which will afford the characterization of
additional variants unmeasured by current genotyping platforms.
In this article, we have presented a KCCA for gene–gene interaction

analysis that not only addresses concerns of dimensionality, but also
allows the flexibility to detect nonlinear correlations between genes.
We have demonstrated that, using the appropriate SE estimation
procedure, the KCCA test statistic exhibits near nominal levels of
type-I error rate control and competitive power performance in our

Figure 1 Line plot of the empirical Type-I error rates from the null

simulations across trim levels o¼0.00, 0.05, 0.10, 0.15, 0.20, and 0.25,

for sample sizes of 500, 1000, and 1500.
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data simulations. We have also outlined basic procedures for large-
scale application that take into account issues of regularization,
computational burden, and multiple testing. As a result, the KCCA
procedure is a powerful tool for exploratory gene–gene interaction
analysis using SNP data.
It is important to note that although we have shown via our

simulation results that the performance of the gene-level interaction
analyses using KCCA is more powerful than other current methods
under an interaction-only model, additional simulations have shown
that the PC-LR approach performs best in the presence of marginal
effects (Figure 4). Thus, if evidence suggests the existence of such
effects, we recommend the use of the PC-based procedure instead of
KCCA. Also, if we collapse the signal into a single interaction between
two markers with no LD present, individual SNP–SNP interaction
analysis via logistic regression easily bests the gene-level analyses in
interaction detection. Thus, although we have demonstrated that our
KCCA method performs well as a genome-wide exploratory meth-
odology, alternative methods may perform better under specific
circumstances.
Although our data application analysis was conducted on genes

within a specific pathway, we envision genome-wide exploratory
applications, such as GWAS, to be completed in a similar fashion.
However, owing to combinatorial scaling, this will require special
computational considerations such as parallelization. For example,
exhaustive pairwise analysis of a 20 000-gene genome requires nearly

200 million unique tests, although this total pales in comparison with
the number of possible SNP–SNP interactions.

Comparability with CCA statistic
Contrary to the findings of Peng et al,7 we have found that hypothesis
testing using their CCA statistic with bootstrap variance estimation
can be quite conservative, regardless of sample or feature size used,
resulting in possible issues with reduced statistical power. This is
evidenced in our power simulations where CCA power results for
certain simulation conditions results in power below even nominal
Type-I error rates. Upon investigation of this discrepancy, we found
that the bootstrap variance estimates were quite large in comparison
with their KCCA counterparts.
An additional benefit of our procedure is that the assumptions of

CCA include multivariate normality of the observations, which is
clearly violated by the discrete nature of genotype calls if no
adjustments are made. Our method, however, involves low dimen-
sional projections of kernelized observations, which has been shown
to be approximately Gaussian.29 Thus, our KCCA procedure is also
more consistent with the distributional assumptions of CCA.

Ovarian cancer findings
The analysis of the FOCI data using the KCCA procedure yielded
biologically interesting results, with many of the top gene pairs
sharing some functional basis. CASP8 and MAP3K3 are integral
members of the tumor necrosis factor pathway, and IL1A and IL1B
both code for proinflammatory cytokines and have been jointly
associated with lung cancer.30 With 13 statistically significant findings,
there are also several novel interactions that may warrant further
investigation.

Table 1 KCCA null simulation results for various trimming values x, which includes the P-value for the Kolmogorov-Smirnov test for

normality (KS), the empirical SD and mean of the simulated test statistic distribution, as well as the realized Type-I error rate rejecting at an

a-level of 0.05

NC¼ND¼500 NC¼ND¼1000 NC¼ND¼1500

o KS SD Mean Type I KS SD Mean Type I KS SD Mean Type I

0.00 o0.001 0.633 0.002 0.001 o0.001 0.643 0.001 0.003 o0.001 0.757 0.002 0.006

0.05 o0.001 0.798 �0.001 0.012 o0.001 0.801 �0.001 0.016 o0.001 0.938 �0.001 0.021

0.10 o0.001 0.904 �0.003 0.033 o0.001 0.902 �0.002 0.027 0.010 1.038 0.002 0.036

0.15 0.281 1.007 �0.003 0.540 0.810 1.008 �0.004 0.046 0.538 1.144 0.004 0.054

0.20 0.002 1.107 �0.001 0.081 0.002 1.114 �0.005 0.072 0.001 1.250 0.005 0.078

0.25 o0.001 1.201 �0.001 0.107 o0.001 1.220 �0.005 0.095 o0.001 1.363 0.004 0.110

Figure 2 Barplots of the empirical power at a-level of 0.05 for the KCCA,

CCA, PC-LR, and CLD gene–gene interaction methods, for sample sizes of

500, 1000, and 1500.

Table 2 Simulation result for empirical power, using a¼0.05 level

significance testing, for the KCCA, CCA, PC-LR, and CLD testing

procedures across varying numbers of markers per gene

Total markers per gene

10 20 30 40 50

KCCA 0.852 0.818 0.799 0.779 0.757

CCA 0.428 0.097 0.012 0.002 0.000

PC-LR 0.570 0.575 0.552 0.545 0.544

CLD 0.724 0.570 0.371 0.305 0.234

Sample sizes are fixed at 1000, with five causal markers per gene.

Nonlinear gene–gene interaction analysis
NB Larson et al

129

European Journal of Human Genetics



We argue the lack of congruency between the results of the
CCA-based procedure and our kernelized version is due, in large
part, to the lack of any dimensional reduction in the CCA. Although
the sample sizes used in our ovarian application analyses are large
enough to satisfy most conventional notions of appropriate observa-
tion-to-feature ratios for accurate canonical correlation estimation,
our simulations indicate that the CCA method suffers greatly from
overfitting when there are a relatively large number of genotyped
markers in given genes.
One significant gene pair of concern in the NF-kB–KCCA inter-

action analysis is IL1A-IL1B, which includes genes that are position-
ally adjacent to one another. Taking into account their respective
buffer regions, only 4.4 kb separates the two genes. The significance of
this gene pair could be evidence of instability of the method for gene
pairs that are in high LD with each other because of locational
proximity. However, gene pairs of this nature are also often closely
linked functionally. Moreover, there are counter examples in our
analysis of neighboring gene pairs that are statistically not significant
(eg, LTBR-TNFRSF1A). Regardless, we recommend caution in the
interpretation of such results.

Table 3 Detailed results of the significant KCCA gene–gene coassociations for analysis of ovarian cancer risk of significant (lFDRr0.05)

gene–gene interactions from FOCI analysis ranked by estimated lFDR

KCCA CCA

Gene 1 Gene 2 zD
12 zC

12 T12 P-value lFDR T12 P-value

CASP8 MAP3K3 0.0875 0.0074 14.2897 o1.00E–16 3.38E–21 �0.7248 0.46853

IL1A IL1B 1.7243 1.9167 �12.8110 o1.00E–16 1.58E–15 �0.0938 0.92525

MAP3K3 TAB1 0.0976 0.0196 8.1708 2.22E–16 8.53E–06 �0.2205 0.82548

MAPK8 PELI3 0.1146 0.0462 8.2271 2.22E–16 7.11E–06 �0.0947 0.92449

AZI2 IKBKB 0.1049 0.0344 9.2402 o1.00E–16 5.65E–08 0.2640 0.79171

TBKBP1 TLR10 0.0436 0.0989 �6.8641 6.69E–12 0.008161 �0.1386 0.88972

HEXIM1 MYD88 0.1073 0.0524 6.8256 8.75E–12 0.001646 �0.3888 0.69736

PIK3CB TAB1 0.1025 0.0317 10.6548 o1.00E–16 2.59E–11 �0.2520 0.80098

BIRC3 MAP3K3 0.0763 0.0194 5.7655 8.14E–09 0.028977 0.7772 0.43702

MAP3K1 TRAF7 0.1125 0.0465 5.5000 3.80E–08 0.049916 �1.0316 0.30223

BIRC3 TNFRSF13C 0.0601 0.0001 10.8523 o1.00E–16 8.74E–12 �0.1986 0.84251

MAP3K1 MAP3K8 0.1032 0.0377 6.1801 6.41E–10 0.010925 0.3529 0.72412

PYCARD TAF4 0.0231 0.1012 �6.5902 4.39E–11 0.016345 0.0313 0.97502

Abbreviations: CCA, canonical correlation analysis; FOCI, Follow-up Ovarian Cancer Genetic Association and Interaction Studies; KCCA, kernelized version of CCA; lFDR, local false discovery rate.
Includes the Fisher-transformed maximal kernel canonical correlation values for cases and controls, the resulting test statistic, P-values, and lFDR estimates for KCCA, as well as results for the
CCA analysis.
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Figure 3 Colorized image plot of Pearson’s correlation values between SNPs for CASP8-MAP3K3 coassociation for cases (left) and controls (right). The axes

depict the genomic position of the markers on the respective genes.

Figure 4 Barplots of the empirical power at a-level of 0.05 for the KCCA,

CCA, PC-LR, and CLD gene–gene interaction methods, under sample sizes

of 500, 1000, and 1500 with the inclusion of statistically significant

marginal effects.
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Conclusions and future development
Our KCCA algorithm simultaneously supplies dimensionality reduc-
tion and nonlinear coassociation analysis for high-dimensional SNP
data, providing a powerful framework for detecting statistical epistasis
at the gene level. Moreover, this type of analysis can isolate gene pairs
of interest for follow-up analysis without being burdened by the
multiple testing corrections necessary for genome-wide SNP–SNP
pairwise interaction analysis. This is particularly relevant for
next-generation sequencing applications, which may interrogate all
possible SNPs through whole genome sequencing.
Although we have argued that the KCCA procedure for detecting

gene–gene interaction possesses many advantages over the previously
proposed CCA statistic, there is also room for improvement and
generalizability of our approach. The use of the Gaussian kernel
function is a robust selection; however, other kernel functions may be
more appropriate for the specific data type, particularly if there are no
adjustments for covariate data.31 The procedure itself may also be
modified in a variety of ways, including the use of sparse canonical
correlation32,33 and multigene interaction analysis with generalized
canonical correlation,34 and further exploring the resampling
procedures used in the SE estimation. Finally, a less computa-
tionally intensive alternative to KCCA may be a kernelized variant
of principal correlation,35 which could be considered for more
demanding analyses such as genome-wide interrogation.
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