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Systematic large-scale study of the inheritance mode
of Mendelian disorders provides new insight into
human diseasome

Dapeng Hao*,1,4, Guangyu Wang2,4, Zuojing Yin1, Chuanxing Li1,3, Yan Cui1 and Meng Zhou*,1

One important piece of information about the human Mendelian disorders is the mode of inheritance. Recent studies of human

genetic diseases on a large scale have provided many novel insights into the underlying molecular mechanisms. However, most

successful analyses ignored the mode of inheritance of diseases, which severely limits our understanding of human disease

mechanisms relating to the mode of inheritance at the large scale. Therefore, we here conducted a systematic large-scale study

of the inheritance mode of Mendelian disorders, to bring new insight into human diseases. Our analyses include the comparison

between dominant and recessive disease genes on both genomic and proteomic characteristics, Mendelian mutations, protein

network properties and disease connections on both the genetic and the population levels. We found that dominant disease

genes are more functionally central, topological central and more sensitive to disease outcome. On the basis of these findings,

we suggested that dominant diseases should have higher genetic heterogeneity and should have more comprehensive

connections with each other compared with recessive diseases, a prediction we confirm by disease network and disease

comorbidity.
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INTRODUCTION

Massive efforts and resources have been devoted to mapping human
disease loci genetically and later physically over the past decades.1,2

With the advance of genome-wide association studies (GWAS),
detection of molecular interactions and especially the ongoing
cancer genome sequencing projects, an impressive list of disorder–
gene associations and their mutations has been generated.3,4

Researchers have begun to explore human diseases on a large scale
by genome-wide analysis using complex cellular networks on the basis
that disease genes have distinct biochemical characteristics and
function by interacting with other genes.1,5

One important piece of information about human Mendelian
diseases is the mode of inheritance, which is usually the first step
toward understanding the molecular mechanism of inherited human
diseases.6,7 The mode of inheritance of a disease gene has been shown
to have a close relationship with its molecular function.8 However,
most large-scale studies of diseases have ignored the mode of
inheritance of disease subtypes and their constraints on disease
interrelationships, which severely limits our understanding of the
relation between human diseases and the mode of inheritance. This
study is a large-scale investigation of the genomic, biochemical and
functional characteristics, associated mutations and topological
properties in a protein network of disease genes with different
modes of inheritance. Different analytical approaches yielded
consistent results for disease genes with different modes of
inheritance, prompting us to examine the interrelationship of

dominant versus recessive disease pairs that share genes or show
significant comorbidity.

MATERIALS AND METHODS

Inheritance mode and disease–gene association
We retrieved manually curated inheritance and disorder–gene associations

from the Online Mendelian Inheritance in Man (OMIM) database.9 In total,

we obtained 918 protein-coding genes for which a single mutated allele is

associated with autosomal disease (AD genes), and 1065 protein-coding genes

of which both mutated alleles are necessary to cause an autosomal disease (AR

genes). There are relatively few sex chromosome-linked diseases and associated

genes, so these were not included in this study.

Data and calculation of genomic characteristics
The information of gene length, 30-untranslated region (UTR) and 50-UTR was

retrieved from the Ensembl database using BioMart tool. Human miRNAs

were obtained from miRBase database (release 19.0),10 and miRNA targets

were retrieved from starBase database, which provides a comprehensive

integrated miRNA-target map from CLIP-Seq (HITS-CLIP, PAR-CLIP) and

degradome sequencing (Degradome-Seq, PARE) data.11

Data and calculation of biochemical and functional features
Information on genes encoding enzymes was obtained from two sources: 2774

human enzyme genes from KEGG (www.genome.jp/kegg/) and 5326 human

genes annotated ‘catalytic activity’ from Gene Ontology (www.geneontology.org/).

Also, 1003 transcription factor (TF) genes annotated ‘transcription regulator
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activity’ and 1731 structural protein-coding genes annotated ‘cytoskeleton’

were obtained from Gene Ontology.

A total of 4357 genes (2064 house-keeping and 2293 tissue-specific) were

obtained by a microarray meta-analysis of 1431 samples in 43 normal human

tissues from 104 microarray data sets.12 Phenotype data of the mouse

orthologs were used to predict the lethality of the corresponding human

genes. The information on human–mouse orthologous gene pairs and the

phenotype data of mouse knockout genes were retrieved from Mouse Genome

Informatics (MGI, http://www.informatics.jax.org/). A gene was defined as

essential if its knockout resulted in a lethal phenotype. We identified 2510

human genes with a mouse-lethal ortholog, of which 937 were disease genes

according to OMIM.

Phosphorylation sites of genes were extracted from Phospho.ELM. The

domain architecture of disease genes was extracted by searching the SMART

and Pfam databases of Hidden Markov Models. Hand annotated lists of

domains of the SMART database involved in cell signaling domains and

nuclear domains (as defined by the SMART database) were used to identify

differences between AD and AR genes. Evolutionarily promiscuous domains

containing both SMART and Pfam domains were obtained from Butte’s

study.13

High quality, comprehensive protein network and protein complex
The following resources were used to compile a high-quality protein network:

MINT;14 BioGRID;15 IntAct (version of 1 May 2012);16 DIP;17 BIND

Translation;18 HPRD release 9;19 iRefWeb 4.1 to integrate the interactions

from innatedb, matrixdb and MIPS MPPI;20 and large-scale Y2H data sets

from the literature.4,21–23 We manually checked the evidence code of the

experiments that were used to detect the interactions in order to filter out

low-confidence and non-binary interactions. Any interaction detected by

experiments that cannot generate binary interactions was removed. A

comparison with an independently collected PPI data set (STRING)

confirmed the reliability of our network (Supplementary Figure 1). The

comprehensive sources of mammalian protein complexes (Corum)24 and

HPRD release 9 were used to compile a comprehensive list of protein

complexes. In total, 77 192 binary interactions and 3347 protein complexes

were obtained.

Comorbidity disease pairs and the relative risk of comorbidity
The US Medicare database documenting the diagnoses of 13 039 018 patients

from 1990–1993 was used to study the comorbidity related to mode of

inheritance (http://barabasilab.neu.edu/projects/hudine/).25,26 The mapping

between ICD-9-CM codes and OMIM disease ID was provided by the

Unified Medical Language System (UMLS). Significant disease pairs were

selected that met the following criteria: (1) both diseases had 410 hospitalized

patients; (2) the randomly expected co-occurrence of the two diseases was Z1;

and (3) the relative risk (RR) value (see below) of the disease pair was

significant and 42, which is the benchmark level of all disease pairs. The

disease pairs that met criteria (1) and (2) included 2675 disease pairs mapped

to AD disease and 340 mapped to AR disease (Figure 5d).

RR was used to quantify the degree that the disease pairs co-occur in

patients compared with random expectation. RR is defined as:

RR ¼ Cij

C�
ij

ðC�
ij ¼ IiIj

�
NÞ

where Ii is the incidence of disease i, Cij is the number of patients who were

affected simultaneously by diseases i and j, and N¼ 13 039 018. RR41 means

that a disease pair co-occurs more frequently than expected by chance

alone.26,27 The Pearson correlation for binary variables was used as a

quantitative measure of comorbidity to check the robustness of the results.

RESULTS AND DISCUSSION

Genomic characteristics of AD and AR genes
Genome-wide analysis was used to explore the genomic characteristics
of disease genes as a first step toward novel insight into the difference
between modes of inheritance. We found AD genes were significantly

longer compared with AR genes (86 922 bp versus 68 914 bp; P¼
5e–04, Wilcoxon rank sum test; Figure 1a). Significant differences
were observed for 30 and 50-UTRs, whose average lengths in AD genes
are 571 bp versus 419 bp (P¼ 1.2e–012, Wilcoxon rank sum test) and
159 bp versus 141 bp (P¼ 3e–013) compared with AR genes
(Figure 1a). A growing body of evidence has revealed the important
role of 30 and 50-UTRs of mRNAs in human diseases.28 Previous
studies have also suggested that longer gene structures are most likely
associated with gene regulation.29–31 Hu29 found that miRNA targets
have longer 3’-UTR compared with non-miRNA targets. We further
analyzed the miRNA regulation for AD and AR genes and found a
significantly greater proportion of AD genes regulated at the post-
transcriptional level by miRNAs compared with AR genes (29.3 versus
21.2%; P¼ 3.9e–05, Fisher’s exact test). More importantly, AD genes
are regulated by, on average, 23 miRNAs, which is more than twice
the average 10 miRNA regulators of AR genes (Figure 1b, P¼
9.7e–014). These results indicate that AD genes are more functionally
central than AR genes and suggest AD genes are under stronger
selective pressure during evolution compared with AR genes. This is
supported by the significantly more conserved coding sequence of AD
genes compared with AR genes (Figure 1c, the measurements of
evolutionary conservation using phyloP method across 46 vertebrate
from UCSC database. P¼ 6.0e–05, Wilcoxon rank sum test). The
results of an earlier study of the evolutionary history of dominant and
recessive disease genes suggested that dominant disease genes are
more conserved than recessive disease genes.32

Biochemical and functional features of AD and AR genes
We asked whether AD and AR genes display characteristic biochemical
and functional features. A preliminary analysis revealed significant
differences between the sizes (Figure 2a; 857 versus 702 AA, P¼ 0.003),
domain numbers (Figure 2b; 2.6 versus 3.5, P¼ 1.1e–07) and
phosphorylation sites (Figure 2c; 2.4 versus 1.0, P¼ 1.3e–08) of the
proteins encoded by AD and AR genes. Further analysis of the domain
distribution revealed significant differences of domain types between
AD and AR genes. First, cell signaling domains were found preferen-
tially in AD genes (Figure 2d; Po0.001, Sign test). For example, 33
signaling domains were found to have a greater distribution frequency
in AD genes compared with AR genes. In particular, nine signaling
domains (ARM, FH2, GS, G_alpha, PTB, SPRY, S_TK_X, UBQ and
ZnF_RBZ) occurred exclusively in AD genes. The same domain
distribution difference in AD and AR genes was observed for nuclear
domains and promiscuous domains, but not for extracellular or other
domains. The domain distribution of disease genes indicates an
inherent property of inheritance mode. For instance, the enrichment
of nuclear domains in AD genes confirms the particular role of TFs in
causing dominant phenotypes, whereas the enrichment of promiscu-
ous domains suggests AD genes are involved more frequently in
protein interactions compared with AR genes.13

We investigated biological roles of disease genes associated with
different inheritance modes. In accord with earlier work,8 we found
AD genes are significantly more likely to encode TFs and less likely to
encode enzymes compared with AR genes (Figure 2e). We found also
that AD genes are more likely than AR genes to encode structural
proteins, consistent with the expectation that the assembly of
abnormal proteins into a structural complex disrupts the integrity
and function of the complex (Figure 2e). These results fit well with
our understanding of how proteins of various functions are associated
with phenotypes. Human diseases are generally associated with
specific tissue types corresponding to the physiological systems
affected,33 therefore, we analyzed 2064 house-keeping genes and

Study of inheritance mode of Mendelian disorders
D Hao et al

1261

European Journal of Human Genetics

http://www.informatics.jax.org/
http://barabasilab.neu.edu/projects/hudine/


2293 tissue-specific genes obtained from analysis of extensive gene
expression data sets,12 and found both AD and AR genes are more
likely to be tissue-specific genes (Figure 2e). However, no significant
difference of the predisposition of tissue-specific genes between AD
and AR genes was found. To assess their relative overall biological
importance, we asked whether there was a difference between AD and
AR genes in being essential in early development. We considered
human orthologs of mouse knockout genes that result in lethality.
The classes of embryonic lethality, postnatal lethality, prenatal
lethality and perinatal lethality were considered as lethal phenotypes,
whereas other phenotypes (including weaning or preweaning
lethality) were considered non-lethal. This gave us 2510 human genes
having mouse-lethal orthologs, of which 420 were AD genes and 301
were AR genes (Figure 2e; P¼ 10–5, w2-test). This result further
confirms that AD genes are more functionally central compared with
AR genes.

Disease mutations of AD and AR genes
To explore AD and AR genes in detail, we analyzed a comprehensive
list of Mendelian mutations compiled from both OMIM and the
Human Gene Mutation Database.1,9,32 In all, 43 625 mutations were
mapped into AD and AR genes. We found AD genes typically
harbored more disease mutations compared with AR genes,
whether in missense mutations, nonsense mutations or indels
(Figure 3a; P¼ 0.01, P¼ 4.1e–14 and P¼ 0.02, respectively,
two-sample Kolmogorov–Smirnov test). This difference in the number
of disease mutations is significant even after controlling for gene length
(Supplementary Figure 2, P¼ 0.05, P¼ 2.6e–14 and P¼ 0.02, respec-
tively). We divided the mutations into two categories: 26 980 in-frame

mutations, including missense mutations and in-frame indels, and
16 645 out-frame mutations, including nonsense mutations and
frameshift indels. It has been suggested that in-frame mutations are
likely to give rise to proteins with local defects, whereas out-frame
mutations are likely to result in complete loss-of-function of genes.1

Most disease genes harbor both types of mutations; however, we
extracted 444 genes showing significantly different frequencies of
mutation types. We found that genes harboring primarily in-frame
mutations are significantly more likely to be AD genes, whereas
genes harboring primarily out-frame mutations are significantly more
likely to be AR genes (Figure 3b). This result may suggest that
mutations causing local defects in AD genes are more frequently
associated with disease outcome than mutations causing local defects
in AR genes.

Given the functional role of a disease gene from different modes of
inheritance might affect its sensitivity to disease outcome, we suspect
it could influence the pleiotropy of disease outcome. To test this
hypothesis, we analyzed the number of phenotypically different
diseases associated with AD and AR genes. AD genes displayed a
higher level of pleiotropy compared with AR genes. Among genes
associated with six different diseases, the number of AD genes is ca
fivefold higher compared with AR genes, whereas among genes
associated with at most three different diseases, the number of AD
and AR genes is similar (Figure 3c).

Large-scale properties of AD genes and AR genes in the human
protein interaction network (PIN)
We undertook a large-scale analysis of a comprehensive and reliable
human protein PIN, consisting of literature-curated binary interactions
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Figure 1 Comparison of genomic characteristics between AD and AR genes. (a) Comparison of the structure parameters of AD genes with those of AR
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from multiple resources, to provide a system-level understanding of
the mechanisms underlying different inheritance modes of human
disease. In total, 1667 AD and AR genes were mapped into the PIN,
forming a disease gene interaction network with 3094 edges between
disease genes (Figure 4a).

An apparent characteristic of this disease gene network (GN) is that
AD genes tend to occupy central positions and AR genes tend to
segregate at the network periphery. We assessed this using a
topological measure known as closeness.34 Closeness is the inverse
of average lengths through networks, with high closeness reflecting
central positions in the network. The closeness values of AD genes in
PIN were significantly higher compared with AR genes (Figure 4b;
Po10�21, Kolmogorov–Smirnov test). The centrality of AD genes
was confirmed by node connectivity. We found the connectivity of
AD genes is 42-fold higher compared with AR genes (Figure 4c).
Mutations affecting hubs are expected to perturb the network severely,
whereas those affecting the peripheral genes have less effect.2 Thus,
the topological features of AD and AR genes are consistent with their
biological functional importance. Moreover, the level of pleiotropy
and the larger number of disease mutations of AD genes might be a

consequence of diversiform network perturbations introduced by
highly connected genes.

Specific cellular functions are believed to be carried out by
modules, usually the aggregation of nodes in a network neighbor-
hood, whose disruption results in a particular phenotype.35–37

According to the hypothesis of haploinsufficiency, AD disease
should be associated more frequently with the disruption of
modularity, as the haploinsufficiency of a core component might
cause haploinsufficiency of a particular functional module. To address
this, we used a probabilistic modeling algorithm to define and to
detect network modules.38 This revealed 3123 modular genes, for
which the AD genes were significantly more enriched compared with
the AR genes (Figure 4d; 41.4% versus 25.6%; Po10�10, Fisher’s exact
test). More interestingly, we found a positive correlation between the
size of modules and the odds ratio of AD/AR genes, indicating the
greater enrichment of AD genes in important functional modules. To
confirm our conclusion, we examined a comprehensive list of human
protein complexes, a typical representative of modules extracted from
widely used databases, which confirmed that AD genes are signifi-
cantly more enriched in modules compared with AR genes
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(Figure 4d). We used a core decomposition method to find the
centers of network’s intrinsic modules, with higher k values represent-
ing more densely connected centers of modules.39 We observed an
obvious enrichment of AD genes in the k-cores of PIN, and this trend
was more dramatic for large values of k (Figure 4e), confirming AD
diseases are associated with the disruption of modules, especially with
the disruption of the center of modules. By setting k at 19, we were
able to extract the innermost core of human interactome, which
consists of 313 genes involved primarily in intracellular signaling
cascade and regulation of transcription (Figure 4f). Interestingly, only
nine of these genes in the innermost core were AR genes, whereas 56
were associated with AD diseases, including dominant types of
deafness, diabetes, Alzheimer’s and Parkinson’s disease.

These results are in accordance with those of an earlier study
focused on haploinsufficient (HI) genes in the human genome,40

which found HI genes have a more conserved coding sequence, longer
transcripts, longer 30-UTRs and more interaction partners than
haplosufficient (HS) genes. Although the definition of HI and HS
genes is very different for AD and AR genes, the findings suggest that
one copy loss of functional central genes is more likely to cause
human diseases than that of functional peripheral genes. It has been
brought to our attention that AD genes resemble Mendelian and
complex diseases (MC) genes more than Mendelian but not complex
disease (MNC) genes in many properties.41 For example, both MC
genes and AD genes are involved in more protein interactions, have
greater protein lengths and are more conserved than other genes.
Therefore, we investigated the overlap between AD versus AR genes
and complex disease genes shown in the genetic association database

and found AD genes are significantly over-represented by 1.64-fold
compared with AR genes (52% versus 33%; Po0.0001, w2-test).
Finally, we found highly significant differences in genomic, proteomic,
disease mutations and network topologies between AD and AR genes
are predictive of the inheritance mode of human diseases
(Supplementary Table 1 and Supplementary Figure 3), presenting a
potential to develop automatic tools for determining the inheritance
mode of diseases.

Disease connections of different modes of inheritance
The dramatic difference of functional centrality between AD and AR
genes could have immense influence on connections between diseases
manifesting different inheritance modes. As an instrument for the
large-scale analysis of disease connections, we constructed a disease
GN and a disease network (DN) for AD genes/diseases and for AR
genes/diseases. First, ignoring the inheritance mode, we grouped
disease subtypes into diseases according to their given names. Then,
according to the disease–gene associations, we generated two classes
of biologically relevant networks as described.2 In the GN class, nodes
represent genes and two nodes are connected if they are associated
with the same disease. In the DN class, nodes represent diseases and
two nodes are connected if they share AD/AR genes. However, unlike
the earlier study, this procedure was used for AD and AR genes,
respectively, resulting in two networks for each class (Figures 5a and b).

The GN class of AD genes contains a giant component connecting
most nodes, whereas the GN class of AR genes is segmented into
many small clusters (Figure 5a). Genes associated with phenotypically
similar diseases tend to form clusters in the GNs. Some AD genes
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(eg, PTEN and PAX6) are involved in various biological functions and
are associated with many phenotypically different diseases, resulting
in major hubs in the network and connecting different clusters to the
giant component. In contrast, several AR genes (eg, RLBP1 and
GDAP1) are associated with multiple diseases that are phenotypically
similar, resulting in segmented clusters that represent disease modules
of a specific disorder class.

The DN class would be segmented into isolated clusters if the
human disorder tended to have distinct and unique genetic origin,
else the DN class would be a connected network. In the DN class of
sharing AD genes, most disorders form a giant component, suggesting
a high level of genetic heterogeneity for most dominant disorders
(Figure 5b). Even so, the network is naturally clustered according to
the disorder classes, supporting the predisposition of common genetic
origins of phenotypically similar disorders. Yet, the dominant subtype
of diabetes mellitus, Alzheimer’s disease and deafness do not appear

to be located in clusters of the same disorder class, representing an
extremely high level of locus heterogeneity and complexity of disease
phenotype. In stark contrast, the DN class of sharing AR genes is
grouped into many small clusters of a few closely related diseases and
contains many single nodes (data not shown), revealing that recessive
disorder tend to have a distinct and unique genetic origin. Unlike in
the DN of sharing AD genes, diabetes mellitus and deafness are linked
to only a few other phenotypes, representing the low level of genetic
heterogeneity of their recessive subtypes. Metabolic disorders appear
mainly in this network, which is consistent with the tendency for
genes encoding enzymes to cause recessive diseases (Figure 2e), and
explains the earlier finding that metabolic disorders are under-
represented in the giant component of the human diseasome.2

It was shown recently that genetic connections between
disorders occur at the population level as well: disease pairs sharing
common genetic origins tend to show significant comorbidity.27
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(e) Proportion of AD and AR genes as a member of K-core, plotted for increasing K values. High K value represents densely connected center of network.

(f) The innermost core of PIN enriched for AD genes, which is detected using k-core decomposition method by setting k¼19.
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We hypothesize that the different disease connections suggested by
DN classes of sharing AD and AR genes also have an influence on
disease comorbidity. A total of 396 significant comorbidity links were
found between AD disorders, connecting in a network covering 46.1%
of the mapped AD diseases, where phenotypically similar diseases are
adjacent to each other. In contrast, only 65 significant comorbidity
links were found between AR disorders, covering only 12.2% of the
mapped AR diseases, of which 22 links are provided by metabolic
disorders. This result is consistent with the distinction in DN classes,
reflecting an association between disease connections at the genetic
level and disease comorbidity at the population level. Although the
number of significant AR disease comorbidity links is highly under-
represented, we find AR disease pairs show significantly stronger
comorbidity level than AD disease pairs (Figure 5d). Possible
explanations for the low comorbidity level of AD disease pairs are
the high level of genetic heterogeneity of AD diseases and the high
level of pleiotropy of the shared AD genes, as suggested by this study.

It was found recently that protein–protein interaction can be used
to understand disease connections on both genetic and population
levels.27,42 Our study indicates that AD genes are located in the center
of the protein network and have a high level of connectivity, resulting
in a large number of interactions between AD genes, whereas AR
genes are segregated at the periphery of the protein network and have
a low level of connectivity, resulting in large network distances
between them. Therefore, we believe the disease connections
constructed by protein–protein interactions of AD and AR genes
should have similar results.
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