
ARTICLE

A systematic review of cancer GWAS and candidate
gene meta-analyses reveals limited overlap but similar
effect sizes

Christine Q Chang1, Ajay Yesupriya2, Jessica L Rowell3, Camilla B Pimentel4, Melinda Clyne4, Marta Gwinn5,
Muin J Khoury1,6, Anja Wulf6 and Sheri D Schully*,1

Candidate gene and genome-wide association studies (GWAS) represent two complementary approaches to uncovering genetic

contributions to common diseases. We systematically reviewed the contributions of these approaches to our knowledge of

genetic associations with cancer risk by analyzing the data in the Cancer Genome-wide Association and Meta Analyses

database (Cancer GAMAdb). The database catalogs studies published since January 1, 2000, by study and cancer type. In all,

we found that meta-analyses and pooled analyses of candidate genes reported 349 statistically significant associations and

GWAS reported 269, for a total of 577 unique associations. Only 41 (7.1%) associations were reported in both candidate gene

meta-analyses and GWAS, usually with similar effect sizes. When considering only noteworthy associations (defined as those

with false-positive report probabilities r0.2) and accounting for indirect overlap, we found 202 associations, with 27 of those

appearing in both meta-analyses and GWAS. Our findings suggest that meta-analyses of well-conducted candidate gene studies

may continue to add to our understanding of the genetic associations in the post-GWAS era.
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INTRODUCTION

Candidate gene association studies have been widely used to study
genetic susceptibility to complex diseases, including cancer.1 Critics of
candidate gene studies have pointed to non-replication of results, false
positives, insufficient sample sizes, and limited prior knowledge of
biologically relevant candidate genes.2 These concerns have prompted
the use of systematic reviews, especially meta-analyses of multiple
studies, to minimize false-positive associations and assess the
credibility of findings.3 In recent years, genome-wide association
studies (GWAS) have greatly accelerated the pace of discovery and
found many novel genetic associations that were not anticipated by
the candidate gene approach.4,5 Associations discovered by GWAS
raise additional questions, particularly because observed effects are
typically very small.6 Furthermore, the implicated SNPs represent
markers that require further investigation to identify causal variants,7

although this may become less of a problem as methods for fine-
mapping associations improve.
A critical evaluation of a decade’s worth of association studies

is warranted as the next phase of cancer genetics research unfolds.
In the present analysis, we used the data available in a 2008 paper
published by Dong et al8 and in the Cancer Genome-wide Association
and Meta Analyses database (Cancer GAMAdb)9 to complete a
systematic review of genetic associations in cancer GWAS and
meta-analyses and pooled analyses published over an 11-year
period, from 2000–2011.

MATERIALS AND METHODS

Cancer GAMAdb
To help consolidate the vast amount of information from both candidate gene

and GWAS of cancer, the Centers for Disease Control and Prevention’s (CDC)

Office of Public Health Genomics and the National Cancer Institute’s Division

of Cancer Control and Population Sciences launched the Cancer GAMAdb in

2010.9 This continuously updated database catalogs published GWAS and

meta-analyses and pooled analyses that have evaluated associations of genetic

polymorphisms and cancer risk since January 1, 2000. Cancer GAMAdb builds

on a published data set by Dong et al,8 which encompassed meta-analyses and

pooled analyses of genetic polymorphisms, and cancer risk published until

March 15, 2008. Associations in the database published after that date have

been identified using the Human Genome Epidemiology (HuGE) Navigator

database10 and the National Human Genome Research Institute (NHGRI)

GWAS catalog.11 The Centers for Disease Control and Prevention’s HuGE

Navigator is a continuously updated knowledge base in HuGE.10 The NHGRI

GWAS catalog extracts data from GWAS publications.11 Genetic associations

with cancer are selected from these two databases for curation in the Cancer

GAMAdb. Data describing the association(s)—including study population,

minor allele frequencies, and effect sizes—are manually extracted from each

article and entered into the Cancer GAMAdb. The current analysis is based on

the data that were included in Cancer GAMAdb as of February 26, 2011.

Selection criteria
We selected genetic associations for our analysis according to the schema in

Figure 1. We excluded meta-analyses and pooled analyses with P-values of odds

ratios (OR) Z0.05 (if P-values were not reported, we calculated P-values as
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described in Dong et al 8). We excluded meta-analyses with fewer than 500

total cases or based on less than two studies for the meta-analyses and pooled

analyses (or if either was unknown). We standardized the gene names with the

Human Genome Organisation gene symbol and the National Center for

Biotechnology Information Entrez Gene GeneID, as well as the RefSNP

accession ID (rs numbers) for variant names where possible. To fill in the

missing gene names, we searched by variant name using HuGE Navigator’s

Variant Name Mapper and the UCSC Genome Browser and collected region

information if the variant was intergenic.

Our analysis was limited to genetic associations with incident cancer of

specified type; we excluded associations with other outcomes (eg, all cancers,

precursor lesions, biomarkers, or survival). Associations with circulating levels

of IGF1; human lymphocyte antigen (HLA) markers; high-penetrance genetic

markers (eg, APC, BRCA1); and associations with HRAS1 (which have been

questioned because of flawed genotyping methods) were also excluded.

When an association had been examined in multiple meta-analyses, we

included only the most recent publication. We gave priority to the most

recently reported overall association with a particular variant; however, if no

significant overall association had been reported, we included the most recent

subgroup-specific association. If a publication reported multiple significant

contrasts (ie, results based on different genetic models) for the same variant,

we included the contrast with the smallest P-value. When significant

Figure 1 Methodology used for inclusion of associations into the analyses.
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associations were found with the same variant in both meta-analyses and

GWAS, we checked to be sure that they compared the same contrasts.

Associations with combinations of two or more variants were considered

unique, even if associations with the individual variants were also reported.

GWAS data were restricted to studies of incident cancer published before

February 26, 2011. Studies were identified from the HuGE Navigator and

checked against the NHGRI GWAS catalog to ensure completeness. In some

instances, we checked the original publication for additional information; if we

noticed data discrepancies between the GWAS catalog and the original paper,

we used the data from the original paper. GWAS that included meta-analyses

were classified as GWAS. Associations for which variants were not specified

were excluded from analysis. When multiple GWAS reported the same

association, we included only the most recently published study in our

analysis.

Analysis strategy
Our analysis considered the extent to which associations reported in meta-

analyses and GWAS overlapped. When both types of studies reported

associations with the same variant, we called the overlap direct. When they

reported associations with variants separated by less than 1 million base pairs,

we called the overlap indirect. In an additional analysis, we also examined

noteworthy associations, which we defined as those with false-positive report

probabilities (FPRP) r0.2, a stringent threshold suggested by Wacholder

et al,12 and used in the analysis by Dong et al.8 We calculated FPRPs at two

levels of prior probability and at two levels of association (OR 1.5 and OR 1.2).

As in the analysis by Dong et al,8 we chose to evaluate the associations using a

low-prior probability of 0.001 (expected for a candidate gene) and a very

low-prior probability of 0.000001 (expected for a random SNP).

An association was considered noteworthy if it passed the FPRP threshold in

one or more of these four categories.

RESULTS

Significant associations are summarized in Table 1 by the cancer site
and the study type.

Meta- and pooled analyses
We identified 5131 gene-variant associations with incident cancer
from 386 meta-analyses and pooled analyses published after the
review by Dong et al review. We excluded 3828 (74.6%) associations
because their reported P-values wereZ0.05; 1026 more were excluded
for reasons listed in Figure 1. After applying all exclusion criteria, we
found 277 significant associations; the review by Dong et al included
98 significant associations. Twenty-six (7.4%) of these were also found
in meta-analyses published since the paper by Dong et al. Thus, there
were 349 unique variant-cancer associations in all, involving 264
genes (76 with more than one associated variant) and spanning
25 different cancer types.
The largest number of candidate gene associations was found for

breast cancer (n¼ 80) followed by prostate cancer (n¼ 53). Signifi-
cant associations from meta-analyses and pooled analyses of candi-
date genes are listed in Supplementary Table 1.

Genome-wide association studies
We identified 4994 GWAS associations from 825 citations. We
excluded 4645 associations with outcomes other than incident cancer
and 80 for other reasons listed in Figure 1. In the end, there were 269
unique associations in 223 different genes with 21 different cancer
types. The largest number of GWAS associations was found for
prostate cancer (n¼ 56) followed by breast cancer (n¼ 36). Variants
from GWAS are listed in Supplementary Table 2.

Combined
The combined results from candidate gene meta-analyses and GWAS
included 577 unique associations of 446 different genes or chromo-
somal regions with 32 cancers. When we considered only direct
overlap, we found 41 associations that had been reported in both
meta-analyses and GWAS (Supplementary Table 3). The largest
number of such associations was with prostate cancer (n¼ 25),
followed by breast cancer (n¼ 8).
When we restricted our analysis to noteworthy associations

(calculated FPRPs of r0.2 in either prior probability or OR) and
allowed for direct and indirect overlap (both within and between
study types), we found 202 unique associations in all. Of these,

Table 1 Number of significant associations (in variants and genes)

reported in candidate gene meta-analysis and pooled analysis and

GWAS, by cancer site

MAa GWASb

Cancer Site Variantsc Genesd Variantsc Genesd

Bladder 15 14 10 10

Blood-related (ALL, MCL, NHL) 1 1 — —

Breast 80 59 36 30

Cervical 4 4 — —

Colorectal 30 23 17 14

Endometrial 2 1 — —

Esophageal 9 9 4 4

Gastric 21 17 2 2

Genitourinary 2 2 — —

Glioma 18 13 9 8

Head and neck 14 11 — —

Hepatocellular 8 4 4 6

Hodgkin lymphoma — — 4 3

Laryngeal 2 2 — —

Leukemia 4 4 32 27

Lung 32 23 25 22

Meningioma 1 1 — —

Myeloproliferative — — 1 1

Nasopharyngeal 4 3 6 6

Neuroblastoma — — 5 3

Non-Hodgkin lymphoma 10 8 2 2

Oral 1 1 — —

Ovarian 14 12 10 10

Pancreatic — — 21 21

Prostate 53 40 56 35

Renal cell — — 3 3

Skin 20 8 8 7

Testicular — — 12 10

Thyroid — — 2 2

Upper aero-digestive tract 2 2 — —

Upper aero-digestive tract and lung 1 1 — —

Urothelial 1 1 — —

Total 349 264 269 223

Abbreviations: ALL, adult lymphoblastic leukemia; GWAS, genome-wide association studies;
MA, meta-analyses or pooled analyses; MCL, myeloid cell leukemia; NHL, non-Hodgkin
lymphoma.
aTotal significant associations reported in previous systematic review of meta-analyses (Dong
et al8) and meta-analyses and pooled data of individual studies published from 20 March
2008 through 26 February 2011. Meta-analyses were defined as those of candidate gene
studies. Significance threshold was 0.05.
bFrom GWAS catalog. Excludes variants that were not reported. GWAS with meta-analyses
included were considered GWAS. Significance threshold was 1�10�5.
cSome variants may be linked to one another due to proximity. Associations with combinations
of two or more variants were considered unique, even if listed standalone variants were also
reported.
dIntergenic regions used if no gene provided by paper or associated with variant.
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66 were from candidate gene studies and 163 were from GWAS; 27
(13%) of these were found in both meta-analyses and GWAS
(Table 2). We were unable to evaluate 38 GWAS associations for
noteworthiness because the original publications did not report ORs
and CIs. Allowing for indirect overlap, we found the largest numbers
of noteworthy associations in leukemia (n¼ 27), followed by prostate
cancer (n¼ 25). Noteworthy associations that were found only in
meta-analyses (n¼ 39) are listed in Table 3. All noteworthy associa-
tions are included in Supplementary Table 4.
Meta-analyses and GWAS that examined the same variants (direct

overlap) reported very similar ORs (Figure 2). All but three
associations had ORs between 1.00 and 1.50. The largest effect sizes
were observed for esophageal cancer and ALDH2 rs671 (heterozy-
gous) in both meta-analysis (OR¼ 2.52) and GWAS (OR¼ 3.48).

DISCUSSION

We summarized the principal findings from a decade of published
genetic associations with incident cancer. We found that meta-
analyses and pooled analyses of candidate gene studies had identified
349 statistically significant associations and GWAS identified 269. Very
few associations were found in both groups; however, variant-cancer

associations that were reported in both meta-analyses and GWAS had
comparable effect sizes.
When we stratified on the basis of cancer type, there was

considerable variation in the relative numbers of associations identi-
fied by meta-analyses and GWAS. For example, meta-analysis of
candidate genes identified 80 breast cancer variants, versus 36
identified by GWAS. In contrast, meta-analysis found only four
leukemia variants, compared with 32 identified by GWAS. The
difference in the number of significant associations between the
meta-analyses of candidate gene studies and GWAS could reflect
variations in research interest, prevalence, or underlying knowledge of
pathogenesis of different cancers.
Candidate gene studies and GWAS use different thresholds to

define statistical significance. We used a P-value threshold of 0.05 for
candidate gene studies and 1.0� 10�5 for GWAS; the latter is used by
the NHGRI GWAS Catalog, although 5� 10�8 is more widely
accepted in the literature today. These thresholds are consistent with
those used in the original studies; however, it has been suggested that
P¼ 0.05 may be too lenient for candidate genes studies13 and
P¼ 5� 10�8 may be too stringent for GWAS.14,15 If this is true,
then differences in the number of significant associations could also
reflect an excess of false-positive findings from candidate gene
studies13 and an excess of false negatives from GWAS.14 It has been
suggested that in GWAS, where false negatives outnumber false
positives, lowering the significance threshold to 10�7 would yield
mostly genuine discoveries.15 Others have suggested that 10�7 be held
as the criterion for early commercial genotyping arrays, but the
standard 5� 10�8 for current or merged commercial arrays.16 False-
positive findings due to too lenient thresholds may be particularly
pertinent for candidate gene studies that examine several variants and
do not correct for multiple testing.
We identified noteworthy associations by calculating FPRPs as

described by Wacholder et al.12 The FPRP for a genetic association
takes into account not only the observed P-value but also the prior
probability of the association and the statistical power of the test. We
found 189 noteworthy associations in addition to the 13 previously
reported by Dong et al.8 Most of these noteworthy associations were
identified in GWAS; however, 39 were found exclusively in meta-
analyses of candidate gene associations.
Meta-analysis of candidate gene association studies diminishes, but

does not entirely exclude, random error and bias as causes of false-
positive associations. GWAS also have challenges; in particular, the
actual fraction of the genome interrogated in a GWAS varies with the
genotyping platform and study population.17 Although imputation
methods may help increase the genomic coverage, they are not
perfect, especially for variants of lower frequency. For example, in an
attempt to unify candidate gene and GWAS approaches in asthma,
Michel et al18 found that GWAS coverage was insufficient for many
asthma candidate genes.
More in-depth analysis in future studies could further elucidate

why 39 candidate gene associations did not reproduce in GWAS.
Insufficient power due to the limited ability of GWAS to detect rare
variants may have a role. Candidate gene studies are not suited for the
study of exceptionally rare variants either, not without incredibly large
sample sizes. Uncommon variants, however, which include CHEK2,
may still have frequencies too low to be detected through GWAS.4

The CHEK2 1100delC mutation, an established genetic risk factor for
breast cancer, was found in 0.7% of cases and 0.4% of controls in a
Swedish study population.19 Despite many GWAS conducted in breast
cancer, CHEK2 has not passed the 1� 10�5 threshold (as reported by
the NHGRI GWAS Catalog).11 It is important to add, however, that

Table 2 Number of noteworthy associations reported in candidate

gene meta-analyses and pooled analyses and GWAS, accounting for

direct and indirect overlap, by cancer site

MAa

Cancer site

Dong,

et alb

Subsequent

MAc Total GWASd Overlap

Total

unique

Bladder 2 2 3 10 3 10

Blood-related 0 1 1 0 0 1

Breast 3 13 15 14 7 22

Colorectal 1 5 6 14 1 19

Endometrial 0 1 1 0 0 1

Esophageal 0 5 5 3 1 7

Gastric 1 3 4 2 0 6

Glioma 0 0 0 5 0 5

Head and neck 0 1 1 0 0 1

Hepatocellular 0 1 1 4 0 5

Hodgkin’s

lymphoma

0 0 0 3 0 3

Leukemia 2 0 2 25 0 27

Lung 3 6 8 10 2 16

Myeloproliferative 0 0 0 1 0 1

Nasopharyngeal 0 1 1 4 0 5

Neuroblastoma 0 0 0 3 0 3

Non-Hodgkin’s

lymphoma

0 1 1 2 0 3

Ovarian 0 0 0 8 0 8

Pancreatic 0 0 0 16 0 16

Prostate 1 15 16 21 12 25

Renal cell 0 0 0 3 0 3

Skin 0 1 1 7 1 7

Testicular 0 0 0 6 0 6

Thyroid 0 0 0 2 0 2

Total 13 56 66 163 27 202

Abbreviations: GWAS, genome-wide association studies; MA, meta- or pooled analyses
aNoteworthy associations from meta- and pooled analyses of candidate gene studies.
bReported in previous systematic review of meta-analyses (Dong et al8).
cReported in meta-analyses published from 20 March 2008 through 26 February 2011.
dFrom GWAS catalog. Excludes variants that were not reported. GWAS with meta-analyses
included were considered GWAS.
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Table 3 Noteworthy associations only found in meta- and pooled analyses of candidate gene studies

Locus

Source/

PMIDa Gene/region Variant OR

95% CI

lower

95% CI

upper P-valueb

FPRP at prior

probability of

0.001 and

OR 1.5

FPRP at prior

probability of

0.000001 and

OR 1.5

FPRP at prior

probability of

0.001 and

OR 1.2

FPRP at prior

probability of

0.000001

and OR 1.2

Blood-related cancer

11q13.3 18843022 CCND1 rs17852153 1.62 1.28 2.05 0.0001 0.184 0.996 0.904 1.000

Breast cancer

2q13 20437198 IL1B rs1143627 1.4 1.17 1.67 1.8E-04 0.191 0.996 0.809 1.000

2q33.1 Dong CASP8 rs1045485 0.89 0.85 0.94 5.7E-06 0.028 0.967 0.029 0.967

19629679 0.874 0.834 0.917 3.9E-08 o0.001 0.037 o0.001 0.038

2q33.2 20920330 CTLA4 rs231775 1.31 1.17 1.48 1.4E-05 0.014 0.936 0.153 0.995

5p12 21194473 MRPS30 rs10941679 1.12 1.09 1.15 o1.e-30 o0.001 o0.001 o0.001 o0.001

17q22 21194473 COX11/

STXBP4

rs6504950 0.95 0.92 0.97 1.4E-06 0.001 0.583 0.001 0.583

19q13.2 Dong TGFB1 rs1800470 1.16 1.08 1.25 6.9E-05 0.090 0.990 0.108 0.992

20q13.2 19823929 AURKA rs2273535 1.23 1.1 1.37 1.7E-04 0.143 0.994 0.338 0.998

22q12.1 Dong CHEK2 1100delC 2.4 1.8 3.2 2.5E-09 0.004 0.782 0.678 1.000

Colorectal cancer

1p26.22 19846566 MTHFR rs1801133 0.83 0.77 0.9 6.5E-06 0.006 0.866 0.014 0.933

11q22.2 19843588 MMP1 rs1799750 1.48 1.26 1.74 2.1E-06 0.004 0.785 0.270 0.997

12q15 20503107 MDM2 rs2279744 0.73 0.62 0.86 1.7E-04 0.163 0.995 0.747 1.000

19q13.2 20012233 TGFB1 rs1800469 1.62 1.3 2.02 1.8E-05 0.069 0.987 0.826 1.000

22q11.23 Dong GSTT1 GSTT1 null 1.37 1.17 1.6 8.1E-05 0.074 0.988 0.598 0.999

Endometrial cancer

15q21.2 19124504 CYP19A1 rs749292 1.3 1.17 1.45 2.5E-06 0.002 0.714 0.032 0.971

Esophageal cancer

1q31.1 21304218 PTGS2 rs20417 1.45 1.23 1.71 1.0E-05 0.015 0.939 0.451 0.999

4q23 20806441 ADH1B rs1229984 1.32 1.17 1.49 7.1E-06 0.007 0.878 0.103 0.991

16q12.2 20360147 MMP2 rs243865 0.7 0.59 0.82 9.9E-06 0.013 0.932 0.392 0.998

17p13.1 20827430 TP53 rs1042522 1.43 1.23 1.68 1.4E-05 0.018 0.950 0.451 0.999

Gastric cancer

1p36.22 Dong MTHFR rs1801133 1.52 1.31 1.77 4.9E-08 o0.001 0.140 0.057 0.984

2q13 20360147 MMP7 rs11568818 1.79 1.37 2.34 2.1E-05 0.173 0.995 0.923 1.000

4q13.3 19777350 IL-8 rs4073 1.363 1.199 1.527 9.2E-08 o0.001 0.088 0.007 0.868

19q13.32 20981556 ERCC2 rs13181 0.3 0.21 0.44 7.2E-10 0.032 0.971 0.894 1.000

Head and neck cancers

11q22.2 19843588 MMP1 rs1799750 1.43 1.2 1.69 2.7E-05 0.037 0.974 0.577 0.999

Hepatocellular carcinoma

12q15 21240526 MDM2 rs2279744 1.57 1.36 1.8 1.0E-10 o0.001 o0.001 0.002 0.632

Leukemia

1p13.3 Dong GSTM1 GSTM1 null 1.2 1.14 1.25 8.6E-15 o0.001 o0.001 o0.001 o0.001

22q11.23 Dong GSTT1 GSTT1 null 1.19 1.14 1.29 3.5E-08 0.023 0.960 0.039 0.976

Lung cancer

1p13.3 and

22q11.23

19124497 GSTM1,

GSTT1

GSTM1 and

GSTT1 present

0.71 0.62 0.82 3.2E-06 0.004 0.797 0.177 0.995

10q26.3 20031389 CYP2E1 rs2031920 0.8 0.72 0.89 4.1E-05 0.039 0.976 0.153 0.994

12q15 Dong MDM2 rs2279744 1.27 1.12 1.44 2.E-04 0.162 0.995 0.505 0.999

16q12.2 20360147 MMP2 rs2285053 0.72 0.61 0.85 1.0E-04 0.113 0.992 0.713 1.000
rs243865 0.55 0.48 0.63 6.2E-18 o0.001 o0.001 o0.001 o0.001

19q13.31 Dong XRCC1 rs25487 1.34 1.16 1.54 5.E-05 0.038 0.975 0.383 0.998

19116388 rs3213245 1.46 1.25 1.7 1.E-06 0.002 0.633 0.159 0.995

19q13.32 Dong ERCC2 rs13181 1.3 1.13 1.49 2.E-04 0.143 0.994 0.566 0.999

Nasopharyngeal cancer

1p13.3 19338664 GSTM1 GSTM1 null 1.42 1.21 1.66 1.1E-05 0.014 0.935 0.383 0.998

Non-Hodgkin lymphoma

4p14 19029192 TLR rs4833103 0.75 0.64 0.87 2.E-04 0.134 0.994 0.639 0.999

Prostate cancer

1q25.3 Dong RNASEL rs627928 1.27 1.13 1.44 1.E-03 0.162 0.995 0.505 0.999

8p21.2 20564319 NKX3-1 rs1512268 1.17 1.12 1.23 2.E-12 o0.001 o0.001 o0.001 o0.001

17q24.3 20564319 LOC124685 rs1859962 1.21 1.12 1.3 8.E-07 o0.001 0.161 o0.001 0.318

19q13.2 20564319 LOC644330 rs887391 1.14 1.08 1.2 7.E-07 o0.001 0.356 o0.001 0.362

Abbreviations: CI, confidence intervals; FPRP, false-positive report probabilities; OR, odd ratios.
FPRPs in bold indicate values that are r0.2 and are therefore considered noteworthy.
Table does not include associations for which FPRPs could not be calculated due to missing ORs and CIs.
a‘Dong’ indicates variants reported in previous systematic review of meta-analyses (Dong et al 8).
bItalicized P-values indicate those derived from calculation using methods described in Wacholder et al.12 All other values are as reported in source noted.
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the mutation was not discovered by candidate gene methods but by
studying families with Li–Fraumeni syndrome.20 As in candidate gene
studies, inadequate sample size should also be considered as a possible
source of insufficient power. Significant positive correlations have
been noted between the number of novel SNPs detected and the
sample size of GWAS.21

In our study, the 41 associations common to both meta-analysis
and GWAS had effect sizes that were generally similar and mostly
small. A notable outlier is the association of ALDH2 rs671 risk for
esophageal cancer, which has been described by three meta-analyses
and one GWAS since 2000. ALDH2 encodes a key enzyme in the
metabolism of consumed alcohol, which is a major epidemiologic risk
factor for esophageal cancer. A 2009 paper by Khoury and Wacholder
notes that very few association studies have considered gene–
environment interactions, and that incorporating both genetic and
environmental factors in the analysis may be one path to finding
additional associations and larger effect sizes but may require
extremely large sample sizes to achieve sufficient power.22 Other
methodological challenges unique to genome-wide environmental
interaction studies exist, which can perhaps explain the low number
of publications in this field.23

Our analysis had some limitations. By considering only meta-
analyses of candidate genetic associations, we could have left out some
recent individual candidate gene studies with sufficiently large sample
sizes to find noteworthy associations. By considering only the main
associations in candidate gene meta-analyses, we could have over-
looked important subgroup associations, such as some that seem to
be race- or ethnicity-specific associations.24 We also did not use
linkage disequilibrium between markers when defining indirect
overlap but relied on physical distance. It is known that linkage
disequilibrium and physical distance are correlated.25 Markers that are
located close to each other generally exhibit higher linkage
disequilibrium than those that are located further apart. Although a
distance of 1Mb may be considered large for identifying overlapping
associations, at least one GWAS has traced an association to a causal
variant located at roughly this distance away from the original
signal.26 It should also be noted that reducing this distance would
not change our conclusion that there is limited overlap between the
two study types. Finally, we attempted to avoid duplication of cases by
limiting our analysis to only the most recent meta-analysis and GWAS

for each association. Nevertheless, this possibility cannot be
completely excluded, especially because GWAS are often assembled
from previously ascertained groups of cases and controls.
One criticism of candidate gene studies is that most genetic

associations are not replicated in subsequent studies.2 Similar to
GWAS, findings from the candidate gene studies must demonstrate
replication to be considered valid. Meta-analysis of the published
literature is an important tool in assessing the cumulative evidence on
genetic associations.27 Consortia offer another approach to meta-
analysis that may help protect against the effects of selective reporting
and publication bias. In a study comparing meta-analyses of
individual case-control studies with consortium analyses in breast
cancer, the authors concluded that meta-analyses and consortia-wide
analyses were complementary.28 Consortium-based analyses may be
particularly useful for detecting variants modified by weak-to-
moderate gene–environment interactions.29 Meta-analysis has also
become increasingly popular in GWAS,30 where it can aid in
exploring the heterogeneity across data sets and identifying more
disease-related genes.31 In 2011, there were 173 publications on meta-
analyses and pooled analyses of candidate genes in cancer, and
39 GWAS, of which 6 included a meta-analysis.9

In light of improved genetic sequencing technologies, some
discussions on the future roles of GWAS and candidate gene studies
are appropriate. One of the limitations of current GWAS technology
is its limited ability to detect low-frequency variants. A study by Siu
et al32 found that GWAS coverage of rare variants was still inadequate
despite using chips designed to detect them. In addition, the quality
of imputed low-frequency and, especially, rare variants in these
studies is generally lower than that for common variants.33 Still,
arrays and reference panels have improved much since the advent of
GWAS, the most recent of which was not included in our analysis. It
has been estimated that previous GWAS have detected less than 20%
of all independent GWAS-detectable SNPs in chronic diseases, but
future GWAS can potentially detect more SNPs through improved
coverage and, especially, sample sizes.21

Studies that use recently developed arrays such as MetaboChip,34

ImmunoChip,35 and iCOGS array36 represent the latest reinvention of
the candidate gene study. These chips can contain hundreds of
thousands of SNPs that were chosen for replicating and fine-mapping
loci identified from GWAS, as well as to cover the most promising
candidate genes. A recent consortium-based meta-analysis that used
the iCOGS array identified 23 new prostate cancer susceptibility
loci.37 Next-generation sequencing is also increasingly helping to
improve the understanding of genetic association studies.32 Projects
such as ENCODE are likely to provide new insights into GWAS
associations in non-coding regions of the genome.38 Together, these
multiple approaches will help us identify additional genetic
associations and understand their functional implications.
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Figure 2 Odds ratios of variants common to candidate gene meta-analyses

or pooled analyses (MA) and GWAS excluding ALDH2 in esophageal cancer

(meta-analysis OR¼2.52, GWAS OR¼3.48).
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