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Accurate prediction of a minimal region around a
genetic association signal that contains the causal
variant

Zoltán Bochdanovits*,1, Javier Simón-Sánchez1, Marianne Jonker2, Witte J Hoogendijk3,4, Aad van der Vaart2

and Peter Heutink1

In recent years, genome-wide association studies have been very successful in identifying loci for complex traits. However,

typically these findings involve noncoding and/or intergenic SNPs without a clear functional effect that do not directly point to

a gene. Hence, the challenge is to identify the causal variant responsible for the association signal. Typically, the first step is

to identify all genetic variation in the locus region, usually by resequencing a large number of case chromosomes. Among all

variants, the causal one needs to be identified in further functional studies. Because the experimental follow up can be very

laborious, restricting the number of variants to be scrutinized can yield a great advantage. An objective method for choosing the

size of the region to be followed up would be highly valuable. Here, we propose a simple method to call the minimal region

around a significant association peak that is very likely to contain the causal variant. We model linkage disequilibrium (LD) in

cases from the observed single SNP association signals, and predict the location of the causal variant by quantifying how well

this relationship fits the data. Simulations showed that our approach identifies genomic regions of on average B50 kb with up

to 90% probability to contain the causal variant. We apply our method to two genome-wide association data sets and localize

both the functional variant REP1 in the a-synuclein gene that conveys susceptibility to Parkinson’s disease and the APOE gene

responsible for the association signal in the Alzheimer’s disease data set.
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INTRODUCTION

Identification of the causal variant detected by a genome-wide significant

association signal remains a challenge. Both the common and rare

variants can, in principle, underlie GWAS signals detected using

common polymorphic markers.1 To identify the variant responsible

for the observed association, typically an extended genomic region

around a replicated GWAS locus is resequenced in a large number of

case chromosomes to identify all genetic variants. These are then

prioritized either by analytical methods2 or based on biological

information for further follow up. Clearly, both the success and the

cost of this approach strongly depend on the size of the genomic region

included for resequencing. At a higher cost, a larger region can be

resequenced to increase the probability that the true causal variant is

included, but the total number of genetic variants that will be identified,

and need further evaluation, will also increase. Therefore, an approach to

accurately delineate a minimal region around a significant association

signal that can be expected to harbor the causal variant is of great

relevance, both to reduce cost and to make functional follow up

amenable. We propose to identify a region that is likely to contain the

causal variant by observing that around an association signal linkage

disequilibrium (LD) between neutral polymorphic markers is known to

be stronger in cases compared with controls. This property has been

proposed as a test for association on its own.3 We make use of this
observation by explicitly modeling the LD between neutral markers in
cases, as a function of the unknown causal variant. The most likely
position of the causal variant will be estimated by considering a region of
neighboring neutral SNPs, where LD in cases can be most accurately
explained by the presence of the unknown causal variant.

METHODS
First we give the correlation (LD) between a neutral marker and the causal

variant conditional on case status (see Supplementary Methods).

rMD jC ¼ rMC=rDC�ðpMpm=pM jC pm jCÞ0:5�ðpDjCpd jC=pDpdÞ0:5 ð1Þ

Here rMC is the Pearson correlation coefficient between the marker and

phenotype, that is, a measure of the observed association. pM, pm, pM|C and pm|C

are the allele frequencies of the marker in the general population and in the cases.

The terms involving subscript D are the unknown properties of the causal variant,

that is, the penetrance and the frequency in general population and in cases.

Further, we assume that the correlation between three adjacent loci (marker

1—causal variant—marker 2) in the order M1-D-M2 is multiplicative (see also4).

rM1M2 jC ¼ rM1D jC � rM2D jC ð2Þ

From 1 and 2 follows (in a simplified notation) that the LD between

markers 1 and 2 in cases is a linear function of the observed association with
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the phenotype at markers 1 and 2 and the allele frequencies.

rM1M2 jC ¼ rM1C � rM2C �PM1 � PM2 �P2
D= r

2
DC ð3Þ

This simple relationship between LD and single SNP associations assumes

that the order of the markers is M1-D-M2. This assumption implicitly also

states that there is only one causal variant, hence the unknown value of

PD
2/rDC

2 (ie, the slope of the regression) is the same for all marker pairs.

To call the most likely location of the causal variant, we quantify how

accurately the equation 3 fits the data for the different potential locations of

the causal variant following the procedure described below.

Description of the algorithm

1. Take the lowest single SNP P-value in the associated region.

2. Take R SNPs left and right the top SNP found in 1. If multiple SNPs have

equally low P-values, take R SNPs to the left of the leftmost and R SNPs

right of the rightmost SNP. Choose R such that the region is large enough

to be certain that the causal variant is present. A value of 100 was used, that

is, a region of 200 consecutive SNPs was considered.

3. Within the range defined in step 2, take sliding windows of S SNPs. Assume

that the causal variant is in the middle of the window and take all SNP pairs

within the window that are on either side of the designated position of the

causal variant (ie, in order M1-D-M2). On the basis of all such SNP pairs,

compute the Pearson correlation coefficient r between the product

rM1C� rM2C� PM1�PM2 (ie, the predicted LD between M1 and M2 in

cases barring a constant) and rM1M2|C (observed LD between M1 and M2 in

cases).

4. Slide the window of size S SNP by SNP through the range defined under

step 2 and calculate for every potential position of the causal variant, how

well the LD between neutral markers in cases can be explained by the single

SNP associations, quantified as the Pearson correlation coefficient r.

5. Define the region that is expected to hold the causal variant, by taking the

r value from step 4 observed in the sliding window around the most

strongly associated single SNP, and move out until the correlation

coefficient drops below 50% of this value. This is an arbitrary threshold

that was shown in the simulations to work satisfactorily.

Simulations and application to Parkinson’s disease (PD) and Alzheimer’s

disease (AD).

Case/control status was determined using an additive risk model and

individual haplotypes were generated by resampling with replacement from the

phase II CEU phased data. On a randomly chosen chromosome, SNPs of

specified allele frequencies were sampled to represent the causal variant and

correspondingly different relative risks (RR) were simulated (ie, higher RR for
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Figure 1 (a, b) Effect of (a) window size (MAF¼0.2) and (b) allele

frequency (window size¼25) on power to localize the causal variant. With

decreasing allele frequency, increasing RRs between 1.4 up to 2.5 were

simulated to maintain a close to 100% genome-wide power to detect

association.
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Figure 2 (a, b) Size distribution of the region called (y axis) to contain the

causal variant in (a) number of SNPs and (b) kb for different allele

frequencies (x axis).

Localization of causal variant
Z Bochdanovits et al

239

European Journal of Human Genetics



low-frequency variants; RRB1.4, 1.45, 1.5, 1.75 and 2.5 for MAFB0.4, 0.3,

0.2, 0.1, 0.05, respectively), such that the genome-wide significant power to

detect association given a fixed sample size of 2500 cases and 2500 controls

would be above 99%. This simulation strategy represents the scenario of

already having found a genome-wide significant association, which is subse-

quently being followed up. Before analysis the simulated causal variant was

removed from the data. Single SNP association tests were performed and 100

SNPs (see step 2, the choice of R) left and right from the most strongly

associated marker SNP (see step 1) were taken as the total range to follow up.

For all scenarios 800 replicates were simulated. For the analysis of the PD and

AD data, the raw genotypes on 300 SNPs around the most strongly associated

SNP were analyzed. For the AD data, one individual per family was randomly

included in the analysis. Only subjects consented for the General Research Use

were included. For a detailed description of the samples and genotyping see5

(PD data) and dbGaP (phs000168.v1.p1; AD data).

RESULTS AND DISCUSSION

We tested the accuracy of our procedure in simulated case–control
association studies based on the HapMap phase II CEU data. Eighty-
five percent power was observed for the localization of the causal
variant for a causal allele frequency of 0.2 when using a window size
of 25 SNPs (Figure 1a). Hence, in all further simulations and for the
analysis of the PD and AD data, a window size of 25 SNPs was used.
Power to localize the causal variant was found to depend on the allele
frequency, with more rare susceptibility alleles having a lower
probability to be localized correctly (Figure 1b). Note that this is
not the result of a lower power to detect the association, because the
simulations were conditioned on already having found a genome-
wide significant signal that is being followed up. Specifically, the less
frequent causal variants were assumed to have strong effects of up to a

Figure 3 Local LD pattern of 100 SNPs around the SNCA association signal (bottom panel), genes located in the region (middle panel) and scaled negative

log P-values (dots) vs scaled linear fit (r2) of equation 3 (curve) (top panel). The region called to contain the causal variant is under the curve in the top

panel and covers the known position of the REP1 promoter polymorphism (red arrow). A full color version of this figure is available at the European Journal

of Human Genetics journal online.
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RR of 2.5. Instead, we observed that the size of the genomic region
claimed to contain the causal variant also varied with the allele
frequency, with smaller regions called around the less frequent
variants. The median size of the predicted regions ranged between
47 SNPs/38 kb and 91 SNPs/64 kb and less than 5% was larger than
B200 kb (Figure 2). As our approach is based on the effect of a causal
variant on the local LD structure in cases, this result suggests that rare
variants, even when conveying a relatively strong effect, tend to affect
LD over a shorter physical distance compared with common variants.
Consequently, the lower power to correctly localize more rare causal
variants (Figure 1b) is probably a result of this smaller average size of
the called region. It should be noted here that the converse is also
expected to be true. Phenomena that might bias our method to call
too large regions will not reduce and may even increase the power to
correctly localize the causal variant. For example, population structure
and admixture is known to affect LD patterns, probably lowering the
accuracy of our model. In this case, we expect to call too large regions,
because the drop to 50% relative to a lower ‘best’ fit would occur over
larger physical distance. In conclusion, we suggest that given a
significant association signal, first the relatively small genomic
sequences called by our approach should be followed up in fine-
mapping/resequencing studies, while maintaining up to 90% con-
fidence that the correct region is being considered.
The functional variant is only rarely known in susceptibility genes

conveying risk for a common disease. As a proof of principle, we
show that our method is able to accurately localize the known causal
variants in the SNCA and APOE genes, conveying susceptibility to PD
and AD, respectively. SNCA is the most strong risk factor for the
common, nonfamilial type of PD,6 with changes to the plasma level of
the protein being associated with the affection status.7,8 The disease
associated change in SNCA expression has been shown to be caused
by a functional promoter polymorphism known as REP1.9,10 Here we
aim to detect the known location of the REP1 variant in a recent PD
GWAS data set.5 In this study, the most strongly associated SNP on
chromosome 4 was rs2736990 inside SNCA (P¼ 8.1� 10�6). The
pattern of the single SNP associations did not clearly point to a
particular position within the SNCA gene, instead the top four most
strongly associated SNPs were 360 kb apart and were located in several
adjacent LD blocks of a total length ofB600 kb (Figure 3). Based only
on the single SNP association signals and the underlying local LD
pattern, up to 600 kb would need further consideration. In contrast,
our method applied to these data correctly predicts that the causal
variant should be within a 40 SNP and 231-kb region, including a
noncoding genomic region upstream of SNCA (Figure 3, see red
arrow for position of the functional promoter polymorphism REP1).
Interestingly, visual inspection of the output correctly suggest that,
within the claimed region, the causal variant should be located
towards the transcription start site relative to the position of the most
strongly associated single SNP (Figure 3). The relatively large physical
size of the region compared with the number of SNPs reflects the
lower SNP density of the Illumina genotyping array compared with
the HapMap II data used in the simulations. Even so, a considerable
gain would have been achieved when initially following up the region
predicted by our method, rather than relying on single SNP
associations and visual inspection of the local LD pattern. Moreover,
imputation based on reference genotype data is common practice in
the analysis of GWAS studies, and application of our method to
imputed data easily circumvents the issue of marker density. In
addition, we applied our method to the NIA Late Onset AD GWAS
data, obtained from dbGaP (phs000168.v1.p1). The most well known
and strongest genetic risk factor for AD is the APOE-e4 allele on

chromosome 1911 and a genome-wide significant association signal
around the known position of APOE is present in the CIDR data. The
most strongly associated SNP was rs2075650 (P¼ 2.2� 10�43) in the
TOMM40 gene. Compared with SNCA, this signal is more sharply
delineated, but still the top seven SNPs cover several neighboring
genes and LD blocks (Figure 4). Relying on visual inspection of the
local LD pattern alone would lead to an B200-kb region for further
follow up. In contrast, our analysis predicts that the association is the
result of the presence of a causal variant within a nine SNP, 37-kb
region, entirely encompassing the APOE gene (Figure 4). Similar to
the SNCA region, a considerable gain would have been obtained by
applying our method to select the genomic region for further study.
Identifying the causal variant responsible for an association signal

remains a challenge and the first practical consideration is to select the
genomic region for follow up. Resequencing large genomic regions at
the associated locus is not only costly but also results in large number
of potential risk variants for functional analysis. A recently published
analytical approach by Zhu et al,12 addresses this problem by
considering pre-genotyped reference data sets. From this dense

Figure 4 Local LD pattern of 100 SNPs around the APOE association signal

(bottom panel), genes located in the region (middle panel) and scaled
negative log P-values (dots) vs scaled linear fit (r2) of equation 3 (curve)

(top panel). The region called to contain the causal variant is under the

curve in the top panel and covers the known position of APOE (red arrow).

A full color version of this figure is available at the European Journal of

Human Genetics journal online.
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genotype data, which is assumed to contain the causal variant itself,
individual SNPs are assigned a probability to be functionally linked to
the phenotype in a fixed 1Mb region around the most significant
GWAS signal. Although the assumption that the causal variant has
been observed in the reference data probably will become increasingly
plausible with continuing advances in uncovering human genetic
variation, the fixed large size of the region to be included in the
method described by Zhu et al seems very conservative in light of our
results. Here we propose a method to delineate a minimal region
where the causal variant is located and show both in simulations and
application to real data sets that our approach very accurately
identifies the location of causal variants responsible for association
signals, without including external information other than the
original GWAS data set. We suggest that considerable gain can be
achieved when designing functional follow up of genome-wide
association studies by applying our approach.
A perl script is available from the corresponding author for

performing the analysis.
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