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A panel of ancestry informative markers to estimate
and correct potential effects of population
stratification in Han Chinese

Pengfei Qin1,2,7, Zhiqiang Li3,7, Wenfei Jin1,2, Dongsheng Lu1,2, Haiyi Lou1,2, Jiawei Shen4, Li Jin*,2,5,
Yongyong Shi*,6 and Shuhua Xu*,1,2

Population stratification acts as a confounding factor in genetic association studies and may lead to false-positive or false-

negative results. Previous studies have analyzed the genetic substructures in Han Chinese population, the largest ethnic group

in the world comprising B20% of the global human population. In this study, we examined 5540 Han Chinese individuals with

about 1 million single-nucleotide polymorphisms (SNPs) and screened a panel of ancestry informative markers (AIMs) to

facilitate the discerning and controlling of population structure in future association studies on Han Chinese. Based on genome-

wide data, we first confirmed our previous observation of the north–south differentiation in Han Chinese population. Second, we

developed a panel of 150 validated SNP AIMs to determine the northern or southern origin of each Han Chinese individual. We

further evaluated the performance of our AIMs panel in association studies in simulation analysis. Our results showed that this

AIMs panel had sufficient power to discern and control population stratification in Han Chinese, which could significantly

reduce false-positive rates in both genome-wide association studies (GWAS) and candidate gene association studies (CGAS). We

suggest this AIMs panel be genotyped and used to control and correct population stratification in the study design or data

analysis of future association studies, especially in CGAS which is the most popular approach to validate previous reports on

genetic associations of diseases in post-GWAS era.
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INTRODUCTION

Population stratification due to genetic ancestry is likely to impact the
outcome of genotype–phenotype studies such as genome-wide
association studies (GWAS), which are designed to identify the risks
of common diseases in human populations in which the presence of
uncontrolled population structure may lead to false-positive or false-
negative results.1–4 Especially, as only a small number of SNPs are
genotyped in candidate gene association studies (CGAS), which do
not provide sufficient ancestry information, an independent set of
ancestry informative markers (AIMs) is necessary to detect and
control potential population stratification. To discern the ancestry
of Europeans or European Americans, multiple sets of AIMs have
been established that allow correction for population stratification in
association studies using Europeans.5–7

Recently, a great number of genetic association studies on various
diseases have been conducted on non-European populations.

Especially in China, hundreds of human gene-disease association
studies have been reported using Han Chinese population, the largest
ethnic group in the world comprising about 20% of the global human
population. However, population substructures are expected to exist
in Han Chinese because of its complex ancestral origin, long history
of interaction with many surrounding ethnic groups and recent
migrations. Indeed, our previous study8 and some other recent
genome-wide studies9,10 have revealed the complexity in Han
Chinese population structure, particularly the north–south stratifica-
tion. Therefore, a set of AIMs is required to discern the population
stratification of Han Chinese and reduce the spurious associations. In
this study, we collected 5540 Han Chinese samples in total, most of
which were genotyped using Affymetrix 6.0. Among these, 757
samples were used for structure analysis and screening for AIMs,
and 4783 samples were used to validate the performance of our AIMs
panel. Population structure analyses showed that the main
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substructure in Han Chinese is the differentiation between northern
and southern populations, supporting previous results. According to
this, we established a panel of 150 validated SNPs that were highly
informative in distinguishing northern Han (N-Han) from southern
Han (S-Han) Chinese. Our analysis showed that this set of AIMs had
sufficient power to correct population stratification, which could be
useful especially in CGAS where only a few loci or genes are
genotyped or sequenced.

MATERIALS AND METHODS

Population samples
In total, 5540 Han Chinese samples were collected in this study, which

included 97 Han Chinese from Beijing (CHB) and 100 Han Chinese from

southern China (CHS) from the 1000 Genomes Project11 (1KG), 90 Han

Chinese from metropolitan Denver, CO, USA (CHD) from the International

HapMap Project (HapMap) phase III,12 470 Han Chinese collected via Fudan

University and 4783 Han Chinese collected via Shanghai Jiao Tong University.

Taken together, these Han Chinese samples represented majority of the

geographical areas where Han Chinese reside (including 27 out of the 34

administrative areas in China). These 27 areas can be classified into northern

and southern regions, with the Yangtze River as a geographical boundary. The

sampling areas and sample size for each regional population are shown in

Supplementary Figure S1. For the following analysis, 757 samples were used for

selection of AIMs screening and 4783 samples were used for validation.

Genotyping, data assembly and quality control
SNP data in 1KG and HapMap projects were downloaded from 1KG (http://

www.1000genomes.org) and HapMap (http://www.hapmap.org) websites,

respectively. In total, about 1 312 343 out of 36 820 992 SNPs were common

among the tested samples in 1KG and HapMap. Considering the low coverage

of 1KG data that could result in high sequencing errors, we made additional

quality control by comparing the data of identical samples between the 1KG

and HapMap (Supplementary Text S1). SNPs with discordant strands or

genotypes were either corrected or removed. We treated CHB and CHS

samples from 1KG as N-Han and S-Han, respectively. 1KG samples whose

geographical origins were discordant with PCA clusters were presumed to be

outliers and were excluded from the analyses (Supplementary Text S2).

All the other Han Chinese samples were genotyped with Affymetrix

Genome-Wide Human SNP Array 6.0 (Affymetrix, Inc., Santa Clara, CA,

USA) that contains 934 969 SNPs. SNP calling from the raw data of all samples

was processed by Affymetrix Power Tools 1.10.2. (Affymetrix, Inc.) Quality

control was performed with ‘apt-geno-qc’ and genotype calling was performed

with ‘apt-probeset-genotype’ in birdseed algorithm.13 Only samples with call

rate 40.86 were included in the downstream analyses.

Some further filterations were made for the combined data. Especially,

individuals with 410% missing genotypes were removed, SNPs with missing

samples 410% or in Hardy–Weinberg disequilibrium (Po0.001) were also

removed. Finally, we obtained data for 5520 Han Chinese individuals sharing

738 937 autosomal SNPs.

Population structure analysis of Han Chinese
Population structure of Han Chinese was examined primarily by principle

component analysis (PCA) and FRAPPE.14 PCA was performed with

EIGENSOFT version 3.014,15 using 101 038 SNPs, which were selected from

738937 autosomal SNPs with inter-marker distance 425Kb to avoid high

linkage disequilibrium. FRAPPE analysis based on a ‘frequentist’ maximum

likelihood for clustering was also performed with the same number of SNPs

(101 038) as used in PCA with iterations set at 10 000. To estimate the genetic

distance between N-Han and S-Han populations, we calculated unbiased

estimates of FST according to Weir and Cockerham.16

Selection of AIMs for distinguishing N-Han from S-Han
AIMs are genetic variants that exhibit substantially different frequencies

between populations from different geographical regions. There are at least

two essential criteria to categorize a SNP as an AIM. These include (1) SNPs

among populations to be highly different and (2) the distance between two

contiguous AIMs to be large enough to avoid strong linkage disequilibrium.

Various statistics have been proposed to measure ancestry information of

genetic markers. A previous study has compared those statistics using both

simulations and emperical data,17 which showed that FST and In
18 gave

estimation of ancestry information with lower bias and mean square error

compared with the other ones. So these statistics are chosen to measure

ancestry informativeness of markers in this study. Both FST and In utilize

information of allele frequency based on genetic polymorphism data. FST
measures population differentiation or relatedness. In is a mutual information-

based statistics. From a likelihood perspective, In gives the expected logarithm

of the likelihood ratio that an allele is assigned to one of the populations

compared with a hypothetical ‘average’ population whose allele frequencies

equal the mean allele frequency across sub-populations.

Based on the frequency of 738 937 autosomal SNPs in N-Han and S-Han

populations, we first calculated unbiased FST for each locus. Then we screened

each autosome and dropped those SNPs with little difference between the two

clusters of Han Chinese (here the set threshold FST value waso0.01). For each

pair of contiguous SNPs with interval distance smaller than 500Kb, we

retained the one with higher FST value. Finally, we ranked the markers that

satisfied these criteria in descending order based on their FST values, so that

markers with high values could be used for downstream analyses according to

the desired cutoff. In addition, we calculated In value for each SNP between

N-Han and S-Han for reference. In was calculated using the following

equation:

InðQ; JÞ¼
XN

j¼ 1

ð� pj log pj þ
XK

i¼ 1

pij

K
log pijÞ

where K is the number of populations or groups, pij is the relative frequency for

allele j in population i. Average frequency of allele j is defined as pj. In measures

the amount of information about ancestry Q contained in genotype J.

Statistical power of AIMs for distinguishing N-Han from S-Han
We designed a stepwise procedure to estimate the performance of the AIMs

panel in the classification of N-Han and S-Han. We first ranked all AIMs in

descending order by their FST values. Then, we examined and evaluated

performance of different number of AIMs to differentiate N-Han from S-Han.

The number of AIMs was increased from 10–500, in increments of 10 and the

change of PCA clustering was monitored. Statistical power of these AIMs in

sample classification was evaluated using the maximum Matthews correlation

coefficient (MCC) based on the formula

MCC¼ TP�TN� FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TNþ FPð Þ TNþ FNð Þ

p

where TP is the number of true positives, TN the number of true negatives, FP

the number of false positives and FN the number of false negatives.

Validations were compiled into data sets of 757 samples and 4783 samples,

respectively.

Evaluation of the AIMs panel performance in simulated CGAS
The main application of this AIMs panel is that it can be genotyped in CGAS

to discern and control population stratification to reduce false positive.

Therefore, we simulated Han Chinese population data with different levels

of population stratification for CGAS to evaluate the performance of AIMs in

reducing false-positive rates.

We first simulated gene regions with allelic distribution of frequency and

divergence between N-Han and S-Han being similar to those from empirical

whole-genome data. To simulate a gene with 1000 loci, we sorted empirical

SNPs of the whole genome in ascending order based on their FST values and

split them into 1000 bins, and then sampled random loci from these bins with

one locus from each bin. For each simulated gene, we assigned 5000 cases and

5000 controls based on the allele frequency in empirical Han samples. We also

integrated 150 AIMs to provide ancestral origins and 20 risk alleles with odds

ratios at four different levels ranging from 1.2–2.0. Considering the different

degrees of population stratification that presumably existed in samples of
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association studies, controls were sampled only from N-Han while cases were a

mix of N-Han and S-Han samples at varying degrees. Overall, we provided 11

different scenarios with proportions of S-Han in cases ranging from 0 to 100%

with increments of 10%. One hundred genes were simulated and the mean and

SEM values were calculated from these 100 repeats. We used Armitage trend

w2-statistics19 to detect associations between loci and phenotypes. P-values

were calculated with one degree of freedom and were controlled by Bonferroni

single-step method.20

We implemented two commonly used methods to correct population

stratification in genetic association studies using the 150 AIMs that classified

Han samples well. One is genomic control21 and the other is a PCA-based

method implemented in EIGENSTRAT.22 For genomic control, we evaluated

w2 inflation factor l in the association study. The value of l was computed as

the median w2 statistic divided by 0.456, which is the predicted median w2 if
there was no inflation. We first estimated the value of l for each scenario of

stratification using only genotypes of those 150 AIMs. Then w2 statistics were
adjusted by the corresponding l. For PCA-based method, we first inferred

principal components for each individual using only the 150 AIMs, and then

calculated w2 statistic of the markers excluding AIMs using adjusted genotypes

and phenotypes. The quantile–quantile (Q–Q) plots of P-values, with and

without correction for population stratification, were plotted for comparison.

False positives, with and without correction for population stratification, were

calculated for all scenarios. In addition, power to detect risk alleles with various

odds ratios was also estimated.

RESULTS

Analysis of Han Chinese population structure using genome-wide
data
One data set including 757 Han samples was used for population
structure analysis. After controlling data quality (see Methods) and
removing outliers based on PCA analysis, we obtained 504 Han
Chinese samples with 738 937 SNPs in whole genomes. Previous
studies have revealed one-dimensional ‘north–south’ population
structure and no discernible east–west pattern were observed.8–10

The north–south population structure is consistent with the historical
migration and expansion pattern of the Han Chinese population.23

Our Han Chinese samples were widely spread over PC1 (Figure 1a),
suggesting a cryptic stratification in Han Chinese population. In

addition, the north–south pattern became more pronounced when
the CHB and CHS from 1KG, which had passed strict quality control
(Supplementary Text S1, Supplementary Table S1) and outliers
filtering (Supplementary Text S2, Supplementary Figure S2), were
marked (Figure 1a). The north–south pattern of our samples was
mainly explained by PC1 while other PCs were much less informative,
and no discernible structure in the other combinations of PCs other
than the top two PCs (Supplementary Figure S3). Considering the
intermarriages of Han Chinese from different parts of China and the
fact that parts of our samples were from metropolitan cities, Anhui
and Jiangsu which are located in mid-China, it was not easy to
distinguish samples among N-Han, S-Han and the highly mixed
central Han.8

We used several strategies including geographical locations, PCA
clustering and ingredient proportion in FRAPPE analysis to distin-
guish N-Han from S-Han. We first classified all the remaining samples
into two groups based on the natural separation of northern and
southern Mainland China by the Yangtze River. Then we removed
those genetically mixed individuals that were too ambiguous to be
clustered into either N-Han or S-Han based on PCA clustering results
and ingredient proportion analysis in FRAPPE. At last, we obtained
467 samples including 250 N-Han and 217 S-Han.
Population structure of the 467 samples is described in PCA plot

(Figure 1b) and FRAPPE (Figure 1c). The genetic difference between
N-Han and S-Han was estimated by Weir and Cockerham’s FST.
Average FST value from the whole genome loci is 0.00126
(SD¼ 0.0027), which is lower than the European population groups
(0.0033).24 The estimated FST value from this study is very close to a
previously reported result (0.00116).8 In addition, the average FST
between CHB and CHS from 1KG is 0.00145 (SD¼ 0.00634), which
is similar to our Affy6.0 data set. To identify genomic regions with
highly differentiated allele frequencies between N-Han and S-Han, we
examined the FST distributions for all SNPs over the entire genome.
Some genes associated with the most different SNPs were labeled on
the Manhattan plot (Supplementary Figure S4). The most highly
differentiated region is an intron on FADS2 gene located on
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Figure 1 Population structure of Han Chinese. All PCA plots and FRAPPE analyses were based on 101038 SNPs randomly chosen from genome-wide data.

(a) PCA plot of all Han Chinese samples (1410 Han samples plot after quality control and outlier filtering). The 56 CHB and 83 CHS from 1000 Genome

Project representing N-Han and S-Han, respectively, are highlighted. (b) PCA plot of 467 Han samples containing 250 N-Han and 217 S-Han. (c) Structure

of 467 Han samples analyzed by FRAPPE when K¼2.
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chromosome 11 (at Chr11:61353788), which is associated with the
fatty acid composition in phospholipids and arachidonic acid levels,
involved in inflammation and immunity processes and related
disease. This region could have been a target of natural selection
considering environmental differentiation such as climate and agri-
culture between northern and southern China, but further study is
needed to confirm this result, as well as our hypothetical conclusion.

AIMs selection and validation
FST and In are commonly used approaches to measure the ancestral
information of SNPs. We found a high correlation between In and FST
(R2¼ 0.996) values (Supplementary Figure S5). To screen for AIMs,
we used 467 Han samples including 250 from N-Han and 217 from
S-Han with 738 937 autosomal SNPs. We first screened each auto-
some and removed the SNPs with low FST values (r0.01). Second,
for each pair of contiguous SNPs separated by a distance smaller than
500Kb, we retained the one with a higher FST value. Following these
criteria, we identified more than 3000 markers in our data sets and
then ranked them based on their FST values in descending order. The
top 1000 markers (FST4¼ 0.0149) (Supplementary Table S2) were
used for validations.
Validations of our AIMs panel to distinguish N-Han from S-Han

were conducted in two data sets. One included 250 N-Han and 217
S-Han, which passed strict quality control and filtering procedure as
described in Methods. The other was a much larger data set, including
2779 N-Han and 2004 S-Han, which were filtered based on their
geographical origins. We followed a stepwise procedure as described
in Methods to select a small panel of markers sufficient to distinguish

the two clusters of Han Chinese. Maximum MCC was used to
describe clustering performance. We started validation with a minimal
of 10 AIMs and added 10 more for each analysis. MCC value
increased with the increasing number of AIMs (Figure 2a). Using the
top 150 AIMs, we obtained a perfect classification in PCA plots
(Figure 2b) with MCC value equal to 1, which suggested that at least
150 AIMs were needed for the classification of N-Han and S-Han.
Besides, ingredient proportion analysis of FRAPPE using these 150
AIMs also clearly distinguished N-Han from S-Han with K¼ 2
(Supplementary Figure S6). When we repeated the stepwise procedure
for the second data set with 4783 samples, a similar pattern in MCC
plot was observed (Figure 2c). However, a perfect classification
(MCC¼ 1) was not reached, which was most likely to be due to
the high population shift of Chinese and the inclusion of metropo-
litan samples in this data set. Nevertheless, MCC value was 0.97 with
150 AIMs, which clearly separated the two clusters (Figure 2d).

Correcting population stratification in genetic association studies
In both GWAS and CGAS, population stratification could cause false
associations between markers with different frequencies across sub-
populations, if there were ancestral differences between cases and
controls. Therefore, small panels of AIMs are required to accurately
predict the ancestry of individuals especially in CGAS and fine
mapping or sequencing studies. Here, we simulated a series of CGAS
to determine the occurrence of the number of false-positive associa-
tions if the effects of Han Chinese population substructures were not
corrected in a case–control association study. In addition, we wanted
to determine whether our AIMs panel could efficiently correct the
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false-positive associations due to population stratification. We simu-
lated 5000 cases and 5000 controls in each study. To create different
degrees of stratification, control samples were randomly selected only
from N-Han while case samples were a mix of N-Han and S-Han with
proportions of S-Han ranging from 0 to 100%. Loci of each gene
region were simulated according to description in Methods.
Results of the simulated CGAS showed that spurious associations

are likely to be generated if the impact of population stratification was
not corrected especially in studies with strong stratification (Figures 3
and 4a). Values of inflation factor l increased exponentially with
increasing degrees of stratification (Supplementary Figure S7). In
addition, false-positive rates would be much higher due to population
stratification (Supplementary Table S3). The various odds ratios for
risk alleles did not impact the false-positive rates because of the large
sample size we used here such as 5000 cases and 5000 controls
(Figure 4a). Procedures for correcting the impact of stratification were
necessary for CGAS in Han Chinese population.
We conducted two commonly used methods, the PCA-based

method EIGENSTRAT and the genomic control method, to correct

the impact of population stratification in association studies using the
AIMs panel selected in this study. In our simulations, PCA-based
method reasonably corrected the P-values from w2-statistics with
population stratification (Figure 3 and Supplementary Figure S8). Our
analysis also showed that most of the false-positive rates could be
corrected regardless of the odds ratios and stratifications (Figure 4a).
However, when stratification degree was extreme with 100% cases from
S-Han, this method could neither adjust P-values (Supplementary
Figure S8) nor correct false positives (Figure 4a). Moreover, we also
determined the power for detecting risk alleles in CGAS with stratifica-
tion in samples. Without applying corrections for stratification, power to
detect risk alleles depends on the level of odds ratio that is not influenced
by stratification (Figure 4b). Risk alleles with higher odds ratio levels are
much easier to detect. The power to detect risk alleles after applying
corrections for stratification was satisfactory, especially in studies with
high levels of odds ratio (41.4) or low degrees of stratification (o50%),
although part of the power was suppressed (Figure 4b).
Genomic control, however, was not powerful and suitable for

correcting population stratification in CGAS using AIMs. We first

Figure 3 Q-Q plots of the P-values from simulated association studies with or without correction for population stratification using top 150 AIMs. Columns

correspond to degrees of stratification of 5000 case and 5000 control samples. Rows correspond to plots of uncorrected and AIMs-corrected (PCA-based

method) P-values.
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estimated the inflation factor l for each degree of stratification using
the 150 AIMs genotypes. The value of l increased exponentially with
increasing degrees of stratification (Supplementary Figure S7). In our
simulation, the estimated value of l without stratification was 1.07
while it increased to 641.7 in cases with samples only from S-Han.
Two reasons could have resulted in such a large l value. One was the
large sample size (10 000) used for w2 statistics and the other was the
inclusion of the top 150 most differentiated markers in N-Han and
S-Han for estimation, which could have resulted in an over estimation
of w2-statistics compared with markers from whole genomes. As a
result, P-values for both normal and risk alleles in w2-statistics could
be grossly over-adjusted (Supplementary Figure S8). Power to detect
risk alleles could be totally lost due to the over-adjusted P-values
(Supplementary Table S4). We thus suggest that the inflation factor l
should be estimated based on whole-genome markers rather than just
AIMs, and it would be not suitable to correct stratification using
AIMs in genomic control procedure.

DISCUSSION

We previously developed an AIMs panel that included 5000 SNPs to
discern the N-Han and S-Han Chinese population.25 However, that
panel of AIMs was selected from a data set of small sample size
consisting only 162 N-Han and 74 S-Han, which was likely to result
in a bias for allele frequency estimation, and the performance of
previous AIMs panel was not good enough to cluster N-Han and
S-Han samples used in this study (Supplementary Figure S9). In this
study, taking advantage of the large sample size (757 for screening
AIMs and 4783 for validation) and genome-wide high-density SNP
data (931 000 markers), we were able to provide a set of high quality
AIMs with improved performance in distinguishing and clustering
N-Han and S-Han. We demonstrated that the AIMs panel developed
here is currently the best for clustering N-Han and S-Han popula-
tions, and stratification adjustment in case–control association
studies.
The panel of 150 informative markers to predict Han Chinese

ancestry could be used in small-scale studies for genotyping and in
addition, permitting correction of population stratification in Han
Chinese at a reasonably low cost for a genome-wide scan. We propose
two applications5,26 for this AIMs panel: (1) to evaluate study design
before starting GWAS, for example, by genotyping cases and controls
on this panel, we can remove unsuitable cases and controls; (2) to be
used for genotyping in targeted association studies, such as CGAS or
replication studies following GWAS, in which variants are targeted in
a large number of samples that have not been densely genotyped. Our
AIMs panel can be used to efficiently correct for stratification using
methods such as EIGENSTRAT not genomic control procedure, to
ensure that the observed associations are not spurious without relying
on self-reported ancestry.
A previous study has shown that genomic control loses nearly all

power and EIGENSTRAT suffers a partial power loss in GWAS if
causal SNPs confound with highly differentiated SNPs between
substructures,22 However, this problem could be avoided in CGAS
using AIMs. For example, as we provided in this study a list of top
1000 highly informative AIMs, a good way of choosing AIMs from
the list is to avoide using those AIMs within or nearby candidate gene
regions for controlling population stratification.
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