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Analysis of H19 methylation in control and abnormal
human embryos, sperm and oocytes

Samira Ibala-Romdhane!’3, Mohamed Al-Khtib!, Rita Khoueiryl, Thierry Blachere!, Jean-Frangois Guérin? and

Annick Lefevre*!

ART is suspected to generate increased imprinting errors in the lineage. Following an intra cytoplasmic sperm injection (ICSI)
procedure, a certain number of embryos fail to develop normally and imprinting disorders may be associated to the
developmental failure. To evaluate this hypothesis, we analysed the methylation profile of HI9DMR, a paternally imprinting
control region, in high-graded blastocysts, in embryos showing developmental anomalies, in the matching sperm and in oocytes
of the concerned couples when they were available. Significant hypomethylation of the paternal allele was observed in half of
the embryos, independently of the stage at which they were arrested (morula, compacted morula, pre blastocyst or BC-graded
blastocysts). Conversely, some embryos showed significant methylation on the maternal allele, whereas few others showed both
hypomethylation of the paternal allele and abnormal methylation of the maternal allele. The matching sperm at the origin of the
embryos exhibited normal methylated H19 patterns. Thus, hypomethylation of the paternal allele in the embryos does not seem
inherited from the sperm but likely reflects instability of the imprint during the demethylating process, which occurred in the
early embryo. Analysis of a few oocytes suggests that the defect in erasure of the paternal imprint in the maternal germ line may
be responsible for the residual methylation of the maternal allele in some embryos. None of these imprinting alterations could
be related to a particular stage of developmental arrest; compared with high-grade blastocysts, embryos with developmental
failure are more likely to have abnormal imprinting at H19 (P<0.05).
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INTRODUCTION
Normal mammalian development requires that both paternal and
maternal genome should be expressed properly. Therefore, epigenetic
marks acquired in the germ line drive the monoallelic expression,
according to the parent of origin, of so called ‘imprinted genes’ in the
embryo.! Many imprinted genes are involved in the regulation of fetal
and/or placental growth.? Imprinted genes are regulated through DNA
sequences known as imprinting control regions (ICRs) that are differen-
tially methylated; DNA methylation at CpG sequences results typically in
gene repression. Methylation of ICRs is erased early in life and reset in the
germ line, according to sex.? Another wave of genome-wide demethyla-
tion followed later by de novo methylation occurs during pre-implanta-
tion development from which imprinted genes are protected.>

Several reports have supported the idea that artificial reproductive
techniques (ARTs) would favour the acquisition of imprinting
errors.*™8 Epigenetic abnormalities in ART could be related to parental
infertility, corresponding to imprinting errors in the gametes, trans-
mitted at fertilisation, or to in vitro manipulation of gametes and
embryos.” Therefore, looking for imprinting defects in embryos that
failed to develop normally and in the gametes would provide
information on whether unsuitable imprint in the gametes could be
transmitted and associated with developmental arrest. Thus, we have
analysed the methylation profile of HI9DMR (one of the three
imprinting control region that acquire methylation in the paternal
germ line) in control blastocysts, initially suitable for transfer, in

pre-implantation embryos arrested at different stages of their devel-
opment: morula, pre-blastocyst and blastocyst showing poor
morphology (graded BC), in the parental sperm and in the oocytes
of the couples when they were available.

H19DMR regulates the expression of two oppositely imprinted
genes:'® H19 encodes an untranslated RNA with tumour suppressor
activity!! and it is expressed from the maternal allele; insulin growth
factor 2 (IGF2) encodes a growth factor essential for development!?
and it is expressed from the paternal allele. HI9DMR harbours several
CTCF- (CCCTC-binding factor) binding sites.!> CTCF binds to the
maternal unmethylated DMR and prevents IGF2 from access to the
common enhancers. Conversely, methylation on the paternal DMR
prevents the binding of CTCE permitting IGF2 expression. Hyper-
methylation of H19 maternal allele is linked to Beckwith—-Wiedemann
syndrome (BWS) in some patients,* whereas hypomethylation of the
paternal allele is associated with Silver—Russell syndrome,'* both
syndromes showing opposed growth disorders.

MATERIALS AND METHODS

Source of human embryos, oocytes and sperm

A total of 33 embryos from 11 different couples, derived from fertilised ICSI
oocytes, were donated for research by patients of Laboratoire de Biologie de la
Reproduction at Femme Mere Enfant Hospital (Bron, France), after informed
consent. Women included in this study were stimulated before ICSI procedure
with standard long-term stimulation protocol using FSH and HCG. The control
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Table 1 ICSI indication per couple

No of couple & Infertility factor Q Infertility factor

4 Oligo-astheno-teratozoospermy
5 Asthenozoospermy PCOs
26 Oligo-astheno-teratozoospermy
30 Asthenozoospermy PCOs
31 Asthenozoospermy PCOs+hydrosalpinx
33 Astheno-teratozoospermy Fallopian-tube obstruction
45 Mar test +, normozoospermy
46 Mar test +, astheno-zoospermy
50 Normozoospermy Fallopian-tube obstruction
52 Mar test +, astheno-teratozoospermy  PCOs
56 Normozoospermy Fallopian-tube obstruction

Abbreviations: PCOs, polycystic ovary syndrome; Mar test +, presence of sperm antibody.

group was constituted of five high-graded ICSI blastocysts; the abnormal embryos
were distributed as follows: five pre-blastocysts, eight abnormal BC blastocysts (the
inner cell mass contained several cells, loosely grouped and the trophectoderm
contained very few large cells forming a loose epithelium), 13 compacted morula
and 2 morula. Protocols were approved by the French legal institution for research
on human embryos, Agence de la Biomédecine’ ICSI indications were hetero-
geneous as shown in Table 1, and all embryos were originated from super-ovulated
oocytes. Zona pellucida and attached cumulus cells were removed by digestion
with proteinase K (9 units/ml). Denuded embryos were carefully examined under
an inverted microscope with Hoffman Modulation Contrast optics (Leica DM
IRB, Leica, Rueil-Malmaison, France) and only cumulus-free embryos were
selected for analysis and stored individually at —80°C.

After oocyte collection, the cumulus-oocyte complexes were partially
denuded of cumulus cells by repeated pipetting in a hyaluronidase solution
(150 units, type VII; Sigma, Saint Quentin Fallavier, France) and the oocytes
were evaluated for maturity; the immature partially denuded oocytes, either at
the germinal vesicle (GV) or at metaphase I (MI) stage, at the time of retrieval,
were used for experiments. A total of 15 oocytes from two patients were
included in this study: 1GV, 12 MI and 2 metaphase II (MII) that were retrieved
immature and spontaneously matured in culture medium. Zona pellucida and
any remaining somatic cells were removed by digestion with proteinase K
(9 units/ml). After careful examination under an inverted microscope with
Hoffman Modulation Contrast optics (Leica DM IRB), only cumulus-free
oocytes were selected for analysis.

The ejaculated sperm samples were collected from the male partner the day
when the ICSI procedure was programmed, and the methylation analysis was
carried out on each individual sperm. Control sperm corresponds to sperm of
normally fertile men. Routine semen analysis was carried out (volume, sperm
concentration, motility and morphology), and motile sperm cells were purified
on density gradient to eliminate somatic cell contamination. The sperm was
washed repeatedly and placed in phosphate-buffered saline, and DNA was
extracted by a standard method.

DNA methylation analysis

The methylation profile of H19 DMR was determined by bisulphite mutagenesis
and sequencing as previously described.!> After treatment with bisulphite and
purification, the DNA was immediately used for nested PCR. Five independent
nested PCRs were performed per embryo and per sperm sample. We analysed 18
CpG sites in a 234 bp fragment of HI9DMR (6097-6330 bp, AF087017) harbour-
ing a single nucleotide polymorphism (SNP) A/C (A/T following bisulphite
treatment) at nucleotide 6236. This 234bp fragment contains the sixth CTCEF-
binding site. Primers specific for bisulfite-converted DNA were as follow: external
forward: 5-AATAATGAGGTGTTTTAGTTTTATGGATG-3"; external reverse: 5'-
ACTTAAATCCCAAACCATAACACTAAAAC-3'; internal forward: 5'-TTGTATAG
TATATGGGTATTTTTGGAGGTT-3; internal reverse: 5-ACTCCTATAAATATCC
TATTCCCAAATAACCCC-3". The PCR products were subcloned into pGEM-T
plasmid (Promega, Charbonniere Les Bains, France). Three to six clones were
sequenced for each PCR product (Biofidal, Lyon, France).
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Statistics

Statistical analysis were carried out using non-parametric ¢-test or ANOVA, and
a difference was considered significant when P<0.05. To compute the
significance of altered methylation in arrested embryos, we used Fisher’s exact
test and a P value <0.05 was considered significant.

RESULTS

A total of 15 to 30 clones were sequenced per embryo issued from five
independent PCR. Because of the limited starting material and as
bisulfite treatment being deleterious for DNA, identical sequences
from separated PCRs are certain to represent distinct chromosomes,
but identical sequences obtained from the same PCR product are
counted only once, as previously discussed;'> 20 to 30 clones could be
scored for control embryos and 12 to 15 clones for embryos that failed
to develop (see Supplementary Figures 1 bis and 2 bis).

Control blastocysts and control sperm

Control blastocysts were cryopreserved for 2-9 years before they were
donated for research. The SNP localised within the amplified sequence
allow parental allele discrimination in four out of the five analysed
blastocysts as shown in Figure 1. Thus, even though the corresponding
sperms were not available, all methylated sequences carrying the same
SNP are most likely from paternal origin, whereas all unmethylated
sequences carrying the other SNP are most likely from maternal
origin. Therefore, control blastocysts appeared differentially methy-
lated, as expected, with an average of 85.42% =* 2.76 methylated CpGs
(615 CpGs being methylated out of 720 analysed) for the presumed
paternal allele and 1.08% % 0.95 methylation (8 methylated CpGs out
of 738 analysed) for the presumed maternal allele. A pool of five
sperms from fertile men exhibited 93.65% methylation and showed
both 6236-C and 6236-A alleles, whereas the sperm from a single
fertile man was homozygous 6236-C and exhibited 96.49% methyla-
tion. Thus, the highly methylated state of the paternal allele of H19
was conserved in blastocysts, even though with 8.7% significant
leakage. According to the SNP depicted, the strands were distributed
into two distinct profiles, 6236-C or 6236-A.

Embryos with developmental failure and matching sperms
Sperms that matched embryos showing developmental failure belonged
to various patients, presenting normal or altered sperm parameters,
either severe sperm morphology abnormalities (teratozoospermy),
mobility defect (asthenozoospermy) or associated sperm morphology,
mobility and concentration defects (oligo-astheno-teratozoospermy),
as shown in Table 1. All exhibited normal high methylation at H19 as
shown in Figures 1 and 2, with an average of 95.16% methylated
CpGs * 2.61, which is comparable to that observed in sperms from
fertile men. Six were homozygous (6236-C or 6236-A) and five were
heterozygous (6236-C and 6236-A) for the SNP described.

In 21 embryos out of 28, the observed SNP permitted parental allele
discrimination, as shown in Figures 1 and 2. Embryos included in this
study were blocked at various stages, from morula to compacted
morula and pre-blastocyst stage, while five embryos reached the
blastocyst stage but with poor morphology (graded BC). Embryos
from the same couple could be arrested at different stages of devel-
opment, and there was no correlation between the stage of blockage
and any infertility factor (Tables 1 and 2). We observed significant
relaxation of H19 paternal imprint in 8 embryos out of 21 (4.1; 4.3;
5.4; 26.2; 30.2; 30.3; 31.1; and 33.3) where parental allele discrimina-
tion was possible, the altered strands being partially to totally
unmethylated (Figures 1 and 2). Moreover, eight of these embryos
(4.1; 30.1; 30.3; 30.4; 33.3; 52.1; 52.2; and 52.5) exhibited significant,
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Figure 1 Bisulphite sequencing analysis of HI9DMR in control blastocysts and control sperm (a: sperm from a fertile man; b: pool of sperm from five fertile men),
and in arrested embryos and their matching sperm and oocytes (when available, couples 5 and 33). Each line represents a single allele. Black squares indicate a
methylated CpG and an open square denotes an unmethylated CpG. Blue lines correspond to alleles exhibiting a nucleotide 6236-A, whereas black lines
correspond to alleles carrying a nucleotide 6236-C. In HI9DMR, sequence from 6097 to 6330bp, the SNP A/C, bp 6236, is indicated in blue, whereas the sixth
CTCF-binding site is indicated in red. P, preblastocyst; CM, compact morula; M, morula; BC, atypic BC blastocyst; ¥ SNP A, bp 6236; ¥ SNP C, bp 6236.

even minor, methylation of the maternal allele, with two embryos, 33.3
and 52.2, showing up to 15.87 and 20.14% methylation, respectively.
Altered metylation patterns on the paternal and the maternal alleles
were not correlated, nor were they associated with a particular stage of

developmental arrest (Table 2).

The methylation status of the oocytes could be analysed for two
couples (Figure 1). In couple 5 the father was homozygous C, whereas
the mother was heterozygous A or C. One GV oocyte, carrying the
SNP 6236-C, exhibited hypermethylated alleles, whereas a pool of two
mature MII oocytes, carrying the SNP 6236-A, showed normal
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Figure 2 Bisulphite sequencing analysis of HI9DMR in arrested embryos and their matching sperm. Each line represents a single allele. Black squares
indicate a methylated CpG and an open square denotes an unmethylated CpG. Blue lines correspond to alleles exhibiting a nucleotide 6236-A, whereas

black lines correspond to alleles carrying a nucleotide 6236-C.

hypomethylation. As hypothesised in Figure 3, the hypermethylated
6236-C alleles would be inherited from the grand father and would
correspond to alleles that escaped erasure of paternal marks, early
during oogenesis. Thus, embryo 5.4 inherited a paternal 6236-C allele,
the corresponding sperm being homozygous 6236-C and a maternal
6236-A allele showing normal hypomethylation that is likely to be
inherited from the grand mother. The paternally inherited 6236-C
allele exhibited significant hypomethylation (P<0.001). In couple 33,
both the father and the mother were heterozygous 6236-C and 6236-A.
In all, 12 immature MI oocytes could be collected and analysed. They

showed two different allelic profiles: 6236-A, normally hypomethy-
lated and presumably inherited from the mother or 6236-C, highly
methylated (35 methylated CpGs out of 36 analysed) and presumably
paternally inherited, corresponding to alleles that escaped erasure of
paternal marks early during oogenesis, as previously discussed. Thus,
embryo 33.3 is likely to originate from a paternal spermatozoon
carrying a 6236-A methylated allele, as the two methylated 6236-A
strands carried an umethylated 6194-C nucleotide, as can be seen in all
6236-A sperm alleles, and an oocyte carrying a 6236-C methylated
allele for H19, likely inherited from the grand father as speculated in
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(alleles inherited from the parents)

Couple 5
. grand father
1*generation X sperm: Cm
v
d . mother father
2 generation oocytes: C /. X sperm: Cm
3dgcncration embryos 5.4: /3Cm

In embryo 5.4, the maternal allele was inherited from the grand-mother

Couple 33

grand father
1¥generation )I( sperm: Cm
v
d . mother father
2 generation oocytes: Cm/

)I( sperm: Cm/.

Edgcncration
(alleles inherited from the parents)

embryo 33.3: QCm/

In embryo 33.3, the maternal allele was inherited from the grand-father.

m methylated HI19 alleles
o unmethylated H19 alleles

C: snp C base 6236

Figure 3 Proposed origin of the methylation alterations observed in embryos

5.4 and 33.3.

Table 2 Methylation of HI9DMR in embryos, in which parental allele
discrimination could be carried out and in sperms

No of Embryo 3 Allele % Q Allele % Sperm %
embryo  type methylation methylation methylation
4.1 CcM 68.75 (99/144)* 8.34 (3/36)* 97.68 (211/216)
4.3 CcM 15.07 (19/145)* 0 (0/36) 97.68 (211/216)
4.5 CM 79.17 (57172) 1.11 (1/90) 97.68 (211/216)
5.4 P 51.85 (28/54)* 0 (0/36) 96.66 (261/270)
26.2 BC 77.78 (126/162)* 0 (0/18) 100 (36/36)
26.4 BC 94.11 (170/180) 5.56 (1/17) 100 (36/36)
30.1 BC 78.70 (85/108) 2.56 (9/117)* 94.07 (254/270)
30.2 P 75.93 (123/162)* 0.93 (1/108) 94.07 (254/270)
30.3 CcM 75.39 (95/126)* 7.40 (4/50)* 94.07 (254/270)
30.4 CcM 90.48 (114/126) 5.55 (5/90)* 94.07 (254/270)
31.1 CM 69.44 (75/108)* 0 (0/90) 93.98 (203/216)
33.3 P 54.17 (39/72)* 15.87 (20/126)*  93.70 (253/270)
46 CcM 78.70 (85/108) 0(0/72) 95.55 (258/270)
50.1 M 81.11 (73/90)) 1.11 (1/90) 90.87 (229/252)
52.1 CM 84.44 (76/90) 6.35 (8/126)* 98.01 (247/252)
52.2 CcM 88.89 (48/54) 20.14 (29/144)*  98.01 (247/252)
52.5 P 80.56 (58/72) 3.96 (5/126)* 98.01 (247/252)
52.6 BC 81.75 (103/126) 1.39 (2/144) 98.01 (247/252)
56.2 BC 93.33 (84/90) 0 (0/90) 94.44 (255/270)
56.3 P 88.89 (80/90) 2.08 (3/144) 94.44 (255/270)
56.4 CcM 93.21 (151/162) 2.22 (2/90) 94.44 (255/270)
2 Control ~ 89.50 (145/162) 0 (0/198)

5 Control ~ 83.33 (90/108) 0 (0/162)

6 Control ~ 84.92 (214/252) 0 (0/198)

8 Control ~ 85.18 (184/216) 1.66 (3/177)

Control sperm
a
b

96.49 (275/285)
93.65 (236/252)

Abbreviations: M, morula; CM, compacted morula; BC, abnormal BC blastocysts; P, pre-blastocysts;
control, high-graded blastocysts, suitable for transfer. a, sperm from a fertile man; b, pool of sperms

from five fertile men.
*P<0.005.
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Figure 2. The presumed paternal allele is significantly hypomethylated
(39 methylated CpGs out of 72 analysed P<0.001), whereas the
presumed maternal allele is significantly methylated (20 methylated
CpGs out of 126 analysed, P<0.001).

Compared with high-grade blastocysts, embryos with develop-
mental failure are more likely to have abnormal imprinting at H19
(13/21 versus 0/4, P<0.05).

DISCUSSION

Imprinting is both heritable and reversible; in the early embryo, epige-
netic information is erased from the genome on a large scale to permit
the return of developmental pluripotency to embryonic cells, and this
limits the amount of epigenetic information that can be inherited across
generation.'® Imprinted genes that carry such heritable epigenetic infor-
mation must be protected against this powerful remodelling of the
epigenome proceeding during pre-implantation development. Consider-
ing the sensor gene HI9, the paternal allele normally escapes the active
demethylation of the male genome that occurs in the pronucleus soon
after fertilisation and the maternal allele is protected against de novo
methylation of the zygotic DNA from morula to blastocyst stage.?

Very little is known concerning the differential methylation of
imprinted genes in pre-implantation human embryos. In the present
work, using an SNP within HI9DMR, we can determine the differ-
ential methylation status of 4 out of 5 control blastocysts and of 21 out
of 28 abnormal embryos, the paternally inherited alleles being
generally methylated, whereas the maternally inherited alleles were
unmethylated. Our results from control embryos confirmed that, as
observed in the mouse,!” H19 is differentially methylated in human
blastocysts conceived via ART. In contrast, 38% of the embryos that
failed to develop exhibited significant hypomethylation of the paternal
allele, independently of the type of developmental failure: blockage at
the compacted morula or pre-blastocyst stage, or poor morphology at
the blastocyst stage. As normal methylation of the paternal allele was
observed in the other abnormal embryos, imprinting errors at H19/
IGF2 are likely not to be primarily involved in the developmental
failure of human ICSI embryos. Culture conditions were identical for
control and developmentally failing embryos and thus could not be
the cause of abnormal methylation.

Embryos showing hypomethylated paternal alleles may originate
from sperm, in which resetting of the imprint has been only partially
accomplished. Recently, Kobayashi et al'® showed that hypomethyla-
tion of HI9DMR in aborted ART concepti originated from the
parental sperm. A case of Silver—Russel syndrome due to paternal
H19DMR hypomethylation in an ICSI patient has been likewise
documented.!® In fact, we found no alteration of the normal methy-
lated pattern of HI9DMR in all the examined parental sperm, whatever
their biological characteristics were, from normozoospermic to oligo-
astheno-teratospermic, demonstrating that the alterations in DNA
methylation seen in some arrested embryos did not pre-exist in the
father’s germ line. It is interesting to note that, in sperm carrying the
SNP A, the cytosine corresponding to the fourth CpG of the sixth
CTCF-binding site (nucleotide 6194) commonly appeared as a
thymidine (in 84 out of 87 analysed alleles), presumably corresponding
to an unmethylated CpG in the original strand. Renda et al?® demon-
strated that methylation of the first and the second CpGs of the CTCF-
binding sequence was sufficient to inhibit the binding of CTCEF, the
methylation of the first CpG being more powerful. On the other hand,
in most arrested embryos, hypomethylation of the paternal allele did
not particularly target the key CpGs, suggesting normal expression of
IFG2. However, the number of samples analysed remained limited, and
sperm-transmitted aberrant hypomethylation of the paternal allele of



H19 in arrested embryos cannot be totally excluded, as H19 hypo-
methylation in sperm has been associated with paternal infertility in a
number of articles.”'~23 Thus, considering that the resetting of methy-
lation during gametogenesis has normally proceeded, it could be
hypothesised that the hypomethylation observed is due to an alteration
of the methylation maintenance in the early embryo. Maintenance of
DNA methylation at imprinting DMRs in pre-implantation embryos
has recently been assigned to the somatic and the oocyte form of
DNMTI1, in cooperation. Maternal deletion of both isoforms,
DNMT1s and DNMT1o, caused the loss of methylation at multiple
imprinted loci in mouse blastocysts.>* Other trans-acting factors
critical for the maintenance of methylation at imprinted genes have
been identified, such as MBD3, which is required to maintain the
methylation of the paternal H19 allele and its silencing.?®

Some embryos exhibited significant methylation of the maternal allele.
Results from couples 5 and 33 whose oocytes were available allow
speculating. In both couples the paternal allele shows some relaxation
of the imprint, probably due to alterations in DNA methylation
maintenance as previously discussed. In both couples some immature
GV and MI oocytes were highly methylated. We previously evidenced
such altered pattern of methylation in human oocytes, particularly in
oocytes that were immature on the day of retrieval, but also in mature
oocytes.!> Although the maternally originating H19 strands were not
methylated in embryo 5.4, they were significantly methylated in embryo
33.3. Both the father and the mother were heterozygous in couple 33.
The allele likely inherited from the father carried the A SNP; it was
initially methylated as the sperm appeared normally methylated, and was
then partially demethylated in the course of cell divisions. The allele likely
inherited from the mother carried the C SNP and showed abnormal
methylation. Methylated H19 strands in the oocytes may correspond to
the acquisition of abnormal methylation on the maternal allele during
oogenesis or lack of erasure of the paternal imprint early in the
gonocytes. Because the oocytes from the mother, which could be
analysed showed either unmethylated A-SNP-H19 strands or methylated
C-SNP-H19 strands, methylation apposition during oogenesis is unlikely,
otherwise, it would also have randomly mark A-SNP-H19 strands. Lack
of erasure of the copies originating from the grand father in the
gonocytes of the mother is a more credible scenario. Thus, all methylated
copies seen in the oocytes are likely originated from paternal copies, the
imprint of which has not been erased, as postulated in Figure 3. Such a
gain of maternal methylation and a loss of paternal methylation at
H19DMR have been recently documented in mouse blastocysts and were
attributed to superovulation induced imprinting disorders.!” The
authors did not give information on the imprint in the oocytes
themselves. On the other hand, we found almost no residual methylation
on the maternal allele of control human blastocysts while Market-Velker
et al'’ showed an average methylation of the maternal allele of H19 of up
to 15% in mouse blastocysts obtained from spontaneously ovulated
female, demonstrating one more time the discrepancies existing between
species at the level of epigenome regulation.

In this work, we show that a significant number of arrested pre-
implantation embryos have altered H19 imprints on both paternal
and maternal alleles, whereas blastocysts suitable for transfer were
normally imprinted. Our results suggested both a failure of erasure of
the paternally inherited imprint in the maternal germ line and a lack
of methylation maintenance on the paternal allele. The question
remains whether there is a link between imprinted errors and parental
infertility. No evident link appeared between imprint anomalies and a
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particular stage of development in failing embryos. However, the data
presented show a significant association between developmental
failure of embryos and abnormal imprinting of H19.
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