Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Clinical utility gene card for: fragile X mental retardation syndrome, fragile X-associated tremor/ataxia syndrome and fragile X-associated primary ovarian insufficiency


1.1 Name of the disease (synonyms)

The term fragile X-associated disorders (FXD) refers to a family of conditions all caused by changes in fragile X mental retardation 1 gene (FMR1).

Fragile X mental retardation syndrome, fragile X syndrome (FXS), Martin–Bell syndrome

Males affected with FXS present with mild-to-severe mental retardation. Dysmorphic features often include large prominent ears, an elongated face, a prominent forehead, macrocephaly and a high arched palate, which is occasionally accompanied by a cleft palate, These dysmorphic features are generally more striking after early childhood. Macroorchidism, while not specific for FXS, is the most consistent finding, present in 90% of boys by the age of 14. Behavioral disturbances including hyperactivity, hyperarousal, anxiety and aggressive outbursts are common. FXS represents the most common monogenic disorder responsible for autism and autism spectrum disorders. Approximately 30% of boys with FXS meet the criteria for autism.1, 2, 3 This subgroup of boys presents with the same behavioral and social profile observed in children with idiopathic autism.3 Strong gaze avoidance, even when the individual is seeking interaction, represents one of the hallmarks of FXS. In addition, tactile defensiveness and tantrum behaviour when subjected to excessive auditory or visual stimuli suggest a sensory processing disorder.

FXS is an X-linked disorder and females usually present with a milder phenotype. Females affected with FXS generally have IQs in the borderline to low normal range (mean IQ: 82). Most females present with learning disabilities, half meeting the criteria for intellectual and developmental disabilities4 and approximately a quarter being mentally retarded (IQ<70).5

Affected females have fewer behavioral problems than males, with shyness and social anxiety being the most commonly seen. Residual FMRP (protein produced by FMR1) levels in females are related to the X activation ratio (AR). Women may produce close to normal levels of FMRP when the normal X chromosome is preferentially activated (high AR), or much lower levels when the normal X chromosome is preferentially inactivated.

Fragile X-associated tremor/ataxia syndrome (FXTAS)

FXTAS is a late onset neurodegenerative disorder found among some male and female carriers of the premutation (see section 1.5 for a definition of the premutation). FXTAS is defined by clinical, neuroradiological, molecular and neuropathological criteria. Affected individuals primarily present with cerebellar ataxia and intention tremor. Less distinctive symptoms are cognitive decline or impairment, peripheral neuropathy, parkinsonism and urinary and bowel incontinence. MRI findings include increased signals in the middle cerebellar peduncle and the deep white matter of the cerebellum.

FXTAS is not fully penetrant in older male carriers of the premutation, with many individuals remaining asymptomatic.6, 7, 8

Fragile X-associated primary ovarian insufficiency (FXPOI)

FXPOI is characterized by a large spectrum of ovarian dysfunction phenotypes: an elevated follicle-stimulating hormone level, erratic menstrual function and an onset of menopause before 40 years of age.

1.2 OMIM# of the disease

300624 (FXS), 300623 (FXTAS).

1.3 Name of the analyzed genes or DNA/chromosome segments

FMR1, located in Xq27.3.

1.4 OMIM# of the gene(s): 309550

FMR1 has 17 exons spanning 39 kb of genomic DNA, and encodes the FMRP.

Mutations in FMR1 can lead to a deficiency of FMRP, responsible for FXS, or to overexpression and toxicity of FMR1 mRNA, responsible for FXTAS and FXPOI.

1.5 Mutational spectrum

FMR1 has a polymorphic (CGG) repeat in its 5′ untranslated region,9, 10, 11 which is the major target of mutation of the gene.

Mutations affecting the (CGG) repeat are ‘dynamic’ and change the stability of the repeat in both somatic and germ cells on their mitotic proliferation, thereby favouring expansion of the repeat over generations (retractions are rare). The instability of the (CGG) repeat is responsible for the unusual and complex pattern of inheritance of the disease.

Four forms of the polymorphic CGG repeat have been defined. Two forms have been associated with phenotypic changes (full mutation and premutation) and three of the four forms are unstable on transmission (full mutation, premutation and intermediate or gray zone alleles) and should be considered during genetic counseling.

Full mutation (M)

Expansion of the (CGG) trinucleotide repeat, exceeding 200 triplets, with subsequent aberrant methylation of virtually all CG dinucleotides in the repeat and the adjacent regions including the gene promoter,12 transcriptional silencing resulting in the absence, or highly diminished levels of FMR1 mRNA and protein. (The methylation is aberrant in that it is triggered by abnormal structures of the expanded CGG repeat sequence and is independent of the methylation of FMR1 that normally occurs with X inactivation in somatic tissues of any normal female embryo.)

Premutation (P)

Expansion of the (CGG) repeat to 55–200 triplets without aberrant methylation.

Premutation alleles are more or less unstable mitotically, dependent on their lengths. Females carrying a premutation have a risk of expansion to a full mutation on transmission to their offspring. This risk is strongly dependent on the size of the maternal premutation, and is >95% for maternal alleles with >100 CGG triplets.13, 14, 15 This instability is thought to depend on the length of uninterrupted CGG tracts, with ‘pure’ CGG repeats being less stable than repeats with interspersed AGG sequences.16 The smallest allele known to undergo transition to a full mutation in a single generation contained 56 consecutive CGG repeats uninterrupted by AGGs.17

Intermediate alleles (IA) and Normal alleles (N)

The smallest described normal allele has 6 repeats, with 29–30 repeats being the most common allele sizes.

Intermediate alleles are alleles at the boundaries of normal alleles (likely to be stable18/no genetic counselling) and premutation alleles (likely to show instability and with the possibility of transition to a full mutation in one generation upon maternal transmission/genetic counselling). Genetic counselling is recommended in cases of allele sizes in the intermediate range since these alleles may show instability, with the possibility of larger alleles in family relatives. It is known that alleles in the 45–54 CGG repeat range can show some instability on transmission18 with no reported risk of transition to the full mutation (this instability is thought to depend on the number of consecutive CGG repeats uninterrupted by AGGs16). An allele with 52 CGG has been reported to expand to the full mutation in two generations through a 56 CGG repeat in a family.17 In a second family, a grandmother of two boys presenting with a full mutation was the carrier of a 45 CGG repeat allele, whereas her two daughters were carrier of 80 and 90 CGG repeats, respectively.19 Another allele containing 44 CGG is thought to have expanded to a full mutation in two generations thought a 61 CGG repeat allele in a third family, although in this case, the possibility of mosaicism associated with this 44 CGG allele was not excluded.20 Risks associated with a 45–54 CGG allele are difficult to determine when it is found in the general population. Guidelines published by different associations have established different lower bound limits of the IA range: 45 CGG repeats American College of Medical Genetics (ACMG21) or 50 CGG repeats (Clinical Molecular Genetics Society (CMGS): and EMQN:

Mosaicism of full and premutation alleles (MoMP) is not uncommon, occurring in 12–41% of all patients with FXS. In rare cases, the mutation is even associated with a low percentage of normal cells (MoMN or MoMPN genotype). Some individuals with full mutation show methylation mosaicism (methylation mosaic: MoMe) in their lymphocytes.

Fragile X syndrome

For 99% of reported cases, FXS is a result of the full mutation preventing transcription and translation of the gene into FMRP.22

Other rare loss of function (LOF) mutations, such as point mutations23, 24, 25 or deletions, have also been reported to cause FXS. Various deletions involving all or a segment of FMR1 have also been found associated with abnormal expansion (reviewed in Coffee et al26).


The premutation does not cause mental retardation (ie, FXS), but is associated with a gain of function toxicity at the mRNA level, increasing an individual's risk for FXTAS and FXPOI.


A preliminary study by Jacquemont et al27 demonstrated an age-related penetrance of tremor and ataxia of 17, 38, 47 and 75% for male carriers of the premutation, aged 50–59, 60–69, 70–79 and 80 years or older, respectively. Allele distributions in patients with FXTAS show that 80% of the expansions are >70 CGG repeats. It is unknown whether there is a strict lower limit for the size of the CGG repeat required for carriers to develop FXTAS; however, the motor and cognitive symptoms are correlated to the size of the allele. The penetrance of FXTAS may be very high in carriers of very large alleles (>90 CGG).28


In all, 21% of female carriers of the premutation present with premature ovarian failure (ie, menopause before the age of 40), compared with only 1% in the general population.29 Data from several studies show that 11 out of 81 (13.6%) of pedigrees with familial premature ovarian failure and 7 out of 301 (2.3%) of women with sporadic premature ovarian failure had the premutation.30, 31, 32 The probability of having FXPOI increases with increasing repeat size in the low premutation repeat range, but thereafter the risk of FXPOI becomes stable or even decreases for women with repeat sizes over 100.33, 34, 35

1.6 Analytical methods

Many analytical methods are used for genetic testing of fragile X-associated disorders (FXS, FXTAS and FXPOI), each with their own strengths and weaknesses. The performance and interpretation of genetic tests are discussed in several guidelines: EMQN (, CMGS ( or ACMG (

Diagnostic laboratory methods include Southern blotting (DNA specifically cleaved with restriction endonucleases) and/or direct amplification of the CGG repeat with flanking primers.

Southern blotting allows for the identification of all expansions, as well as the determination of the methylation status.36 Accurate sizing of the CGG repeats requires the use of PCR, and is a crucial step in order to establish risk for individuals, notably carrier females at risk of having affected children, as well as to distinguish intermediate alleles from premutations.

The basic PCR methods are adapted from Fu et al10 and are widely used as a pre-screening test. Standard PCR amplification may not reliably amplify large premutation alleles, particularly in carrier females. In males in whom no normal allele is visible, in females in whom only one normal allele is distinguishable (homoallelism), or when an allele is in the intermediate or premutation range, Southern blot analysis (or another test allowing the detection of the whole range of expansions) should be undertaken. One downside of this strategy is the rare occurrence of mosaic individuals who carry a full mutation and an unexpected amplifiable normal size fragment because of cellular mosaicism (MoMN) or abnormal karyotype (XXX, XXY or XXYY).

xPCR tests specifically optimized to detect large expansions and/or methylation status have been described.37 Such tests use a methylation-sensitive restriction enzyme or bisulphite treatment of DNA before amplification.38, 39, 40, 41 The interpretation of a methyl-sensitive PCR technique can prove difficult in a female with a full mutation due to the presence of the methylated inactive normal X chromosome. Furthermore, the methyl-sensitive PCR techniques are not suitable for early prenatal diagnosis, as the tests do not directly detect fully expanded alleles but are based on DNA methylation, which is not completed in chorionic villi samples of full mutation fetuses. Some PCR tests based on triplet primed–PCR strategy have been described, which should distinguish between normal homozygous females and females with a normal allele and an expansion.42, 43, 44, 45

In males, rare mutations such as deletions encompassing the CGG repeat and the promoter can be detected using Southern blot or PCR.

Detection of other deletions as well as a search for point mutations in FMR1 coding sequence are not usually offered by routine laboratories.

Alternative immunocytochemical tests have been described, but are not widely used in the diagnostic setting.46

1.7 Analytical validation

Results may be misinterpreted because of the specific pitfalls of each method and the technical limitation of each protocol. The limitations of each test should be clearly stated in the interpretation section of the molecular diagnosis report for all cases, regardless of positive or negative screening. Two independent methods, for example, PCR plus Southern, should be used for the testing of individuals in fragile X families.

1.8 Estimated frequency of the disease (incidence at birth (‘birth prevalence’) or population prevalence)

Fragile X syndrome

The prevalence of FXS in males is estimated 1/4000. The prevalence of the full mutation in females should be 1/4000 as well, but not all full mutation females present with cognitive and/or behavioral symptoms. The data are based on population screening from cohorts of children with special education needs. This generally underestimates the prevalence, as many individuals with IQs in the borderline range are not tested. Other approaches have estimated the prevalence of the full mutation in the general population around 1/2500.47


There are no population-based studies on the prevalence of FXTAS. This has been estimated based on (i) the prevalence of the premutation in the general population, (ii) the penetrance of FXTAS among premutation carriers, (iii) the relationship between the premutation allele size and the penetrance of neurological signs in FXTAS. Given an estimated prevalence of the premutation of 1/800 in males and an estimated lifetime penetrance of FXTAS of 40%, the prevalence of FXTAS would be 1/2000 males. Clinical manifestation of FXTAS are essentially associated to alleles >60 CGGs, which represent 50% of all premutation alleles in the general population. Taken this into consideration, the prevalence of FXTAS drops to 1/4000.48 This estimate is subject to the uncertainty of both, the overall prevalence of premutation alleles in the general population and the penetrance of FXTAS for smaller premutation sizes.

1.9 If applicable, prevalence in the ethnic group of investigated persons

Some populations may have a higher prevalence of FXS because of the founder effect, with the founding group having more unstable alleles in the intermediate or premutation range.49, 50, 51 Epidemiological studies are necessary to better estimate the prevalence of the premutation and full mutation in different ethnic groups.

1.10 Diagnostic setting

Guidelines for genetic counseling and testing protocols for FXS and fragile X-associated disorders have been established by various multidisciplinary groups and are regularly updated.52, 53, 54, 55 Information on the disorders are available online at


A. (Differential) diagnostics

Fragile X syndrome

Considering that

  • FXS is the most common form of inherited mental retardation

  • Clinical features are neither constant nor specific,

  • Behavioral changes and dysmorphic features are not always present,

  • Dysmorphic features can become more apparent with age,

  • Phenotypic characteristics can be mild or absent in females, ie, they can often only have mild or moderate learning disabilities,

  • Testing for the most common mutations are easily performed in routine molecular diagnostic laboratories,

The search for an abnormal expansion in FMR1 should be part of the routine screening in males and females who present with developmental delay, mental retardation or borderline intellectual abilities, autism spectrum disorder characteristics, and/or behavioral or dysmorphics features typical of FXS.

When applying the above guidelines at the national level in France56 and Greece,57 and other European countries probably as well, approximately 2–3% of individuals tested are positive for an abnormal CGG repeat expansion.


  • Clinicians should test for FMR1 premutation if any of the following criteria apply.8

  • Onset of cerebellar ataxia of unknown cause in an individual over 50 years.

  • Onset of intention tremor of unknown cause in an individual over 50 years with concurrent parkinsonism or cognitive decline.

  • Previous diagnosis of multiple system atrophy or a cerebellar subtype MCP sign on T2/FLAIR MRI images in a patient with signs consistent with FXTAS.

  • Individual with signs consistent with FXTAS if he/she could be a carrier based on his/her position in the pedigree in case of

  • Positive family history of a FMR1 premutation or mutation,

  • Family history of mental retardation,

  • Family or patient history of primary ovarian insufficiency,

For unexplained cerebellar gait ataxia with an onset >50 years of age, the positive diagnostic yield for the premutation is 1–4%.48 For patients with probable multiple system atrophy (cerebellar subtype), the positive yield is 2–3%.48, 58


FXPOI should be on the differential diagnostic list of a female with primary ovarian insufficiency,35 regardless of her family history. A premutation has been identified in up to 13% of women with familial premature ovarian failure and in approximately 2–3% of women with sporadic premature ovarian failure. FMR1 premutation screening should be recommended to all women with primary ovarian insufficiency, an elevated follicle-stimulating hormone level before the age of 40 years without an otherwise known cause, particularly if increased FSH is accompanied by infertility.

Families with one or more individuals who were tested positive for either FXPOI or FXTAS should benefit from appropriate genetic counseling regarding the risk of transmission of FXS.

B. Predictive testing


Current guidelines state that genetic testing of children is recommended only if a clear benefit for the child can be demonstrated. The test is not generally recommended for asymptomatic children but the topic is controversial and some clinics perform testing in children with no or little symptoms. McConkie-Rosell et al59 studied how parental approaches to communicating information about genetic disorders to children may determine how the children manage stress as well as their adjustment and adaptation to that information.


There are no current guidelines on the presymptomatic testing.

In families, genetic counseling for the FXS should remain the priority when considering whether an asymptomatic individual should be tested for the premutation (eg, testing the grandparents of an affected child to identify which side of the family is at risk for further involvement).

Only a subgroup of carriers develops symptoms that significantly impact activities of daily living (one-third of individuals affected with FXTAS, or ≈10% of carriers in the 60–69 age group60).


The possibility of early menopause leading to reduced fertility should be included in the genetic counseling of women identified with a premutation.

C. Risk assessment in relatives

Families with a diagnosis of a fragile X-associated disorder (FXS, FXTAS or FXPOI) should be referred for genetic counseling. Counseling and diagnostic testing may be offered to relatives at risk of being carriers, and can help determine the risk for females of having children with FXS. The premutation is also a risk factor for the development of FXPOI in females and FXTAS in males and females.

D. Prenatal

Prenatal diagnostics should be offered to women with a fragile X allele containing 55 or more CGG repeats.61 Options include freshly dissected chorionic villi sampling or amniotic fluid cells (a cell culture allowing a larger amount of DNA being required for Southern blot analysis). A prenatal measurement of the CGG number can be accurately and reliably obtained with either sample, with the size of the expansion being the most important piece of information. Prenatal diagnostics performed on chorionic villi allow for the definite determination of the fetal status, and can be performed earlier in the pregnancy than amniocentesis. In rare cases in which a large premutation cannot be distinguished from a small full mutation based on the repeat size estimation, an amniocentesis is necessary to determine the methylation status of the fetus. The prenatal testing can not be perfomed on chorionic villi DNA by using a methylation-sensitive method, because methylation of the full mutation allele is not always present during the 8–10th week of pregnancy.62 In case a premutation is detected on chorionic villi DNA, a second test may be carried out on DNA from cultured amniotic fluid cells, in order to exclude a risk of expansion size discrepancy between the two tissues (with a full mutation being present in amniotic cells). Nevertheless, such a discrepancy has never been reported.

Prenatal diagnosis should include a CGG repeat PCR study of the parents and the fetus. Indirect familial genotyping using microsatellite markers should also be applied when possible. For both, chorionic villi sampling and amniocentesis, a reliable prenatal diagnostic requires careful exclusion of maternal DNA contamination.

A female fetus with a full mutation has a 50% risk of being affected with cognitive deficits (IQ<70 in 25% of the cases), which is generally milder than that observed in males with a full mutation. No other tests are currently available to predict the future clinical status of a female fetus with a full mutation.

Prenatal testing is not indicated for a male with the premutation, as all of his daughters are expected to carry a premutation.

A male with the full mutation is also expected to transmit alleles of premutation size to his daughters but it is documented on a restricted number of observation: rare reported cases of daughters of affected males show that they carry a premutation and a study showing that the sperm of four males with the full mutation had premutation size repeats.63 There has been one report of a male with a mosaicism transmitting a full mutation to his daughter.64 There is, however, some controversy on the level of methylation of the large expansion found in the lymphocytes of his daughter.65 Prenatal testing should be proposed for a female fetus of a full mutation father as a cautionary measure.


The analytical validity of a genetic test is determined by its ability to accurately and reliably determine the genotype of interest. The clinical validity is a measurement of the accuracy (such as clinical sensitivity and specificity as well as predictive value) of a test to identify and/or predict a clinical condition.66

2.1 Analytical sensitivity

The analytical sensitivity (ie, the proportion of positive tests when the genotype is truely present) depends on the size of the expansion, the gender of the patient and the analytical method used. The analytical sensitivity should be indicated in the laboratory report.

Genotype search for the full mutation

Southern blot (or another technique capable of detecting the full mutation): Almost a 99% sensitivity in detecting the full mutation, missing only the rare individuals with heterogeneity of expansions among different tissues.

Genotype search for the premutation

Southern blot (or another technique capable of detecting a premutation): Almost a 98% sensitivity in detecting a premutation, missing only the rare individuals with heterogeneity of mutations among different tissues. A 99% sensitivity is achieved when an additional method capable of distinguishing the premutation from intermediate alleles is used (ie, the combining of Southern blot and PCR across the CGG repeat).


A comparison study on the DNA in blood cells and skin fibroblasts has shown a striking difference in the relative amounts of premutation and full mutation alleles in the tissues of two out of four mosaic fragile X males (MoMP).67 Some extremely rare cases of tissue mosaicism have been described68, 69 that could lead to a false-negative test independent of the technical approach for blood analysis when the full mutation is not present in this tissue.

Even though PCR methodology is widely used in the screening of the mentally retarded probands, this approach is subject to specific pitfalls:

  • Some individuals are mosaics for an abnormal expansion and an apparently normal allele (MoMN or MoMPN): In such cases, a CGG PCR test will be negative even though a mutation is present because a normal signal will be obtained70, 71 (V Biancalana personal data: 1 MoMN/100 M and MoMP).

  • A 49 bp tandem duplication adjacent to the triplet repeat in FMR1 has been described in the Finish population72 that affects annealing of the primers commonly used in the molecular analysis of the CGG repeat by PCR. One concern is that a female with a full mutation and a variant allele may be genotyped as normal as a result of the two PCR products generated by the variant.

Genotype search for deletion with loss of the promoter

A large deletion will be detected in males by absence of a specific signal on PCR and Southern blotting, and in females as well when the normal X chromosome is not randomly inactivated. But these mutations are only found in about 1% of FXS patients.

Genotype search for point mutation

Sequencing (males) 100%. But there is hardly any clinical phenotype and/or family history with a fair chance to detect another mutation in a patient when a full mutation and a deletion of the promoter region were excluded.

2.2 Analytical specificity

(proportion of negative tests when the genotype is not present)

Depends on the analytical method.

Genotype search for full mutation

Southern blot: It is 99% specific in males and females. Some point mutations affecting a restriction site of the enzymes used have been reported. These polymorphisms could mimic a full mutation in FMR1.73, 74

Genotype search for premutation

Southern blot (or another technique capable of detecting the premutation): It is 99% specific in detecting the premutation. False-positive findings can occur in an individual who has an intermediate allele in the upper high CGG repeat range. The specificity is almost 100% when combining Southern blot and CGG repeat PCR techniques.


A PCR test showing no amplificate in a male and thereby suggesting the presence of an expansion should always be confirmed with another method, that is, by Southern blotting. PCR artefacts or deletions encompassing the primer(s) sites could mimic an expansion and may lead to a false-positive result.75

Genotype search for deletion with loss of promoter

Southern blot: Almost 99% specific. Rare polymorphisms of the restriction site of an enzyme have been reported. These polymorphisms may mimic a deletion in FMR1, leading to a false-positive result.76, 77, 78, 79

2.3 Clinical sensitivity

(proportion of positive tests if the disease is present)

Fragile X syndrome

Full mutation: 99% (Southern)

Deletion with loss of promoter: 1% (Southern)

Other LOF mutations: <1% (all methods)

The yield of fragile testing by southern blot in males with mental retardation is ≈2%.56


Premutation: 99% (Southern and PCR)

The yield of the premutation testing in individuals with late onset cerebellar ataxia is ≈1–3%.48


Premutation: 99% (Southern and PCR)

The yield for premutation testing is ≈2% and 10% in sporadic and familial premature ovarian failure.35

2.4 Clinical specificity

(proportion of negative tests if the disease is not present)

Full mutation: 100%

Deletion with loss of promoter: 100%

Premutation: 100%.

2.5 Positive clinical predictive value

(lifetime risk of developing the disease if the test is positive)

Fragile X syndrome

Full mutation (>200 CGGs), with aberrant promoter methylation: It is 100% for males. Females have two X chromosomes and the clinical expression is likely to be correlated to the normal process of X inactivation, in particular in the brain. Approximately 50% of full mutation carrier females present cognitive deficits, 25% present mental retardation with an IQ<70.

Full mutation with incomplete aberrant promoter methylation or without aberrant promoter methylation: Owing to the lack of precision in measuring the levels of mosaic, a predictive value can not be estimated.


As males have a single X chromosome, almost all males with a full mutation fully methylated will develop FXS. The extremely rare exceptions likely involve particular forms of the mutation with somatic mosaicism.

The mitotic instability of the repeat of the full mutation in somatic cells in early embryogenesis before the methylation of expanded CGG repeat leading to their stabilization80, 81, 82 causes somatics mosaicism in most individuals.83 As the expansion size of a methylated full mutation does not have an influence on the severity of the clinical phenotype,36, 84 somatic mosaicism is of no consequence for the clinical expression when the expansions are in the full mutation range. There are, however, two special subclasses of mosaicism based on size and methylation status.

‘Methylation mosaics’ (MoMe) are rare individuals who have a partially unmethylated full mutation expansion in leucocytes. The proportion of cells with an unmethylated full mutation may vary from 5 to 100%. In some cases, the mental impairment may be less severe than that seen in individuals with a full methylated mutation. The absence of mental retardation has been reported in cases with little or no methylation (‘high-functioning’ fragile X males) but mild intellectual deficits may remain present likely because of the reduced FMRP levels related to a decrease in translation of FMRP.36, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94

‘Size mosaic’ (MoMP) are individuals with a mixture of premutation and full mutation alleles, sometimes associated with a deleted allele. They have a risk of mental retardation similar to that of full mutation carriers,84 although they may occasionally be more ‘high functioning’.95, 96 Blood cells and skin differences in fragile X mosaics has been reported.67 The mosaicisms in the brain and skin, being both ectodermal in origin, may be similar to one another, but different from blood which has a mesodermal origin. Thus, the ratio of full mutation to premutation in skin fibroblast may be a better indicator of the risk of mental impairment than the ratio found in blood cells.


Full mutation with aberrant promoter methylation: 0%

Full mutation without aberrant promoter methylation: unknown.

Premutation: Published penetrance figures have not taken premutation sizes into account:

Male carriers: It is 17, 38, 47 and 75% for men aged 50–59, 60–69, 70–79, and over 80 years, respectively.

Premutation <70 CGG repeats: The penetrance of FXTAS is much lower.58

There are no published studies on penetrance figures for premutation female.


Full mutation with aberrant promoter methylation: 0%

Premutation: It is 21–23%

2.6 Negative clinical predictive value

(probability of not developing the disease if the test is negative)

Almost 100%.


Clinical utility refers to the ability of genetics test results, either positive or negative, to provide information that is of value in the clinical setting.66

3.1 (Differential) diagnosis: the tested person is clinically affected

(To be answered if in 1.10 ‘A’ was marked.)

3.1.1 Can a diagnosis be made other than with a genetic test?

No (continue with 3.1.4).

3.1.2 Describe the burden of alternative diagnostic methods on the patient

3.1.3 How is the cost effectiveness of alternative diagnostic methods to be judged?

3.1.4 Will disease management be influenced by the result of a genetic test?


Fragile X syndrome

Therapy, management: Currently, there is no pharmaceutical treatment for the cognitive deficits in FXS, and although various drugs have been used to treat the associated behavioral problems, there is a paucity of controlled studies that formally measure the effectiveness of such therapies.97 Atypical antipsychotics, stimulants and SSRIs are prescribed depending on the problematic target symptoms.

More and more is known, however, on the physiopathology of FXS98 and this body of research strongly suggests that mGluR5 (metabotropic glutamate receptor type 5) antagonists may be an effective treatment for FXS.97 Lithium, which reduces excess activity in the translational activation pathway regulated by group I mGluRs (mGluR5 and mGluR1) was assessed in 15 young males (6–23 years of age) with FXS by Berry-Kravis et al.99 They observed significant improvement in behavioral functioning, adaptive behavior, and verbal memory. An open-label, single-dose trial of fenobam, a mGluR5 antagonist, was recently conducted100 and improvement in prepulse inhibition was observed. A double-blinded phase 2 trial was completed in Europe evaluating the effects of AFQ056, a new specific mGluR5 antagonist in 30 adult males with FXS aged 18 to 35 years. In this trial, Jacquemont et al101 reported significant improvement in behavioral functioning in patients with a fully methylated FMR1 promoter. Large scale phase 3 trials are being conducted in 2011 by the same groups.

There are almost no empirical studies on the effectiveness of behavioral treatments among patients with FXS.102 The behavioral phenotype in FXS has, however, been extensively studied and a detailed review and recommendations for behavioral interventions in individuals with FXS were provided by Hills-Epstein and Sobesky.103 Patients with FXS seem to benefit from non-pharmacological interventions, such as speech, occupational and sensory integration therapies. Other guidelines for the health supervision of FXS children are available and include advice for both physical and behavioral components of the syndrome.52


No controlled trials have been carried out in individuals with FXTAS, but a significant amount of empirical information has been gathered through clinical practice regarding various treatment modalities.104, 105

3.2 Predictive setting: the tested person is clinically unaffected but has an increased risk based on family history

(To be answered if in 1.10 ‘B’ was marked.)

3.2.1 Will the result of a genetic test influence the individual's lifestyle or prevention strategies

If the test result is positive (please describe)

Identification of a female fragile X carrier allows women to make informed reproductive decisions, which take into account the risk of primary ovarian insufficiency and the risk of having a FXS affected child.

Early family planning may enable conception in a female premutation carrier likely to suffer from primary ovarian insufficiency.

A woman with a premutation or a full mutation may decrease her risk of having a child affected with FXS by taking advantage of prenatal diagnostics, donor eggs, adoption and so on. Preimplantation genetic diagnosis (PGD) is possible but particular technical difficulties exist for FXS. Ovarian dysfunction in premutation carriers reduces the chances of a successful pregnancy using PGD due to a low yield of available eggs.106

If the test result is negative (please describe)

Determining that a female patient is not a carrier can relieve the anxiety related to genetic risk and allow for confident family planning.

3.2.2 What lifestyle and prevention strategies does an at-risk individual have if genetic testing is not performed (please describe)?

No special options; prevention is not possible.

3.3 Genetic risk assessment for the family members of an affected individual

(To be answered if in 1.10 ‘C’ was marked.)

3.3.1 Does the result of a genetic test resolve the genetic situation of the family?

Once an individual has been shown to be affected by any one of the fragile X-associated disorders, cascade counseling and testing may be offered to relatives at risk of being a carrier, taking into account the unusual pattern of mutation inheritance.

3.3.2 Can genetic testing of a patient save genetic testing of family members?

Given the X-linked transmission, the presence of a premutation in a father automatically determines the status of the children: his sons will be non-carriers and daughters will be premutation carriers. Genetic testing in the sons is not necessary.

Given the exclusive maternal transmission of a full mutation, genetic testing of the father of a patient affected with fragile X is not necessary.

3.3.3 Does a positive genetic test result in a patient allow to predict the genetic status of a family member?

Yes, a positive test in a female (full mutation) allows to identify her mother as a carrier. A positive test in a male allows to identify his mother and his daughter as carriers and his sons as non carriers.

3.4 Prenatal diagnosis

(To be answered if in 1.10 ‘D’ was marked.)

3.4.1 Does a positive genetic test result in the index patient enable a prenatal diagnosis?

All females carriers of a premutation or a full mutation can be offered a prenatal diagnosis.

Male carriers of a full mutation can be offered a prenatal diagnosis as a cautionary measure in case of a female fetus (see 1.10.D).

4. If applicable, further consequences of genetic testing

Molecular confirmation of the diagnosis will limit unnecessary further etiological investigations, which can often be invasive and unpleasant. Although there is no cure for fragile X, the diagnosis helps guiding the appropriate physical, cognitive and behavioral management of the affected individual.

Many parents feel guilty, and may be relieved after a genetic diagnosis is obtained. Parents also find encouragement and support in dealing with daily anxieties and difficulties by becoming members of clubs and associations that welcome affected families.

A molecular diagnosis enables a female carrier to make informed reproductive decisions.


  1. 1

    Hatton DD, Sideris J, Skinner M et al: Autistic behavior in children with fragile X syndrome: prevalence, stability, and the impact of FMRP. Am J Med Genet A 2006; 140A: 1804–1813.

    PubMed  Google Scholar 

  2. 2

    Kaufmann WE, Cortell R, Kau AS et al: Autism spectrum disorder in fragile X syndrome: communication, social interaction, and specific behaviors. Am J Med Genet A 2004; 129A: 225–234.

    PubMed  Google Scholar 

  3. 3

    Rogers SJ, Wehner DE, Hagerman R : The behavioral phenotype in fragile X: symptoms of autism in very young children with fragile X syndrome, idiopathic autism, and other developmental disorders. J Dev Behav Pediatr 2001; 22: 409–417.

    CAS  PubMed  Google Scholar 

  4. 4

    de Vries BB, Wiegers AM, Smits AP et al: Mental status of females with an FMR1 gene full mutation. Am J Hum Genet 1996; 58: 1025–1032.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Bennetto L, Pennington BF, Porter D, Taylor AK, Hagerman RJ : Profile of cognitive functioning in women with the fragile X mutation. Neuropsychology 2001; 15: 290–299.

    CAS  PubMed  Google Scholar 

  6. 6

    Hagerman RJ, Leehey M, Heinrichs W et al: Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X. Neurology 2001; 57: 127–130.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Jacquemont S, Hagerman RJ, Leehey M et al: Fragile X premutation tremor/ataxia syndrome: molecular, clinical, and neuroimaging correlates. Am J Hum Genet 2003; 72: 869–878.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Berry-Kravis E, Abrams L, Coffey SM et al: Fragile X-associated tremor/ataxia syndrome: clinical features, genetics, and testing guidelines. Mov Disord 2007; 22: 2018–2030, quiz 2140.

    Google Scholar 

  9. 9

    Verkerk AJ, Pieretti M, Sutcliffe JS et al: Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 1991; 65: 905–914.

    CAS  Google Scholar 

  10. 10

    Fu YH, Kuhl DP, Pizzuti A et al: Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell 1991; 67: 1047–1058.

    CAS  Article  Google Scholar 

  11. 11

    Eichler EE, Richards S, Gibbs RA, Nelson DL : Fine structure of the human FMR1 gene. Hum Mol Genet 1993; 2: 1147–1153.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Schwemmle S, de Graaff E, Deissler H et al: Characterization of FMR1 promoter elements by in vivo-footprinting analysis. Am J Hum Genet 1997; 60: 1354–1362.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Heitz D, Devys D, Imbert G, Kretz C, Mandel JL : Inheritance of the fragile X syndrome: size of the fragile X premutation is a major determinant of the transition to full mutation. J Med Genet 1992; 29: 794–801.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Fisch GS, Snow K, Thibodeau SN et al: The fragile X premutation in carriers and its effect on mutation size in offspring. Am J Hum Genet 1995; 56: 1147–1155.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Nolin SL, Brown WT, Glicksman A et al: Expansion of the fragile X CGG repeat in females with premutation or intermediate alleles. Am J Hum Genet 2003; 72: 454–464.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Eichler EE, Holden JJ, Popovich BW et al: Length of uninterrupted CGG repeats determines instability in the FMR1 gene. Nat Genet 1994; 8: 88–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Fernandez-Carvajal I, Lopez Posadas B, Pan R, Raske C, Hagerman PJ, Tassone F : Expansion of an FMR1 grey-zone allele to a full mutation in two generations. J Mol Diagn 2009; 11: 306–310.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Levesque S, Dombrowski C, Morel ML et al: Screening and instability of FMR1 alleles in a prospective sample of 24,449 mother-newborn pairs from the general population. Clin Genet 2009; 76: 511–523.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Zuniga A, Juan J, Mila M, Guerrero A : Expansion of an intermediate allele of the FMR1 gene in only two generations. Clin Genet 2005; 68: 471–473.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Terracciano A, Pomponi MG, Marino GM et al: Expansion to full mutation of a FMR1 intermediate allele over two generations. Eur J Hum Genet 2004; 12: 333–336.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Kronquist KE, Sherman SL, Spector EB : Clinical significance of tri-nucleotide repeats in fragile X testing: a clarification of American College of Medical Genetics guidelines. Genet Med 2008; 10: 845–847.

    PubMed  PubMed Central  Google Scholar 

  22. 22

    Pieretti M, Zhang FP, Fu YH et al: Absence of expression of the FMR-1 gene in fragile X syndrome. Cell 1991; 66: 817–822.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    De Boulle K, Verkerk AJ, Reyniers E et al: A point mutation in the FMR-1 gene associated with fragile X mental retardation. Nat Genet 1993; 3: 31–35.

    CAS  Google Scholar 

  24. 24

    Lugenbeel KA, Peier AM, Carson NL, Chudley AE, Nelson DL : Intragenic loss of function mutations demonstrate the primary role of FMR1 in fragile X syndrome. Nat Genet 1995; 10: 483–485.

    CAS  Google Scholar 

  25. 25

    Tarleton J, Kenneson A, Taylor AK et al: A single base alteration in the CGG repeat region of FMR1: possible effects on gene expression and phenotype. J Med Genet 2002; 39: 196–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Coffee B, Ikeda M, Budimirovic DB, Hjelm LN, Kaufmann WE, Warren ST : Mosaic FMR1 deletion causes fragile X syndrome and can lead to molecular misdiagnosis: a case report and review of the literature. Am J Med Genet A 2008; 146A: 1358–1367.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Jacquemont S, Hagerman RJ, Leehey MA et al: Penetrance of the fragile X-associated tremor/ataxia syndrome in a premutation carrier population. JAMA 2004; 291: 460–469.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Sevin M, Kutalik Z, Bergman S et al: Penetrance of marked cognitive impairment in older male carriers of the FMR1 gene premutation. J Med Genet 2009; 46: 818–824.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Sherman SL : Premature ovarian failure in the fragile X syndrome. Am J Med Genet 2000; 97: 189–194.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Conway GS, Payne NN, Webb J, Murray A, Jacobs PA : Fragile X premutation screening in women with premature ovarian failure. Hum Reprod 1998; 13: 1184–1187.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Murray A, Webb J, Grimley S, Conway G, Jacobs P : Studies of FRAXA and FRAXE in women with premature ovarian failure. J Med Genet 1998; 35: 637–640.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Marozzi A, Vegetti W, Manfredini E et al: Association between idiopathic premature ovarian failure and fragile X premutation. Hum Reprod 2000; 15: 197–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Sullivan AK, Marcus M, Epstein MP et al: Association of FMR1 repeat size with ovarian dysfunction. Hum Reprod 2005; 20: 402–412.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Ennis S, Ward D, Murray A : Nonlinear association between CGG repeat number and age of menopause in FMR1 premutation carriers. Eur J Hum Genet 2006; 14: 253–255.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Wittenberger MD, Hagerman RJ, Sherman SL . et al: The FMR1 premutation and reproduction. Fertil Steril 2007; 87: 456–465.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Rousseau F, Heitz D, Biancalana V et al: Direct diagnosis by DNA analysis of the fragile X syndrome of mental retardation. N Engl J Med 1991; 325: 1673–1681.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Brown WT, Houck Jr GE, Jeziorowska A et al: Rapid fragile X carrier screening and prenatal diagnosis using a nonradioactive PCR test. JAMA 1993; 270: 1569–1575.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Das S, Kubota T, Song M et al: Methylation analysis of the fragile X syndrome by PCR. Genet Test 1997; 1: 151–155.

    CAS  PubMed  Google Scholar 

  39. 39

    Panagopoulos I, Lassen C, Kristoffersson U, Aman P : A methylation PCR approach for detection of fragile X syndrome. Hum Mutat 1999; 14: 71–79.

    CAS  PubMed  Google Scholar 

  40. 40

    Weinhausel A, Haas OA : Evaluation of the fragile X (FRAXA) syndrome with methylation-sensitive PCR. Hum Genet 2001; 108: 450–458.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Nygren AO, Lens SI, Carvalho R : Methylation-specific multiplex ligation-dependent probe amplification enables a rapid and reliable distinction between male FMR1 premutation and full-mutation alleles. J Mol Diagn 2008; 10: 496–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Zhou Y, Law HY, Boehm CD . et al: Robust fragile X (CGG)n genotype classification using a methylation specific triple PCR assay. J Med Genet 2004; 41: e45.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Tassone F, Pan R, Amiri K, Taylor AK, Hagerman PJ : A rapid polymerase chain reaction-based screening method for identification of all expanded alleles of the fragile X (FMR1) gene in newborn and high-risk populations. J Mol Diagn 2008; 10: 43–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Hantash FM, Goos DG, Tsao D et al: Qualitative assessment of FMR1 (CGG)n triplet repeat status in normal, intermediate, premutation, full mutation, and mosaic carriers in both sexes: Implications for fragile X syndrome carrier and newborn screening. Genet Med 2010; 12: 162–173.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Lyon E, Laver T, Yu P et al: A simple, high-throughput assay for fragile X expanded alleles using triple repeat primed PCR and capillary electrophoresis. J Mol Diagn 2010; 12: 505–511.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Willemsen R, Mohkamsing S, de Vries B et al: Rapid antibody test for fragile X syndrome. Lancet 1995; 345: 1147–1148.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Hagerman PJ : The fragile X prevalence paradox. J Med Genet 2008; 45: 498–499.

    PubMed  PubMed Central  Google Scholar 

  48. 48

    Jacquemont S, Leehey MA, Hagerman RJ, Beckett LA, Hagerman PJ : Size bias of fragile X premutation alleles in late-onset movement disorders. J Med Genet 2006; 43: 804–809.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Crawford DC, Acuna JM, Sherman SL : FMR1 and the fragile X syndrome: human genome epidemiology review. Genet Med 2001; 3: 359–371.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Rife M, Badenas C, Mallolas J et al: Incidence of fragile X in 5,000 consecutive newborn males. Genet Test 2003; 7: 339–343.

    CAS  PubMed  Google Scholar 

  51. 51

    Tzeng CC, Tsai LP, Hwu WL et al: Prevalence of the FMR1 mutation in Taiwan assessed by large-scale screening of newborn boys and analysis of DXS548-FRAXAC1 haplotype. Am J Med Genet A 2005; 133A: 37–43.

    PubMed  Google Scholar 

  52. 52

    Pembrey ME, Barnicoat AJ, Carmichael B, Bobrow M, Turner G : An assessment of screening strategies for fragile X syndrome in the UK. Health Technol Assess 2001; 5: 1–95.

    CAS  PubMed  Google Scholar 

  53. 53

    Sherman S, Pletcher BA, Driscoll DA : Fragile X syndrome: diagnostic and carrier testing. Genet Med 2005; 7: 584–587.

    PubMed  PubMed Central  Google Scholar 

  54. 54

    McConkie-Rosell A, Finucane B, Cronister A, Abrams L, Bennett RL, Pettersen BJ : Genetic counseling for fragile x syndrome: updated recommendations of the national society of genetic counselors. J Genet Couns 2005; 14: 249–270.

    PubMed  PubMed Central  Google Scholar 

  55. 55

    McConkie-Rosell A, Abrams L, Finucane B et al: Recommendations from multi-disciplinary focus groups on cascade testing and genetic counseling for fragile X-associated disorders. J Genet Couns 2007; 16: 593–606.

    PubMed  PubMed Central  Google Scholar 

  56. 56

    Biancalana V, Beldjord C, Taillandier A . et al: Five years of molecular diagnosis of fragile X syndrome (1997-2001): a collaborative study reporting 95% of the activity in France. Am J Med Genet A 2004; 129: 218–224.

    Google Scholar 

  57. 57

    Sofocleous C, Kitsiou S, Fryssira H et al: 10 Years’ experience in fragile X testing among mentally retarded individuals in Greece: a molecular and epidemiological approach. In Vivo 2008; 22: 451–455.

    CAS  PubMed  Google Scholar 

  58. 58

    Kamm C, Healy DG, Quinn NP et al: The fragile X tremor ataxia syndrome in the differential diagnosis of multiple system atrophy: data from the EMSA Study Group. Brain 2005; 128: 1855–1860.

    CAS  PubMed  Google Scholar 

  59. 59

    McConkie-Rosell A, Del Giorno J, Heise EM : Communication of genetic risk information to daughters in families with fragile X syndrome: the parent's perspective. J Genet Couns 2010; 20: 58–69.

    PubMed  PubMed Central  Google Scholar 

  60. 60

    Brega AG, Reynolds A, Bennett RE . et al: Functional status of men with the fragile X premutation, with and without the tremor/ataxia syndrome (FXTAS). Int J Geriatr Psychiatry 2009; 24: 1101–1109.

    PubMed  PubMed Central  Google Scholar 

  61. 61

    Cronister A, Teicher J, Rohlfs EM, Donnenfeld A, Hallam S : Prevalence and instability of fragile X alleles: implications for offering fragile X prenatal diagnosis. Obstet Gynecol 2008; 111: 596–601.

    CAS  PubMed  Google Scholar 

  62. 62

    Devys D, Biancalana V, Rousseau F, Boue J, Mandel JL, Oberle I : Analysis of full fragile X mutations in fetal tissues and monozygotic twins indicate that abnormal methylation and somatic heterogeneity are established early in development. Am J Med Genet 1992; 43: 208–216.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Reyniers E, Vits L, De Boulle K et al: The full mutation in the FMR-1 gene of male fragile X patients is absent in their sperm. Nat Genet 1993; 4: 143–146.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Zeesman S, Zwaigenbaum L, Whelan DT, Hagerman RJ, Tassone F, Taylor SA : Paternal transmission of fragile X syndrome. Am J Med Genet A 2004; 129A: 184–189.

    PubMed  PubMed Central  Google Scholar 

  65. 65

    Steinbach D, Steinbach P : No evidence of paternal transmission of fragile X syndrome. Am J Med Genet A 2005; 136: 107–108; author reply 109–110.

    PubMed  PubMed Central  Google Scholar 

  66. 66

    Javaher P, Kaariainen H, Kristoffersson U et al: EuroGentest: DNA-based testing for heritable disorders in Europe. Community Genet 2008; 11: 75–120.

    PubMed  Google Scholar 

  67. 67

    Dobkin CS, Nolin SL, Cohen I et al: Tissue differences in fragile X mosaics: mosaicism in blood cells may differ greatly from skin. Am J Med Genet 1996; 64: 296–301.

    CAS  PubMed  Google Scholar 

  68. 68

    Maddalena A, Yadvish KN, Spence WC, Howard-Peebles PN : A fragile X mosaic male with a cryptic full mutation detected in epithelium but not in blood. Am J Med Genet 1996; 64: 309–312.

    CAS  PubMed  Google Scholar 

  69. 69

    MacKenzie JJ, Sumargo I, Taylor SA : A cryptic full mutation in a male with a classical fragile X phenotype. Clin Genet 2006; 70: 39–42.

    CAS  PubMed  Google Scholar 

  70. 70

    Schmucker B, Seidel J : Mosaicism for a full mutation and a normal size allele in two fragile X males. Am J Med Genet 1999; 84: 221–225.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Orrico A, Galli L, Dotti MT, Plewnia K, Censini S, Federico A : Mosaicism for full mutation and normal-sized allele of the FMR1 gene: a new case. Am J Med Genet 1998; 78: 341–344.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Mononen T, von Koskull H, Airaksinen RL, Juvonen V : A novel duplication in the FMR1 gene: implications for molecular analysis in fragile X syndrome and repeat instability. Clin Genet 2007; 72: 528–531.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Liang S, Bass HN, Gao H, Astbury C, Jamehdor MR, Qu Y : A pseudo-full mutation identified in fragile X assay reveals a novel base change abolishing an EcoRI restriction site. J Mol Diagn 2008; 10: 469–474.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Mila M, Castellvi-Bel S, Sanchez A et al: Rare variants in the promoter of the fragile X syndrome gene (FMR1). Mol Cell Probes 2000; 14: 115–119.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Hegde MR, Chong B, Fawkner M et al: Microdeletion in the FMR-1 gene: an apparent null allele using routine clinical PCR amplification. J Med Genet 2001; 38: 624–629.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Thyagarajan B, Bower M, Berger M, Jones S, Dolan M, Wang X : A novel polymorphism in the FMR1 gene: implications for clinical testing of fragile X syndrome. Arch Pathol Lab Med 2008; 132: 95–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Cecconi M, Forzano F, Rinaldi R et al: A single nucleotide variant in the FMR1 CGG repeat results in a ‘pseudodeletion’ and is not associated with the fragile X syndrome phenotype. J Mol Diagn 2008; 10: 272–275.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Daly TM, Rafii A, Martin RA, Zehnbauer BA : Novel polymorphism in the FMR1 gene resulting in a ‘pseudodeletion’ of FMR1 in a commonly used fragile X assay. J Mol Diagn 2000; 2: 128–131.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Tabolacci E, Pomponi MG, Pietrobono R, Chiurazzi P, Neri G : A unique case of reversion to normal size of a maternal premutation FMR1 allele in a normal boy. Eur J Hum Genet 2008; 16: 209–214.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Steinbach PWD, Gläser D, Vogel W : Systems for the study of triplet repeat instability: cultured mammalian cells., Genetic instabilities and hereditary neurogical disorders. Academic Press: San Diego, CA, 1998.

    Google Scholar 

  81. 81

    Wohrle D, Salat U, Hameister H, Vogel W, Steinbach P : Demethylation, reactivation, and destabilization of human fragile X full-mutation alleles in mouse embryocarcinoma cells. Am J Hum Genet 2001; 69: 504–515.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Wohrle D, Hennig I, Vogel W, Steinbach P : Mitotic stability of fragile X mutations in differentiated cells indicates early post-conceptional trinucleotide repeat expansion. Nat Genet 1993; 4: 140–142.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Steinbach P, Wohrle D, Tariverdian G et al: Molecular analysis of mutations in the gene FMR-1 segregating in fragile X families. Hum Genet 1993; 92: 491–498.

    CAS  PubMed  Google Scholar 

  84. 84

    de Vries BB, Wiegers AM, de Graaff E et al: Mental status and fragile X expression in relation to FMR-1 gene mutation. Eur J Hum Genet 1993; 1: 72–79.

    CAS  PubMed  Google Scholar 

  85. 85

    McConkie-Rosell A, Lachiewicz AM, Spiridigliozzi GA et al: Evidence that methylation of the FMR-I locus is responsible for variable phenotypic expression of the fragile X syndrome. Am J Hum Genet 1993; 53: 800–809.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Loesch DZ, Huggins R, Hay DA, Gedeon AK, Mulley JC, Sutherland GR : Genotype-phenotype relationships in fragile X syndrome: a family study. Am J Hum Genet 1993; 53: 1064–1073.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Hagerman RJ, Hull CE, Safanda JF et al: High functioning fragile X males: demonstration of an unmethylated fully expanded FMR-1 mutation associated with protein expression. Am J Med Genet 1994; 51: 298–308.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Rousseau F, Robb LJ, Rouillard P, Der Kaloustian VM : No mental retardation in a man with 40% abnormal methylation at the FMR-1 locus and transmission of sperm cell mutations as premutations. Hum Mol Genet 1994; 3: 927–930.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Merenstein SA, Shyu V, Sobesky WE et al: Fragile X syndrome in a normal IQ male with learning and emotional problems. J Am Acad Child Adolesc Psychiatry 1994; 33: 1316–1321.

    CAS  PubMed  Google Scholar 

  90. 90

    Smeets HJ, Smits AP, Verheij CE et al: Normal phenotype in two brothers with a full FMR1 mutation. Hum Mol Genet 1995; 4: 2103–2108.

    CAS  PubMed  Google Scholar 

  91. 91

    de Vries BB, Jansen CC, Duits AA et al: Variable FMR1 gene methylation of large expansions leads to variable phenotype in three males from one fragile X family. J Med Genet 1996; 33: 1007–1010.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Wang Z, Taylor AK, Bridge JA : FMR1 fully expanded mutation with minimal methylation in a high functioning fragile X male. J Med Genet 1996; 33: 376–378.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Taylor AK, Tassone F, Dyer PN et al: Tissue heterogeneity of the FMR1 mutation in a high-functioning male with fragile X syndrome. Am J Med Genet 1999; 84: 233–239.

    CAS  PubMed  Google Scholar 

  94. 94

    Tassone F, Hagerman RJ, Loesch DZ, Lachiewicz A, Taylor AK, Hagerman PJ : Fragile X males with unmethylated, full mutation trinucleotide repeat expansions have elevated levels of FMR1 messenger RNA. Am J Med Genet 2000; 94: 232–236.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Han XD, Powell BR, Phalin JL, Chehab FF : Mosaicism for a full mutation, premutation, and deletion of the CGG repeats results in 22% FMRP and elevated FMR1 mRNA levels in a high-functioning fragile X male. Am J Med Genet A 2006; 140: 1463–1471.

    PubMed  Google Scholar 

  96. 96

    Govaerts LC, Smit AE, Saris JJ et al: Exceptional good cognitive and phenotypic profile in a male carrying a mosaic mutation in the FMR1 gene. Clin Genet 2007; 72: 138–144.

    CAS  PubMed  Google Scholar 

  97. 97

    Hagerman RJ, Berry-Kravis E, Kaufmann WE et al: Advances in the treatment of fragile X syndrome. Pediatrics 2009; 123: 378–390.

    PubMed  PubMed Central  Google Scholar 

  98. 98

    Penagarikano O, Mulle JG, Warren ST : The pathophysiology of fragile x syndrome. Annu Rev Genomics Hum Genet 2007; 8: 109–129.

    CAS  PubMed  Google Scholar 

  99. 99

    Berry-Kravis E, Sumis A, Hervey C et al: Open-label treatment trial of lithium to target the underlying defect in fragile X syndrome. J Dev Behav Pediatr 2008; 29: 293–302.

    PubMed  Google Scholar 

  100. 100

    Berry-Kravis EM, Hessl D, Coffey S et al: A pilot open-label single-dose trial of fenobam in adults with fragile X syndrome. J Med Genet 2009; 6: 6.

    Google Scholar 

  101. 101

    Jacquemont S, Curie A, des Portes V et al: Epigenetic modification of the FMR1 gene in fragile X syndrome is associated with differential response to the mGluR5 antagonist AFQ056. Sci Transl med 2011; 3: 64ra61.

    Google Scholar 

  102. 102

    Reiss AL, Hall SS : Fragile X syndrome: assessment and treatment implications. Child Adolesc Psychiatr Clin N Am 2007; 16: 663–675.

    PubMed  Google Scholar 

  103. 103

    Hills-Epstein JRK, Sobesky W : The treatment of emotional and behavioral problems; in Hagerman RJ, Hagerman PJ (eds).: Fragile X Syndrome: Diagnosis, Treatment, and Research, 3rd edn. Johns Hopkins University Press: Baltimore, MD, 2002, pp 369–362.

    Google Scholar 

  104. 104

    Hall DA, Berry-Kravis E, Hagerman RJ, Hagerman PJ, Rice CD, Leehey MA : Symptomatic treatment in the fragile X-associated tremor/ataxia syndrome. Mov Disord 2006; 21: 1741–1744.

    PubMed  Google Scholar 

  105. 105

    Hagerman RJ, Hall DA, Coffey S et al: Treatment of fragile X-associated tremor ataxia syndrome (FXTAS) and related neurological problems. Clin Interv Aging 2008; 3: 251–262.

    PubMed  PubMed Central  Google Scholar 

  106. 106

    Platteau P, Sermon K, Seneca S, Van Steirteghem A, Devroey P, Liebaers I : Preimplantation genetic diagnosis for fragile Xa syndrome: difficult but not impossible. Hum Reprod 2002; 17: 2807–2812.

    PubMed  Google Scholar 

Download references


This work was supported by EuroGentest, an EU-FP6 supported NoE, contract no. 512148 (EuroGentest Unit 3: ‘Clinical genetics, community genetics and public health’, Workpackage 3.2), and by the Swiss national fund 320030_122674 (JS).

Author information



Corresponding author

Correspondence to Valérie Biancalana.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jacquemont, S., Birnbaum, S., Redler, S. et al. Clinical utility gene card for: fragile X mental retardation syndrome, fragile X-associated tremor/ataxia syndrome and fragile X-associated primary ovarian insufficiency. Eur J Hum Genet 19, 1017 (2011).

Download citation

Further reading


Quick links