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Pathway-based identification of SNPs predictive
of survival

Herbert Pang*,1, Michael Hauser1,2 and Stéphane Minvielle3

In recent years, several association analysis methods for case-control studies have been developed. However, as we turn

towards the identification of single nucleotide polymorphisms (SNPs) for prognosis, there is a need to develop methods for the

identification of SNPs in high dimensional data with survival outcomes. Traditional methods for the identification of SNPs have

some drawbacks. First, the majority of the approaches for case-control studies are based on single SNPs. Second, SNPs that are

identified without incorporating biological knowledge are more difficult to interpret. Random forests has been found to perform

well in gene expression analysis with survival outcomes. In this paper we present the first pathway-based method to correlate

SNP with survival outcomes using a machine learning algorithm. We illustrate the application of pathway-based analysis of

SNPs predictive of survival with a data set of 192 multiple myeloma patients genotyped for 500000 SNPs. We also present

simulation studies that show that the random forests technique with log-rank score split criterion outperforms several other

machine learning algorithms. Thus, pathway-based survival analysis using machine learning tools represents a promising

approach for the identification of biologically meaningful SNPs associated with disease.
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INTRODUCTION

Genome-wide association studies (GWAS) have enormous poten-
tial in identifying new susceptibility genes for complex disease.
However, the high-dimensional nature of GWAS data makes it
challenging to distinguish true signals from background noise.
Most published studies have looked at single locus comparisons
to identify single nucleotide polymorphisms (SNPs) between cases
and controls. By taking the one SNP at a time approach, GWAS
studies may be underpowered to detect smaller effects. There is
increasing evidence to suggest that gene–gene interactions may
have a role in the etiology of complex disease. By analogy with
high-dimensional microarray data analysis, several methods have
been proposed for incorporating previous information in genome-
wide association analysis. Chasman et al, Peng et al, and Ritchie
et al have advocated the use of previous knowledge for GWAS
analyses and have described the advantages of using pathway-based
methods.1–3 Baranzini et al have implemented this approach in the
analysis of multiple sclerosis by using a network-based analysis
to tease out SNPs with association P-values between 0.05 and 10�8

in the original single-SNP association analysis.4 Ballard et al
performed two pathway-based tests, a binomial test and a random
set method to identify pathways associated with rheumatoid
arthritis.5 Wang et al utilized a modified gene set enrichment
method for SNP data to identify pathways associated with Crohn’s
disease.6 Both Wang et al and Dinu et al performed pathway-based
analyses to study age-related macular degeneration.7,8 The former
paper also investigated two GWAS of Parkinson’s disease. However,

little has been done to apply pathway-based methods to correlate
SNP data with survival outcomes.

Random forests classification has been applied to identify SNPs
associated with binary outcomes in a pathway-based setting.9–11 Over-
all, random forests is among the best approaches for analyzing survival
time using gene expression data.12–14 In this article, we introduce
one of the first methods to correlate SNP with survival outcomes.
We compare two different implementations of random forests for
survival outcomes and other machine learning approaches through
simulations. Moreover, we illustrate the use of our pathway-based
method for survival SNP analysis through application to a multiple
myeloma data set and investigate how linkage disequilibrium (LD) may
affect prediction. In summary, random survival forests with log-rank
score (LRS) split performed best in both simulation and real data
analysis. We were able to identify two pathways that are associated with
survival outcomes of interest in multiple myeloma patients.

MATERIALS AND METHODS
Several machine learning methods are compared in identifying pathways

associated with SNP data. We describe below random survival forests, which

performed among the best in simulations.15 Several other machine learning

methods are presented in Supplementary materials. The goal of these machine

learning methods is to identify pathways containing SNPs that can predict the

survival outcome of the population of interest.

Random survival forests
For SNP data, we code each individual SNP as values 0, 1, and 2 for the number

of variant alleles at the respective SNP. The random forests method for survival
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outcome was first proposed by Leo Breiman (http://oz.berkeley.edu/users/

breiman/SF_Manual.pdf). It has since been refined with different variations.

One of the popular variants is random survival forests.15 A random survival

forests encompasses many binary trees, each of which is formed by a

deterministic algorithm. First, a best binary split is chosen using a subset

of SNPs within a pathway. Second, every tree is built using a bootstrap sample

of the patients of interest. Unlike classification and regression trees (CART),

no pruning is involved. Several split criteria are available in random survival

forests; we apply the log-rank and LRS for split criteria as described below.

Other split criteria such as conserve and random are given in Supplementary

materials.

The RSF algorithm is applied as follows. First, bootstrap samples are drawn

from the original data ntree times, where ntree is the number of trees. For each

bootstrap sample, some samples are left out-of-bag (OOB). A binary survival

tree is grown for each bootstrap sample. Let p be the number of SNPs in a

pathway. At each node of the tree, p1/2 SNPs in the pathway are selected

at random for splitting. Using one of the split criteria described below, a node is

split using a single SNP from the p1/2 randomly chosen SNPs that maximizes

the survival differences between the children nodes. The splitting continues

until each terminal node reaches the minimum number of events with unique

survival times. The default is three for right censored data.15 Next, binary

survival trees are aggregated to obtain the ensemble cumulative hazard

estimates, which will also be detailed below.

Let i denote an individual with i¼1, y , n, let n be the total number of

individuals and let x be one of the SNP predictors. Splits are of form x rc and

x 4c, where c is the cutoff value. Let n1¼
Pn

i¼1 IðXi � cÞ, an indicator

function counting the number of observations less than or equal to the cutoff.

Split criterion LRS,, which measures the node separation, is based on the

log-rank test statistic, and uses the following equation:

LRS ðX; cÞ¼

P
Xi�c

ai � n1ma
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 1 � n1

n

� �
s2a

q ;

where ai ¼ Ii �
Pgi

l¼1
Il

N�gl+1, and Ii¼1 if an event is observed for individual

i and 0 otherwise, and gl ¼
Pn

i IðSi � SlÞ ; and ma and sa
2 are the sample mean

and sample variance of ai, respectively.16 The best split is defined as the one that

maximizes the absolute value of the equation LRS(X,c) above.

Another split criterion is the log-rank test (LR) criterion, which measures

the node separation, and is defined as:

LRðX:cÞ ¼

PE
i¼1

dti ;child1 � Rti ;child1

dti
Rti

PE
i¼1

dti ðRti�dti Þ
Rti�1

Rti ;child1

Rti
1 � Rti ;child1

Rti

� �� �0:5

where E is the number of distinct event times T(1)rT(2) ryr T(E) in the

parent node; dti ;childj is the number of events at time ti in the child nodes j¼1,2;

Rti ;childj is the number of individuals at risk at time ti in the child nodes j¼1,2;

and Rti ¼
P2

j¼1 Rti ;childj and dti ¼
P2

j¼1 dti ;childj .
17 Again, the best split is

chosen similarly, that is, it maximizes the absolute value of the equation

LR(X,c) above.

Trees are aggregated to form the forest through the ensemble cumu-

lative hazard function (eCHF), which groups the hazard estimates from the

terminal nodes. The CHF estimates for a terminal node L is the Nelson-Aalen

estimator

L̂LðtÞ ¼
X
ti ;L�t

dti ;L
Rti ;L

where ti,L ¼ distinct survival time; dti ;L ¼the number of events; and Rti ;L¼the

number of individuals at risk at time (ti,L). For every binary survival tree with

Q terminal nodes, there will be Q different CHF estimators.

The CHF estimate for an individual inew with SNP predictor snpnew can be

found by identifying which terminal node includes the individual when it is

dropped down the binary survival tree. That is, the CHF estimate is equal to

L̂LðtÞ if inew is found in terminal node L. The ensemble CHF is simply the

sum of the CHFs across the bootstrap samples divided by number of trees.

The expected number of ensemble events can be obtained by summing over

time Tj for j¼1 to n. The description of support vector machine approaches for

survival outcomes, Cox boosting, conditional inference survival forests, and

two other split criteria for random survival forests are given in Supplementary

materials.

Identification of pathways associated with survival
Our goal is to test whether specific sets of SNPs from the same pathway are

strong prognostic factors. One way to do this is to find the expected survival

times and expected number of events from machine learning methods, such as

random survival forests. The expected number of events is then split for the two

groups into approximately equal sizes of high and low survival times or events.

We can then compute a log-rank test to see whether there is a significant

difference between the high- and low-risk groups. The expected survival times

and number of events are obtained using 10-fold cross-validation. At each of

the k-fold iteration, 90% of the training data are used to build the random

forests model for survival data. The remaining 10% is then used to make

predictions on testing individuals who are not involved in training the model.

To clarify, the high-risk group has a higher expected number of events from the

10-fold cross-validation prediction compared with the median among all

patients, whereas the low-risk group has fewer than or the same number as

the median. A small P-value would indicate that this set of SNPs is informative

about the prognosis of patients and pathways can be ranked according to the

P-values to assess the relative importance of the pathways.

Selection of important SNPs
In addition to identifying pathways, random survival forests can also pick out

SNPs from top pathways that are associated with the survival outcome of

interest. There is a built-in feature selection procedure based on variable

importance in random survival forests. There are two ways to determine

the importance in random survival forests: permutation or random split.

They give possible ways to quantify which SNPs are most informative, that is,

contribute most to the prediction accuracy, for achieving a sound survival

prediction. Finding an informative SNP is an indication of the strength or

usefulness of its prognostics capability.

To obtain the importance measure for a SNP in a particular pathway,

the random survival forests algorithm permutes the values of the SNP in

the OOB cases and the cases with permuted values are dropped down their

in-bag survival tree. The CHF is then calculated for each tree and aggregated

across the trees. The randomly permuted values of the SNP in the OOB

individuals and the outcome of interest are independent of each other. The

variable importance for a predictor x is equal to PEo�PEn, where PEo is

the prediction error of the original ensemble and PEn is the prediction error

of the new ensemble with values of predictor x randomly permuted. If the

SNP is a good predictor, the SNP is likely to be close to the origin of the tree

and a large proportion of trees will contain the SNP. This implies that we expect

a decrease in prediction accuracy compared with the value before the random

permutation.

Mapping of SNPs to genes on the pathway
The gene sets are obtained from the Broad Institute (http://www.broad.mit.

edu/) and included 203 KEGG,18 and 278 BioCarta pathways (http://www.

biocarta.com). SNPs with minor allele frequencies Z0.05 that are within 5 kb

up and downstream from any gene are considered. This results in 154 979 out

of 500K SNPs being mapped to pathways. If a SNP is located within shared

regions of two overlapping genes, the SNP will be mapped to both genes.

Simulation studies
We next used simulations to evaluate the performance of different methods in

the identification of SNPs. For the alternative case, a pathway from the real data

set with small P-values was chosen. The genotype data was generated using the

multinomial distribution. The probability for the classes, 0, 1 and 2 were taken

from the real data to retain the pathway correlation structure. The survival

times S were generated as exponentially distributed random variables with the

addition of an e distributed as N[0,0.5].19 Under the alternative case, b equals
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one for the top five informative SNPs and 0 otherwise. The censoring time

(CT) was generated as an N(max(S),3), which resulted in censoring of 20–45%

of events for each simulated data set. If the generated CT was less than the

generated survival time, the survival time for that individual was considered as

censored. For the null case, in which b equals 0 for all the predictors, a pathway

from the real data set with large P-values was chosen. Each simulation

generated 50 multinomial distributed SNPs with sample size 96, 192 or 288.

Imputation
To infer the missing SNP genotypes in the real data set, we impute the

non-genotyped markers in our data set by using the HapMap CEU panel

release 27 (NCBI build 36) (http://hapmap.ncbi.nlm.nih.gov/) reference

panel,20 and BEAGLE software (http://faculty.washington.edu/browning/

beagle/beagle.html).21 BEAGLE uses a localized haplotype-cluster model and

a hidden Markov model. Intermarker LD is incorporated to create the most

parsimonious model. BEAGLE has been found to perform well compared with

other publicly available packages.22

RESULTS

To assess the type I error rate, we simulated 1000 data sets from the
null hypothesis as described in the previous section. For every
simulated data set, we first calculated the LR test P-value from
10-fold cross-validation as described in the Materials and methods
section. For both type I error and power, we calculated the ratio
between the number of pathways having a Po0.05 and the number of
simulated data sets.

Table 1 shows that the observed random forests type I errors were
around the nominal 0.05 level across different sample sizes for
RSF with LRS split rule (RSF LRS) and SVMsurv. For sample size
288, Cox boosting, RSF with LR split rule (RSF LR) and random, all
had slightly inflated type I error. The type I error for cforest was
inflated for all sample sizes. Among the random forests methods,
random survival forests with LRS split had the smallest or 2nd smallest
type I error on the different sample sizes. In terms of power (Table 2),
all methods failed to achieve sufficient power when sample size was
less than about 100. SVMsurv had the lowest power across all sample

sizes. RSF LR, LRS, cforest, Cox boosting do better than other methods,
achieving close to 90% power or above with 192 samples and close to
100% for 288 samples. It is not surprising that the Cox boosting
algorithm had superior power, as the Cox model was used to create the
simulated data set. With consideration of both type I error and power,
RSF LRS is the best method given a sample size of around 200 or above
under similar correlation structure to the simulated data set.

Applications to multiple myeloma data set
We next applied our method to the GWAS data from Avet-Loiseau
et al.23 They performed a genome-wide analysis of malignant plasma
cells from 192 multiple myeloma patients,23 using the Affymetrix
(Santa Clara, CA, USA) GeneChip Human Mapping 500K Array Set,
to identify markers associated with overall survival. They provided
insights into how chromosomal aberrations might have prognostic
implications for multiple myeloma patients.

To control for multiple testing, we used the false discovery rate
(FDR), with the q-value method.24 Controlling the FDR is one of the
preferred methods to adjust for multiple comparisons. The FDR
procedure controls the proportion of false positives at a desired level
of a, type I errors. Only random survival forests was able to identify
pathways that were significant with FDR correction at the 0.1 and 0.05
levels, see Table 3. The FDR cutoff of 0.1 has been commonly used in
case-control GWAS studies.25,26 The pathways significant at this FDR
level are cytokine network and stress induction of HSP regulation,
see Figures 1, 2. The high- and low-risk groups were determined as

Table 1 Simulation results under the null type I error

Sample size

Methods 96 192 288

Random survival forest (log rank score split) 0.055 0.048 0.045

Random survival forest (log rank split) 0.048 0.060 0.054

Random survival forest (conserve split) 0.053 0.055 0.050

Random survival forest (random split) 0.095 0.030 0.059

Cox boosting 0.053 0.065 0.085

Survival support vector machine 0.039 0.025 0.040

Conditional inference forest 0.105 0.066 0.081

Table 2 Simulation results under the alternative power

Sample size

Methods 96 192 288

Random survival forest (log rank score split) 0.388 0.909 0.995

Random survival forest (log rank split) 0.378 0.909 0.993

Random survival forest (conserve split) 0.299 0.746 0.960

Random survival forest (random split) 0.188 0.708 0.948

Cox boosting 0.583 0.980 1.000

Survival support vector machine 0.060 0.150 0.246

Conditional inference forest 0.220 0.915 0.994

Table 3 Number of pathways identified based on q-values

Methods FDR o0.1 FDR o0.05 FDR o0.025

Random survival forest (log rank score split) 2 1 0

Random survival forest (log rank split) 0 0 0

Random survival forest (conserve split) 0 0 0

Random survival forest (random split) 0 0 0

Cox boosting 0 0 0
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Figure 1 Kaplan–Meier plot of overall survival of patients predicted to have

high and low risk using SNPs in the cytokine pathway. P¼0.00008.

Cytokine pathway—overall survival high vs low risk.
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defined in the ‘Identification of pathways associated with survival’
section. They contain 79 and 92 SNPs, respectively. For a table with
the number of pathways identified based on unadjusted P-values, see
Supplementary materials.

Stress induction of HSP regulation is tied to several pathways,
including the FAS signaling, mitochondrial, and NF-kB pathways.
The NF-kB pathway was hypothesized to have lower expression
among high-risk patients.23 The cytokine network pathway has been
thoroughly reviewed for prognostic and therapeutics implications in
multiple myeloma, and it is also well known that cytokines have a
crucial role in the disease etiology of lymphomas.27,28

To investigate the biological plausibility of our findings, we looked at
the informative SNPs in the two pathways. For stress induction of HSP
regulation, BCL2 and CASP3 were found to be the most important top
5% SNPs in identifying low- and high-risk survival groups within the
pathway, see Table 4 and Table 8 in Supplementary materials (account-
ing for LD). The protective associations of two caspase genes, CASP3
and CASP9, have been observed and genetic variation in CASP genes
has been suggested to be key to the disease etiology of multiple
myeloma.29 Novel drugs have been shown to have direct anticancer

effects on human myeloma cells, not only by inducing apoptosis via
both caspase-dependent and -independent pathways, but also by
promoting caspase activation resulting in drug-induced cytotoxicity
in multiple myeloma cell lines.30,31 In addition, genomic region 4q35.1
has recently been identified as a susceptibility locus for chronic
lymphocytic leukemia.32 Regarding the BCL2 variant, encouraging
results were revealed in phase 1 and 2 studies performed with BCL2
antisense agents and high dose statin with chemotherapy for pretreated
myeloma patients.33 Furthermore, the BCL2 locus at 18q21.33 was
shown to be frequently amplified in multiple myeloma.34,35 Addition-
ally, over a decade ago, it was hypothesized that BCL2 has a protective
effect in multiple myeloma cells by acting through the NF-kB activa-
tion-signaling pathway.36 This pathway was noted above for its links
with stress induction of HSP regulation.

For the cytokines network, IL15, IL18, and IL12A were found to be
the most important 5% SNPs in the pathway, see Tables 4 and 9 in
Supplementary materials (accounting for LD). Several authors have
linked IL15 with disease progression in multiple myeloma patients.
Jumei et al suggested that IL15 is the primary survival and growth
factor for natural killer cells during natural killer lymphopoiesis for
relapsed myeloma patients.37 Another research group demonstrated
that IL15 contributes to tumor propagation in multiple myeloma.38

Finally, serum IL15 levels have also been found to be elevated in
multiple myeloma patients and may be diagnostic for disease progres-
sion in multiple myeloma.39 High levels of IL18 in serum have been
associated with poor prognosis in multiple myeloma patients.40 A
Japanese research group has shown that IL18 inhibits the growth of
multiple myeloma cells in the bone marrow and implicated IL18 as a
therapeutic target for multiple myeloma.41 Another Japanese research
group has further investigated IL18’s role in the bone destruction
of multiple myeloma patients.42 Finally, IL12A SNPs are associated
with an elevated risk of multiple myeloma in a population based
case-control study among CT women.43

LD
Previous research has found that intermarker LD does not reduce the
predictive power of random forests in the case-control setting.44,45 We
examined whether this holds true for survival outcomes. First, we
investigated whether LD among SNPs within a pathway affects
the prediction. Pairwise LD was calculated by r2.46 We performed
10 independent 10-fold cross-validation runs with the restriction that
SNPs with r240.8 were not allowed in the same run for each of the
significant pathways (cytokine network and stress induction of HSP
regulation). Once SNPs with high LD were removed, the P-values
comparing the high-risk and low-risk groups remained highly
significant (Supplementary Tables 6 and 7). For the stress induction
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Figure 2 Kaplan–Meier plot of overall survival of patients predicted to have

high and low risk using SNPs in the stress induction of HSP regulation

pathway. P¼0.00026. Stress induction of HSP regulation pathway—overall

survival high vs low risk.

Table 4 Identified pathways, informative genes and genomic regionsa

Pathway Gene Genomic region Physical position dbSNP ID

Stress induction of HSP regulation CASP3 4q35.1 185792317 rs4647669

Stress induction of HSP regulation BCL2 18q21.33 59121016 rs4941195

Stress induction of HSP regulation BCL2 18q21.33 59108376 rs1381548

Stress induction of HSP regulation BCL2 18q21.33 58951168 rs10503078

Stress induction of HSP regulation BCL2 18q21.33 58956729 rs4987839

Cytokine network IL18 11q23.1 111538846 rs7106524

Cytokine network IL15 4q31.21 142843742 rs4956404

Cytokine network IL5/IRF1 5q31.1 131900972 rs739718

Cytokine network IL12A 3q25.33 161196540 rs640039

aPlease refer to Supplementary Table 5 for an expanded table with two additional columns, ‘in LD with dbSNPIDs’ and r2.
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of HSP regulation and cytokine network pathways, all the P-values
were o0.00001 and 0.000001, respectively.

The above approach is similar to the RF1 approach taken by Meng
et al under the case-control setting.47 Our cross-validation and
random forests survival prediction approach is robust to the presence
of SNPs with high LD, in agreement with previous reports.44–45 The
effect of LD on the ranking of the variable importance measure in
random forests is presented in Supplementary materials.

DISCUSSION

We have described a pathway-based approach for analyzing SNP data
with survival outcome using random survival forests. This approach
allows us to identify pathways that are strong predictors of patient’s
survival. The ability of the SNPs within a pathway in distinguishing
high and low-risk groups are tested using a log-rank test. The log-rank
test P-values are further adjusted for multiple comparisons using FDR.
This approach can help biomedical researchers tease out more
biologically meaningful prognostic SNPs from complex GWAS data.
We illustrated the use of our approach in a multiple myeloma data set
genotyped with the Affymetrix 500K SNP array. We compared
random survival forests with other machine learning algorithms
including Cox boosting, support vector machine for survival and
conditional inference survival forest. Random survival forest with LRS
split criterion performs best in both simulations and in the analysis of
real data. Our method identified two pathways that gave biological
insights in the etiology of multiple myeloma. Other approaches were
not able to identify any significant pathways after FDR correction, and
displayed higher type I error rates in simulations. We also demon-
strated that inter-marker LD does not adversely impact the prediction
results for the top two pathways, or the importance measures of the
top SNPs. Classification tools for GWAS may tend to choose
overrepresented and large pathways, however, in our application to
the multiple myeloma data set, the top two pathways are close to the
first quartile of pathway size and number of SNPs.48 This suggests that
our approach with FDR correction is not biased towards picking large
pathways with many SNPs.

One of the advantages of our approach is that it implicitly takes into
account the way SNPs may interact and it is particularly well suited for
modeling pathway-based survival using SNP arrays. Pathway analysis
using random forests provides a valuable tool for the researchers to
combine biological information from externally available pathway
databases with high-throughput data. In addition, the random forests
approach provides important measures to identify SNPs that are
most informative for top ranked pathways in survival prediction.
These SNPs may turn out to be novel drug targets. Our approach is
one of the first to combine machine learning methods with pathway
information for analyzing survival SNP array data. This will greatly
improve the predictive power of GWAS studies and will lead to new
insights into disease mechanism.
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