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Discovery of variants unmasked by hemizygous deletions

Ron Hochstenbach1,3, Martin Poot*,1,3, Isaac J Nijman2,3, Ivo Renkens1, Karen J Duran1,
Ruben van’t Slot1, Ellen van Binsbergen1, Bert van der Zwaag1, Maartje J Vogel1, Paulien A Terhal1,
Hans Kristian Ploos van Amstel1, Wigard P Kloosterman1 and Edwin Cuppen1,2

Array-based genome-wide segmental aneuploidy screening detects both de novo and inherited copy number variations (CNVs).

In sporadic patients de novo CNVs are interpreted as potentially pathogenic. However, a deletion, transmitted from a healthy

parent, may be pathogenic if it overlaps with a mutated second allele inherited from the other healthy parent. To detect such

events, we performed multiplex enrichment and next-generation sequencing of the entire coding sequence of all genes within

unique hemizygous deletion regions in 20 patients (1.53Mb capture footprint). Out of the detected 703 non-synonymous single-

nucleotide variants (SNVs), 8 represented variants being unmasked by a hemizygous deletion. Although evaluation of inheritance

patterns, Grantham matrix scores, evolutionary conservation and bioinformatic predictions did not consistently indicate

pathogenicity of these variants, no definitive conclusions can be drawn without functional validation. However, in one patient

with severe mental retardation, lack of speech, microcephaly, cheilognathopalatoschisis and bilateral hearing loss, we discovered

a second smaller deletion, inherited from the other healthy parent, resulting in loss of both alleles of the highly conserved heat

shock factor binding protein 1 (HSBP1) gene. Conceivably, inherited deletions may unmask rare pathogenic variants that may

exert a phenotypic impact through a recessive mode of gene action.
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INTRODUCTION

Application of array-based genome-wide copy number investigation
to patients with idiopathic mental retardation or developmental delay
(MR/DD), with or without multiple congenital abnormalities (MCA),
has identified pathogenic segmental aneuploidies in up to 19% of
consecutive referrals.1–3 De novo deletions in sporadic patients are
generally believed to be pathogenic. In contrast, genes within an
inherited deletion may not provoke a phenotypic effect by mere
haploinsufficiency, as these genes were also found in a single copy
in a healthy parent. However, such inherited deletions may still
contribute to disease when combined with rare de novo or inherited
damaging alleles on the other chromosome. Therefore, screening for
variants in regions corresponding to inherited hemizygous deletions
may allow us to identify genes that exert a phenotypic effect by
independent loss of both alleles.
Assuming this recessive mode of inheritance, genes within a

deletion from a healthy parent may be pathogenic if a second
mutation within the deleted region has been transmitted by the
other, equally healthy parent or has arisen de novo. This recessive
mechanism was initially proposed by Hatchwell.4 A literature survey
shows that in multiple cases pathogenic single-nucleotide variants
(SNVs) combined with a de novo deletion result in aberrant pheno-
types (Supplementary Table 1). However, only few cases demonstrated
unmasking by an inherited deletion (Supplementary Table 2).
Whether ‘unmasking heterozygosity’ is a frequent mechanism for
abnormality’ is being debated.5,6 The recent flurry of publications

regarding losses of a single or several exons in selected genes by
using targeted arrays underscore that current routine diagnostic
methods may miss potentially pathogenic copy number variations
(CNVs).7–15

In this study, we investigated whether unmasking of recessive alleles
may contribute to the phenotype of patients with idiopathic MR/
MCA by analyzing all coding sequences in hemizygous deletion
regions of patients who inherited a novel deletion from a healthy
parent. To do so, we performed multiplexed genomic enrichment and
next-generation sequencing of the entire coding sequence of all genes
in the deletion regions of 20 patients. We identified eight SNVs that
were located exclusively within the corresponding deletions of
patients. In one of the patients the inherited deletion unmasked
another small-inherited deletion on the second allele, which com-
prised the heat shock factor binding protein 1 (HSBP1) gene. Taken
together, this approach provides a sensitive method to detect muta-
tions on the second chromosome within hemizygous deletions.

MATERIALS AND METHODS
The procedures for selection of patients with an inherited deletion and the

molecular investigations performed16,17 are described in Supplementary Note 1

and Supplementary Tables 3 and 4.

Enrichment array design
For each patient, the maximum deletion was defined as the interval between the

non-deleted array-probes flanking the deletion. When a gene was interrupted
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by a breakpoint, all exons of that gene were included. Using the strategy

developed by Mokry et al18 we designed arrays of 60-mer

probes tiled with an off-set of 10nt covering the entire coding sequence of

all genes in the deletion regions according to the Ensembl database (www.

ensembl.org) using the GRCh37/hg19 build of the human reference genome.

One capture array was designed for the deletion intervals of patients 1, 9, 10,

12, 13, 14, 18, 19, 20 and a second capture array was designed for patients 2, 3,

4, 5, 6, 7, 8, 11, 15, 16 and 17. Probes were synthesized on 1M custom

Agilent arrays.

Library preparation, enrichment and massively parallel DNA
sequencing
For each patient, 1mg genomic DNA was used as input for DNA shearing to

fragments of 100–120 nt in length. Library preparation was performed as

described by Mokry et al.18 After ligation of short adaptors (adaptor 1 and

adaptor 2, Supplementary Table 4), SOLiD library barcodes (barcodes 1–20,

SOLiDv3.5 manual, Life Technologies, Carlsbad, CA, USA) were introduced by

5–8 PCR cycles (100 ng adaptor-ligated DNA, 1ml Platinum PCR Supermix

(Invitrogen, Carlsbad, CA, USA), 1ml Pfu Turbo DNA polymerase (Promega,

Madison, WI, USA), 6ml of short-P1-primer (50mM) and 6ml of barcode

primer 1-20 (50mM). Libraries were pooled after size selection (one pool for

each array) and 3mg pooled DNAwas mixed with 15mg C0T-1 DNA (1mg/ml)

and 1.5ml of each barcode blocker oligo (barcode blocker 1 and 2, 10mg/ml
each) and hybridized on Agilent capture arrays as described by Mokry et al.18

Post enrichment PCR was performed using 1ml Platinum PCR Supermix, 1ml
Pfu Turbo DNA polymerase, 6ml of P1-primer and 6ml of P2-primer for 12

cycles. Enriched libraries were sequenced on a single slide of a SOLiDv3.5

sequencer following standard procedures (Supplementary Table 5).

DNA sequence analysis and mutation identification
Sequencing reads were mapped against the reference genome (GRCh37,

ensembl59) using the Burrows-Wheeler Alignment Tool19 and all SNVs and

short indels up to 7 bp were compiled and annotated using in-house developed

single-nucleotide polymorphism-calling (SNP) algorithms using the ensemble

API release 59.20 In this compilation, SNVs mapping within the deletion region

of each patient were selected for confirmation by capillary sequencing, follow-

ing standard protocols. First, we compiled for each DNA sample all SNVs with

a non-reference allele call 490%. Second, we compared SNVs between DNA

samples, and third, we retained those SNVs, which occurred only once in the

samples studied and only within the cognate deletion region of each patient.

Confirmed SNVs were subsequently traced in the DNA of the parents. In

addition, by capillary sequencing loss of exon 3 of the HSBP1 gene was

confirmed in the affected child. The primer pairs used for confirmation by

capillary sequencing are listed in Supplementary Table 6. All confirmed SNVs

were evaluated for their phenotypic impact using the Grantham matrix score,21

Genomic Evolutionary Rate Profile (GERP),22,23 PANTHER24 and Poly-

Phen2.25 European population frequencies were given for variants with data

other than 1000 genome pilot study. We used bioinformatics tools to identify

copy number changes based on read coverage deviations from normalized

control levels by normalizing the coverage level of each nucleotide for the

haploid patient DNA versus the mean coverage level of the other 8 or 10 diploid

DNA samples in the same pool by a custom script written in PERL.

The detected regions with significant (more than two standard deviations from

the mean) coverage abnormalities were supported by DWAC-Seq (http://

dwacseq.hubrecht.eu).

RESULTS

Detection of SNVs in hemizygous deletions
From a cohort of B1500 patients with MR/MCA we selected 19
patients with a novel hemizygous deletion inherited from a healthy
parent and 1 patient who had a de novo hemizygous deletion
(Supplementary Table 3). All 20 DNA samples were, in two pools of
9 and 11 samples, respectively, subjected to multiplexed enrichment
and SOLiDv3.5 sequencing to an average coverage depth of 256�
(Supplementary Table 5). Sequence reads were mapped to the human

reference genome (GRCh37/hg19) and 703 SNVs with a predicted
effect at the protein level were identified in the individual samples with
in-house developed SNV-calling software.20 In addition we found
36 indels of maximally 7 bp, none of which confirmed to the criteria
of being potentially pathogenic as described above (Materials and
Methods). For three samples the SOLiD-based SNVs were compared
with SNP data generated with Illumina Infinium HumanHap300
Genotyping BeadChips. For 240 (98.4%) out of the 244 SNPs covered
by both platforms full concordance was found, while for 4 SNPs
(1.6%) the platforms disagreed. For these four SNPs, both platforms
disagreed for these being either homozygous non-reference or hetero-
zygous. In total, the SOLiD-based data contained 675 non-synon-
ymous SNVs calls, 15 stops gained and 13 stops lost (GRCH37/hg19);
642 SNVs were listed in dbSNP build 131 and 61 SNVs were novel. All
stops gained and lost were listed as known polymorphisms in dbSNP
and none of the variants were listed in databases of known pathogenic
variation (eg, HGMD).
In seven patients we found eight non-synonymous SNVs mapping

exclusively to the cognate deletion regions, which we subsequently
confirmed by capillary sequencing (Table 1). These SNVs showed
clearly homozygous calls and seven were known SNPs (according to
dbSNP build 131). To assess whether the known SNPs were likely to
be compatible with healthy life we determined the frequencies of
homozygous calls of this particular allele in the European population
as recorded in dbSNP. For three SNPs (rs5743820, rs2227983 and
rs4149056) such data were available; they indicate that these SNPs
have been found at frequencies ranging from 0.0016 to 0.2649 for the
homozygous state in the healthy European population. These limited
data are consistent with these SNPs being in Hardy–Weinberg equili-
brium. Of note is that none of the genes, in which these SNPs were
found, has previously been found mutated in patients with MR/MCA
(see Supplementary Table 4). Interestingly, a novel SNP in the
FAM178B gene in a severely dyslexic patient (patient no. 13) with
a deletion of this gene inherited from his mother, resulted in the
same genotype in the patient at this particular position in the
FAM178B gene as that of his language proficient mother. This rules
out a pathogenic contribution of this hemizygous C allele in the
causation of his dyslexia.
To assess whether these SNVs may contribute to a clinical pheno-

type, we determined their putative impact upon protein structure and
function as reflected by the Grantham matrix scores.21 All SNVs had
Grantham matrix scores in the low range, suggesting an only minor
impact. To assess the degree of evolutionary conservation of a SNV we
determined the GERP score.22,23 Negative GERP scores reflect no
evolutionary conservation, whereas positive scores are in agreement
with a pathogenic impact of a SNV.22,23 All SNVs, except those in the
ZNF800 and the OSGIN1 genes showed low-positive GERP scores,
suggesting little likelihood of pathogenic impact. In contrast, Poly-
Phen2,25 which combines the impact on protein structure and func-
tion with the level of evolutionary conservation, predicted a highly
damaging effect from the T to C transition of rs4149056 in the
SLCOB1 gene, while PANTHER24 returned no score and was thus
non-informative. Thus, this SNV with a GranthamMatrix Score of 64,
a GERP score of �1.19 and occurring in the homozygous state
in the European population at 10.66% was judged ‘damaging’
with a likelihood of 0.993 by PolyPhen2 (Table 1). In summary,
currently available algorithms predicting impact on protein
structure and function, determining evolutionary conservation and
combining multiple parameters did not return consistent predictions
regarding pathogenicity of the eight non-synonymous SNVs in our
data set.
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Detection of hemizygous deletions by coverage depth analysis
Subsequently, we used bioinformatics tools to identify copy number
changes based on read coverage deviations from normalized control
levels.26 Thus, plots of the deletion regions flanked by diploid regions
were obtained (Supplementary Figure 1). Although 11 DNA samples
showed approximately half the coverage depth relative to the other
samples from the same pool for the deletion region, 9 samples showed
erratic patterns. Coverage signals approaching the diploid level within
deletion areas corresponded with segmental duplications or indels
(results not shown). Segmental duplications and indels were not
detected by BAC-, oligonucleotide and SNP arrays, as these regions
were not covered by these platforms. As these signals locate in regions
of sequence homology with a locus outside the targeted deletion
region, they may reflect more complex haplotypes in our patients than
represented in the human reference genome.26

Unmasking of an inherited deletion of the HSBP1 gene
The deletion region of patient 15, with a normalized coverage level
almost entirely half of that of the flanking regions, showed a small
region with close to zero coverage (Figure 1a). This region corre-
sponded to three probes with lowered signals on the oligonucleotide
array-CGH (Figure 1b) and contained the entire HSBP1 gene
(Figure 1c). PCR-based resequencing of exon 3 of HSBP1 showed
complete absence in the affected child, with presence of the normal
sized PCR product, indicative of at least one intact copy, in both
parents (results not shown). Comparing the oligonucleotide array and
the SOLiD coverage depth data the proximal breakpoint of this
deletion maps to nucleotide position 83 841 341 (SOLiD) and the
distal breakpoint between 83 857 382 and 83 873 030 (oligonucleotide
array data). The latter breakpoint could not be mapped more
precisely, because of the absence of resequenced exonic sequences in
this region. This combined data indicate a bi-allelic deletion of
minimally 16 041 and maximally 31 689 bp, which encompasses
HSBP1, but no other gene (Figure 1c). We conclude that both alleles
of the entire HSBP1 gene have been lost in the patient. As both
heterozygous parents were healthy, the absence of both gene copies in
the child may be pathogenic when a recessive mode of gene action is
assumed.

DISCUSSION

Array-based segmental aneuploidy detection has become the first-tier
genetic test in MR/MCA patients.1,27 Thus, familial deletions are
increasingly being identified in healthy probands, thereby identifying
genes that seem refractory to haploinsufficiency. Several mechanisms
have been put forward to explain the phenotypic differences between
healthy carriers of deletions and patients within a family.28–30 To
investigate unmasking of recessive alleles in MR/MCA we analyzed all
coding sequences in hemizygous deletion regions of 20 patients using
array-based multiplexed enrichment followed by next-generation
sequencing. This focused approach allows the simultaneous identifi-
cation of SNVs and CNVs in a DNA sample at nucleotide resolution.
Furthermore, the multiplexed design of this experiment automatically
generates proper controls to efficiently filter out noise and coverage
level differences generated by next-generation sequencing.
After evaluation of their inheritance patterns, impact on protein

structure and function and evolutionary conservation the eight SNVs
exclusively found in the corresponding deletion regions of the patients
did not suggest consistent and clear pathogenic effects (Table 1). This
is in line with results of the sequence analysis in inherited deletions in
other studies, including the 1q21.1 deletion associated with
TAR (thrombocytopenia-absent radius) syndrome,31,32 the 16p13.11T
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deletion, which is associated with mental retardation and autism,33 the
16p11.2 deletion associated with autism34 and the 16p12.1 deletion
associated with childhood DD,35 which all failed to detect pathogenic
SNVs. In contrast to our approach, these studies did not include all
coding regions in the deletion, but only selected candidate genes.
The single unmasked structural variation identified in our study, is

much more likely to contribute to the patient’s phenotype, including
mental retardation without speech, optic nerve hypoplasia, naso-
lacrimal duct obstruction, cheilognathopalatoschisis, microcephaly
and bilateral hearing loss. In DECIPHER36 a single patient with a de
novo hemizygous deletion encompassing, HSBP1 (DECIPHER patient
no. 2801) presented with a less complex phenotype. Interestingly, the
hemizygous parents of our patient appeared normal. This constella-
tion of homozygous losses in a patient with healthy parents carrying
heterozygous losses is similar to that of two patients reported in the
literature.37

By interaction with HSF1 (heat shock factor 1, the major trans-
criptional activator of heat shock genes), HSBP1 has been shown to
negatively regulate the heat shock response in C. elegans, in Xenopus
tadpoles and in cultures of mammalian cells.38,39 Knockdown of
Hsbp1, which is a part of the AKT1–DNA transcription network,
in C57Bl/6 mice diminished neuroblast migration.40 Involvement of
HSBP1 in brain development in mice is consistent with a phenotypic
impact of nullizygosity for HSBP1 entailing a form of mental
retardation and expressive speech disorder as found in our patient.
Since to this date, HSBP1 has not been associated with the genetic
pathways governing classical speech and language disorders,41 further
investigations into its function appear needed.
Population analyses of large CNVs revealed a frequency of 5–10% in

healthy individuals for CNVs of 500 kb and larger, which is in the

same range as in patients with DD.43 As size and gene content of
CNVs are negatively correlated with their population frequency,42

smaller structural variants may occur at even higher frequencies in
the healthy population. A preliminary assessment indicates that CNVs
of 500 bp and larger occur at a median frequency of more than 1000
CNVs per healthy individual.42,44 Intragenic deletions, encompassing
one to several exons, account for 2–5% of the spectrum of deleterious
mutations in Mendelian disorders.7–15 In case an inherited or de novo
intragenic deletion is combined with a deletion of the entire gene
transmitted by a healthy parent no intact alleles of a particular gene
will be found in the patient, which amounts to a recessive mode of
gene action. In agreement with this inference is the finding that
numerous patients within the MR/MCA spectrum carry novel or rare
CNVs at two or even more loci.16,17,36 The latter may further increase
the phenotypic variability among patients with disorders resulting
from structural genome variations.36 Of note is that in contrast to the
patients selected for this study, most reports of unmasking hemi-
zygosity in the literature describe patients who combine two distinct,
recognizable syndromes or diseases, such as Prader Willi Syndrome +
albinism,45 Angelman Syndrome + albinism,46 Smith Magenis Syn-
drome + sensorineural hearing loss,47 or Wolf–Hirschhorn syndrome
+ Wolfram syndrome48 (see also Supplementary Tables 1 and 2),
which may relate to the frequency of the mechanism under study here.
Our study of patients with idiopathic MR/MCA did not reveal any

compelling evidence, except for the single-gene deletion, for unmask-
ing of obvious gene mutations by inherited hemizygous deletions.
This may be due to either the incorrect assessment of candidate genes
and/or evaluation of the deleterious impact of the mutations identified
in these genes by current prediction algorithms. Furthermore, we
assessed only the protein-coding regions and the beginning and ends
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arbitrary units as produced as output by DWAC-seq.26 Note the lower read depth for the entire deletion region and the lowered signal in the left part of this

region. Middle panel: Oligonucleotide array data. Note the lowered signal for three probes in the left half of the deletion region. Bottom panel: The genome

region for which both alleles have been lost in the patient (UCSC browser GRCh37/hg19). Dashed lines demarcate the corresponding deletion boundaries.
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of introns in the deletion regions and may thus have missed variants
that affect functions in the UTRs of the genes, non-coding RNAs,
regulatory elements, or splicing efficiency.49 In addition, biases intro-
duced by the enrichment technique as well as mapping of short (50nt)
next-generation sequencing reads result in an uneven coverage of the
target regions. Therefore, not every coding base is assayed equally
efficiently and some coding variants may thus have been missed.
However, our data show that this involves less than 5% of the coding
sequences (results not shown). Finally, uniparental disomies and
segmental homozygosity of chromosomes in genetically isolated
populations,50–53 mutations at an unrelated locus (see patient no.
18; Materials and Methods) and differences in imprinting levels may
also come into play. These possible mechanisms may represent targets
for future studies.
Although our analysis of unmasking of inherited mutations by

inherited deletions represents a step toward uncovering missed herit-
ability in MR/MCA,54 a recent study has highlighted possible involve-
ment of de novo mutations.55 Such de novo mutations may occur
either within or outside a region with a hemizygous deletion and
contribute to phenotypes by a recessive or a dominant mechanism,
respectively. In cases in which one parent transmits a hemizygous
deletion and the other parent carries two homozygous reference
alleles, a non-reference allele in the child may be interpreted as a
sequencing error, whereas this may reflect a de novo mutation on the
allele from the other parent. Similarly, transmission of a deletion from
one parent and a heterozygous allele from the other parent in the
deletion region will appear as homozygous in the child. Without
taking into account copy number status, such a situation will also
likely be filtered out as a false positive. Therefore, current bioinfor-
matics tools need to be adapted to allow for non-Mendelian con-
stellations56,57 or require a combination of experimental techniques
that allow for detection of both single-nucleotide variation and copy
number status. The results of such studies will also present us with
novel challenges during genetic counselling of families.58–63

In conclusion, this study suggests that CNVs may contribute to
clinical phenotypes by a recessive mode of gene action. We conclude
that array-based enrichment of inherited deletions may be a targeted
and highly sensitive method to detect SNVs and CNVs, simulta-
neously. Our study extends the scope of genome-wide CNV profiling
beyond de novo CNVs in sporadic patients, and may aid in uncovering
missing heritability in genome-wide screening studies.
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