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Case report: type 1 diabetes in monozygotic
quadruplets

Katerina Stechova*,1, Zbynek Halbhuber2, Miluse Hubackova1, Jana Kayserova3, Lenka Petruzelkova1,
Jana Vcelakova1, Stanislava Kolouskova1, Tereza Ulmannova1, Maria Faresjö4,5, Ales Neuwirth6, Radek Spisek3,
Anna Sediva3, Dominik Filipp6,7 and Zdenek Sumnik1,7

Type 1 diabetes (T1D) is an autoimmune disease characterized by the lack of insulin due to an autoimmune destruction of

pancreatic beta cells. Here, we report a unique case of a family with naturally conceived quadruplets in which T1D was

diagnosed in two quadruplets simultaneously. At the same time, the third quadruplet was diagnosed with the pre-diabetic stage.

Remarkably, all four quadruplets were positive for anti-islet cell antibodies, GAD65 and IA-A2. Monozygotic status of the

quadruplets was confirmed by testing 14 different short tandem repeat polymorphisms. Serological examination confirmed that

all quadruplets and their father suffered from a recent enteroviral infection of EV68-71 serotype. To assess the nature of the

molecular pathological processes contributing to the development of diabetes, immunocompetent cells isolated from all family

members were characterized by gene expression arrays, immune-cell enumerations and cytokine-production assays. The

microarray data provided evidence that viral infection, and IL-27 and IL-9 cytokine signalling contributed to the onset of T1D in

two of the quadruplets. The propensity of stimulated immunocompetent cells from non-diabetic members of the family to

secrete high level of IFN-a further corroborates this conclusion. The number of T regulatory cells as well as plasmacytoid and/or

myeloid dendritic cells was found diminished in all family members. Thus, this unique family is a prime example for the support

of the so-called ‘fertile-field’ hypothesis proposing that genetic predisposition to anti-islet autoimmunity is ‘fertilized’ and

precipitated by a viral infection leading to a fully blown T1D.
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INTRODUCTION

Type 1 diabetes (T1D) is an autoimmune disease, the complexity of
which is underlined by undesirable interactions between genes and
environmental factors in genetically predisposed individuals.1

Although T cells are central to the mechanism of beta-cell destruc-
tions,2–5 a critical involvement of other cellular and humoral compo-
nents of adaptive and innate immune system have also been
demonstrated.1,6–8 Among environmental factors, infectious agents
such as viruses primarily sensed by innate immune mechanisms are
considered very potent triggers of T1D.9–12 Notably, and in this
context, several recently published findings suggest a strong link
between T1D and enteroviral infections.13–15

To prevent the clinical onset of T1D, immuno-intervention
should be undertaken in the clinically silent pre-diabetic phase.
However, it is difficult to identify suitable candidates for such
interventions.16 The pre-diabetic phase is usually marked by the
presence of autoantibodies to beta-cell antigens,17,18 but the presence
of these antibodies alone is not sufficient to induce destruction of
beta cells.2

Here, we report a case of a family with monozygotic quadruplets
where after an apparent enteroviral infection, two sisters were diag-
nosed with T1D while a third quadruplet was at pre-diabetic stage. To
gain an insight into the molecular mechanism involved in the
pathogenesis of this disease, all family members were studied for the
presence of islet cell antibodies, gene expression profile of immune
regulatory pathways, cellularity of T regulatory cells (Tregs) and
dendritic cells (DCs), and cytokine responses.

MATERIALS AND METHODS

Family history
The quadruplets were born into a family with an older sibling after a

physiological conception. Their development followed a typical path. At the

age of 5, two of these quadruplets were simultaneously diagnosed with T1D,

while a third quadruplet was in a pre-diabetic phase. Interestingly, one month

before the clinical manifestation, the two diabetic girls suffered from an

apparent mild infection with respiratory symptoms. Laboratory tests showed

that all quadruplets and their father suffered from an enteroviral infection. All

family members were subjected to the glucose tolerance test one week after the

diagnosis. Upon obtaining a parental informed consent, blood samples of all
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family members were collected and analysed. A family tree and clinical data are

provided in Figure 1.

HLA typing, confirmation of monozygosity and viral studies
All family members were HLA typed using allele-specific primers.19 Serum

samples from both the parents and the quadruplets were examined for signs of

viral infections by ELISA, complement fixation and non-direct immunofluor-

escence. We focused on enteroviruses and coxsackie viruses as they are

suspected to have a role in T1D development.13–15 Monozygotic status of the

quadruplets was confirmed by testing 14 different short tandem repeat

polymorphisms using Aneufast multiplex QF-PCR kit (molGENTIX, S.L.,

Barcelona, Spain), recommended by CODIS (Combined DNA Index System).20

Immune cell isolation
Peripheral-blood mononuclear cells (PBMCs) were isolated from heparinized

venous blood by Ficoll–Paque density gradient centrifugation and cultured as

described elsewhere.21 After 72 h, cells were washed and subjected to RNA

extraction and supernatants were frozen at �801C until used for cytokine

analysis.

Gene expression profiling
RNA isolated from PBMCs was amplified and hybridized to a high-density

gene array chip (NimbleGen, Roche-NimbleGen Inc., Madison, WI, USA)

where 47 633 human genome targets are presented with 8 probes per target.

Chips were imaged (InnoScan 700 scanner, Innopsys, Carbonne, France), raw

data were analysed using NimbleScan 2.4 software (Roche-NimbleGen Inc.)

and used for further statistical analysis.

Statistical and gene array analysis
The goal of this analysis was to identify differences in the activity of the

immune signalling pathways between the diabetic quadruplets and their non-

diabetic siblings. The gene array statistical analysis was performed using the

network linking (GeneSpring GX10, Agilent Technologies, Inc., Santa Clara,

CA, USA) and the pathway analysis softwares (MetaCore, GeneGo, Inc.,

St Joseph, MO, USA). Using unpaired t-tests, only the differences in gene

expression with P-values o0.05 were considered as statistically significant.

The numbers used to generate the heat map represent normalized intensity

values calculated as a log2 ratio of gene expression to the chip median

expression value.

Cellularity of Tregs and DCs
Tregs (CD4+CD25+FoxP3+) and DCs (plasmacytoid, pDC as well as myeloid,

mDC) from freshly isolated PBMCs were counted and identified by flow

cytometry (FACS) as described elsewhere.22 Family data were compared with

the control samples derived from 23 healthy volunteers (12 females/11 males),

median of age 18 years, range 14–26 years.

PBMC cytokine responses
To assess the cellular responses to Toll-like receptor 9 (TLR9) stimulation,

2�105 freshly isolated PBMCs were stimulated with ODN 2216 (Invivogen,

Toulouse, France) for 24 h (371C, 5% CO2) and cytokine productions were

measured using multiplexed antibodies (Milliplex, Millipore, Billerica, MA,

USA) on luminescent beads (Luminex 100 IS, Luminex Corporation, Austin,

TX, USA). Similarly, a spontaneous secretion of cytokines was measured in the

supernatants derived from PMBCs using a cytokine microarray (Ray Biotech,

Norcross, GA, USA). Cytokine concentrations were compared with the relevant

value ranges of the control population without statistical analysis.

RESULTS

Short tandem repeat polymorphisms test, HLA typing, anti-islet
cell antibodies, glucose tolerance test and anti-viral antibodies
All quadruplets exhibited identical results in all 14 short tandem
repeat polymorphisms tested. The quadruplets are homozygous for
HLA DQA 01 and DQB 0501 (Figure 1). The HLA class II alleles in the
quadruplets are not associated with an increased risk for T1D in the
Czech population.19 Remarkably, all four quadruplets were positive for
anti-islet autoantibodies GAD65 and IA-2A, indicating an ongoing
anti-islet autoimmunity in the non-diabetic quadruplets. The quad-
ruplet C had a reduced first-phase insulin response and a 1-hour
glucose concentration of 8.7 mmol/l, a typical characteristic of a pre-
diabetic stage. Only this quadruplet had an evidence of current
Enterovirus 68–71 infection with IgM, IgA and IgG antibodies. The
father and the other quadruplets had anamnestic Enterovirus 68–71
IgG antibodies only.

Functional genomics
Among the 47 633 probe-sets tested, 2136 entities (with proved
difference Pr0.05. and fold change Z1) were unique for the non-
diabetic quadruplets and 2589 entities were typical of the two diabetic
sisters. Out of 10 immune signalling networks with the largest
differences in the gene expression profile between the diabetic and
the non-diabetic quadruplets (Table 1), 4 are related to antiviral
responses: (i) antiviral actions of interferons, (ii) TRIF-specific
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Figure 1 The family tree with indicated HLA DQ types. The quadruplets

(A–D) are genetically monozygotic and DQ homozygous. The quadruplets
A and B had simultaneous presentation of T1D just 1 month after an

apparent enteroviral infection. The quadruplet C is in the pre-diabetic phase.

The quadruplet D and an older sister (S) are diabetes free. All four

quadruplets (A–D) produce anti-islet cell antibodies to GAD65 and IA-A2

autoantigens. HLA DQ types of mother (M) and Father (F) are also indicated.

Table 1 Ten most differently regulated immune signalling networks

between the diabetic (A and B) and the non-diabetic (C and D)

quadruplets

Signalling pathways P-value

Antiviral actions of interferons 0.0003

Role of TLR-3 and -4 in antiviral response:

Trif-specific signalling pathways

0.0011

IFN alpha/beta signalling pathway 0.0019

IL-27 signalling pathway 0.0034

Antigen presentation by MHC class I 0.0056

IL-4-antiapoptotic action 0.0141

IL-12-induced IFN-gamma production 0.0260

IL-9 signalling pathway 0.0359

Human NKG2D signalling 0.0366

IL-4 signalling pathway 0.0456
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TLR3 and TLR4 signalling pathways, (iii) IFN alpha/beta signalling
and (iv) antigen presentation by MHC class I. Important differences
were also found in four other regulatory pathways related to the
interleukin signalling and T-cell differentiation pathways (IL-4, -9, -12
and -27). A gene cluster analysis of these pathways is presented in the
Figure 2 where the gene expression for the diabetic and the non-
diabetic quadruplets is compared.

Cellularity of Tregs and DCs
The relative number of Tregs was decreased in all family members in
comparison with the value range of the control group (Supplementary
Figure 3a). Similarly, the absolute numbers of pDCs and mDCs were
also decreased compared with the mean of the control subjects
(Supplementary Figure 3b and 3c, respectively). The only exception
for the decrease in pDCs was the older sister and that for the decrease
in mDCs was the quadruplet B.

Spontaneous and induced cytokine production by PBMCs
PMBCs from the diabetic quadruplets produced high levels of
TGF-beta1 and low or undetectable levels of IL-10. A completely
opposite pattern of production of these two cytokines was observed in
the pre-diabetic quadruplet C (Supplementary Figure 4). Remaining
healthy members of the family produced intermediate to low levels of
IL-10 and low to undetectable levels of TGF-beta1. All family members
produced comparable levels of IL-13 (Supplementary Figure 4). Thus,
IL-10/TGF-beta-1 imbalance between the diabetic and the non-dia-
betic members of the family was the most striking result of this
analysis. In addition, we detected higher spontaneous levels of IFN-g
and other Th1 cytokines mainly in the non-diabetic quadruplet D.
Moreover, only the father’s PBMCs produced detectable amounts of
IL-17 (data not shown).

The stimulation of PBMCs with TLR9-specific ligand led to the
increased production of IFN-a in the non-diabetic quadruplets, the
older sister and the mother. Concentration of IFN-a was slightly
increased in the diabetic siblings as opposed to the controls. In
contrast, PBMCs from the father were refractory to TLR9 stimulation
(Supplementary Figure 5).

DISCUSSION

A simultaneous clinical manifestation of T1D in siblings is rare. Taken
into account that the probability of a natural conception of quad-
ruplets is extremely low,23 the chance for the quadruplets to also be
monozygotic and DQ homozygous is truly exceptional. Here, we
documented a unique case of a family with naturally conceived
quadruplets where two of them have already developed T1D and
the third is in a pre-diabetic state with impaired first-phase insulin
response in ivGTT. Moreover, all four quadruplets are positive for
anti-GAD65 and IA-2A antibodies. Thus, the probability for an early
onset of T1D in the two, so far non-diabetic quadruplets is quite
high.24

An interplay between genetic predisposition and environmental
factors is implicated in T1D pathogenesis.25,26 External factors such as
food, infections and stress factors should be taken into account. The
quadruplets had the same duration of lactation and they have similar
eating habits. They all attend the same kindergarten and follow a
standard national vaccination programme. According to their medical
records they did not suffer from any major childhood diseases and
infections. The parents reported that both diabetic quadruplets
showed visible signs of a mild respiratory infection just 1 month
before the onset of diabetes. No other infection or medical conditions
were reported before the onset of T1D. Serological examinations

revealed that, indeed, all the quadruplets suffered from an enteroviral
infection, still ongoing in the pre-diabetic quadruplet C. Viral infec-
tions are considered to have an important role in T1D pathogenesis,
but the exact molecular mechanisms are still unknown.25,26 In this
context, our data are consistent with the recently published meta-
analysis of 33 prevalence studies suggesting that enterovirus infection
is common among patients with T1D.27

Our microarray data provided additional evidence to support the
notion that viral infection may have contributed to the onset of T1D
in the two quadruplets. Notably, cellular anti-viral responses were
more prominent in the diabetic sisters where the antiviral signalling of
interferons was the most significantly affected pathway. In the diabetic
and the non-diabetic sisters, three other virus-sensing pathways
exhibited different activation status, namely, TRIF-dependent TLR3
and TLR4 antiviral responses, IFNa/b signalling and antigen presenta-
tion by MHCI. Various evolutionarily conserved microbial structures,
so-called pathogen-associated molecular patterns, are recognized by
pattern recognition receptors. Toll-like receptors (TLRs) represent a
prototypical class of such receptors that recognize pathogen-associated
molecular patterns.28 Moreover, TLR3 and TLR4 can signal the
presence of viral RNAs and proteins, respectively. In addition, only
TLR3 and 4 signal via adaptor protein TRIF, which triggers antiviral
immune responses through the production of type I interferons
(IFNa/b) and inflammatory cytokines.29 TRIF signalling also leads
to MyD88-independent DC maturation.30 In turn, interferons may
not only significantly contribute to the development of Th1 immune
responses considered as prodiabetogeneic31 but they can also cause the
upregulation of MHC class I molecules on pancreatic beta cells, thus
initiating the diabetogenic process itself.9,32 An alternative pathway
able to transduce the detection of enteroviral infection to interferon
a/b production involves the cytoplasmic helicase receptor MDA5
(melanoma differentiation-associated protein 5).33,34 A recent gen-
ome-wide association study implicated MDA5 in the pathogenesis of
T1D.35 Thus, although we cannot preclude the contribution of other
external factors and type of viruses, our serological and microarray
data argue for a possible involvement of enteroviruses of EV68–71
serotypes in the development of T1D in our quadruplets. The
propensity of stimulated PMBCs isolated from non-diabetic members
of the family (with the exception of the father) to secrete high levels of
IFN-a compared with the controls lends further support for this
conclusion.

The other four pathways with the most prominent differences
between the diabetic and the non-diabetic siblings are cytokine
IL-27, -4, -12 and -9 signalling cascades affecting T-cell differentiation.
Among these interleukins, the most promising candidates for dia-
betes-associated markers seem to be IL-27 and IL-9. Notably, it has
been demonstrated that IL-27 functions as the key regulator of IL-10
and IL-17 production in human CD4+ T cells.36 Nowak and collea-
gues37 also identified IL-9 as a mediator of Th17-driven inflammatory
disease. Moreover, it has also been shown that IL-9 synergizes with
TGF-beta1 to differentiate naive CD4+ T cells into Th17 cells and
postulated an additional role for IL-9 in mediating the suppressive
function of Tregs in experimental autoimmune encephalomyelitis.38

Thus, our microarray data are coherent with these findings and
provide further support for the importance of IL-27 and IL-9 cytokine
signalling in the development of T1D.

FACS analysis of freshly isolated PMBCs from all family members
showed that the first-degree relatives of the diabetic quadruplets
display a general decline in the number of pDCs and/or mDCs.
Moreover, all family members displayed a lower number of naturally
occurring Tregs. This is in agreement with a previously documented
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Figure 2 Microarray heat map of genes belonging to 10 most differentially regulated pathways between the diabetic and the non-diabetic quadruplets.

A simplified view with averaged gene expression values of diabetic (A and B) and non-diabetic sisters (C and D) is presented. Red and blue indicate an
increase and a decrease in the gene expression levels, respectively, as indicated in the scale bar. The affiliation of all listed genes with one of the ten

signaling pathways listed in Table 1 is presented in the Supplementary Table.
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situation where siblings of T1D patients often reveal lower number of
Tregs with impaired functional capabilities.39 We have also previously
reported that PMBCs from young patients with T1D, predominantly
produced Th3 cytokines IL-10 and TGF-b.40,41 However, a predomi-
nant secretion of TGF-b over IL-10 seen in our diabetic quadruplets
has not been reported so far. Strikingly, this production pattern
exhibited a reverse relation in their pre-diabetic sister. Although the
mechanism underpinning this cytokine production pattern is not
known at this time, it is suggestive of a switch in the regulation of
cytokine expression during the transition from pre-diabetic to clini-
cally manifested T1D phase.

The open question is then why, if all quadruplets show signs of
enteroviral infection and concomitantly are positive for anti-islet
autoantibodies GAD65 and IA-2A, only two of them have developed
diabetes despite their identical genetic background? In this respect, the
lack of information concerning the quadruplets’ autoantibody posi-
tivity before enteroviral infection precluded us to establish direct
causative links between the enteroviral seropositivity, islet autoimmu-
nity and the onset of diabetes.42 Enteroviruses enter the body via
ingestion and young children are their main target and reservoir. The
incubation period lasts usually 3–6 days and symptoms of infection
are usually subclinical, or very mild in the form of uncomplicated
summer cold. Initially, enterovirus-specific antibodies of IgM class are
detectable in 1–3 days after infection and are present for several
months. After 7–10 days post-infection, a seroconversion to IgG class
occurs and long lasting antiviral IgG antibodies, called anamnestic, are
produced.43 The quadruplet C is the only individual from this family
that is still serologically positive for the presence of enterovirus-
specific IgM antibodies. Thus, although a pre-diabetic stage of the
quadruplet C correlates with a more recent occurrence of enteroviral
infection, its positivity for anti-islet autoantibodies GAD65 and IA-2A
indicates that this infection might not be a primary cause of the anti-
islet autoimmunity, which rather results from a genetic predisposition
of quadruplets to diabetes.44 This line of arguments is further
supported by a recent study suggesting that the progression from
islet autoimmunity to fully blown T1D may increase after an enter-
ovirus infection.15 In this respect, the timing of infection and its
periodic recurrence as well as a dose of the virus are certainly
important parameters when considering the effect of viral infection
on the same diabetes-susceptible genetic background. It is of note that
a pair-wise concordance of T1D is o40% among monozygotic twins
(data from monozygotic quadruplets are not available) strongly
advocating for a critical role of exogenous factors in the development
of T1D.45,46 Taken altogether, the identical genetic background among
quadruplets does not guarantee the synchronization of the onset of
diabetes. In addition, an individual medical history and immuno-
logical experience reflected in differential level of gene hypermethyla-
tion could represent an important endogenous factor causing a discor-
dance among genetically identical siblings.47 Thus, the correlation
between our microarray data indicating an involvement of viral
infection in the development of diabetes and the appearance of
clinically apparent mild respiratory, possibly viral infection in two
girls 1 month before clinical diagnosis of T1D is indicative that a
viral infection contributed to the autodestructive diabetic process.
Although the identity of this viral agent remains uncertain, EV68–71
serotypes positivity points to enteroviruses as obvious suspects.
However, as we have no direct evidence linking enteroviruses to the
onset of diabetes in these quadruplets, caution has to be exercised in
the interpretation of these results.

In sum, this unique family case study provides a support for the so-
called ‘fertile-field’ hypothesis proposing that genetic predisposition to

anti-islet autoimmunity is ‘fertilized’ and precipitated by viral infec-
tions.48 Our microarray data suggest that the viral activation of
TRIF-mediated TLR signalling amplified by ensuing overproduction
of IFN a/b cytokines could lead to an imbalance between anti- and
pro-inflammatory signals towards the latter, resulting in a relatively
rapid progression of T1D in genetically susceptible young quadru-
plets.18 Several lines of evidence also point to the contribution of
enteroviral insult that preceded the clinically manifested onset of a
fully blown and pre-diabetic stage of T1D in three out of four
quadruplets. The finding that the remaining quadruplet is anti-islet
autoantibody-positive, but still diabetes free with normal glucose
tolerance test likely attests to her genetic predisposition to anti-islet
autoimmunity. Thus, this family case is a prototypical example of the
efficiency of environmental factors to cause disease in genetically
identical predisposed individuals.
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