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Bayes factors in complex genetics

Stephen Sawcer*,1

The past few years have seen tremendous progress in our understanding of the genetics underlying complex disease, with

associated variants being identified in dozens of traits. Despite the fact that this growing body of empirical evidence

unequivocally shows the necessity for extreme levels of significance and large samples sizes, the reasoning behind these

requirements is not always appreciated. As genome-wide association studies reach the limits of their resolution in the search for

rarer and weaker effects, the need for appropriate design and interpretation will become ever more important. If the genetic

analysis of complex disease is to avoid accumulating false positive claims, as it has in the past, then researchers will need to

allow for less tangible variables such as power and prior odds rather than relying exclusively on significance when assessing the

results of these studies. In this review, the basic foundations of association testing are explained from a Bayesian perspective

and the potential benefits of Bayes factors as a means of measuring the weight of evidence in support of an association are

described.
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Testing for association is one of the most frequently used paradigms in
biomedical research. Identifying differences between cases and controls
can shed invaluable light on the aetiology of a disease. Although, in
principle, any potentially relevant ‘exposure’ could be tested for associa-
tion, measuring exposure to environmental factors is frequently complex,
imprecise and subject to bias. Even where established assessment tools
exist, it can be difficult to meaningfully measure an environmental
exposure. If the effect of an exposure is large, such as the effect of
smoking on the risk of developing lung cancer, then crude measures of
the exposure can be sufficient.1 Otherwise, the inaccuracies inherent in
measuring the exposure may swamp any systematic difference. One of
the main advantages of genetics is that an individual’s exposure to any
given allele can generally be measured with extremely high accuracy.
Genotyping data is highly reproducible, both within and across labora-
tories. It is the accuracy with which an exposure can be measured that
ultimately limits the size of effects that can be detected, the more accurate
the measurement, the smaller the effect that can be reliably shown.

WHY DO WE NEED STATISTICS?

As it is never possible to test an exposure in an entire population, we
inevitably have to base our assessment of any potentially relevant
aetiological factor on its appearance in a sample of cases and a sample
of controls. Even when unbiased and truly random, this sampling
process can generate an apparent difference between cases and con-
trols regardless of whether there is a difference at the population level.
Faced with this unavoidable variation, we need a means to assess the
extent to which any observed difference is indicative of a genuine
difference at the population level, as opposed to just being a con-
sequence of random variation in the sampling and/or measurement
process; that is, we need to be able to infer to what extent we can be
sure that any observed association is true as opposed to false positive.

Statistical analysis provides a means to judge the degree of con-
fidence with which we can distinguish between these two opposing
positions (hypotheses); genuine association, in which there really
is an exposure difference at the population level, and the null
hypothesis in which no such difference exists. Assuming that all
sources of variation in the estimates of exposure are random and
free from bias, the more extreme the case–control difference, the more
likely it is that the tested exposure is indeed genuinely associated. The
probability of observing any given level of difference, or something
more extreme, is defined as the significance (P-value) when it is
calculated under the null hypothesis and as the power when it is
calculated under the alternative hypothesis of genuine association.
Before performing any test for association, it is traditional to set some
arbitrary significance cut off value, with the intention to declare results
as ‘positive’ if they are more extreme than this cut off and ‘negative’ if
they are less extreme. This thinking gives rise to the familiar ‘two by
two’ table (see Figure 1).

WHAT SIGNIFICANCE THRESHOLD SHOULD BE SELECTED?

Inspection of Figure 1 shows that for any randomly selected potentially
relevant factor, before any experiment has been performed, the odds
that this factor is genuinely associated with the disease are R/S (the so-
called prior odds). After testing if the result is positive (ie if the
observed P-value is equal to or is more extreme than the selected
significance threshold), then the odds that the tested factor is associated
becomes a/b (the posterior odds). Simple algebra confirms that

PosteriorOdds ¼ Power

Significance

� �
� PriorOdds ð1Þ

This equation shows that the confidence we can place in any positive
result is determined by three variables: the prior odds, the significance
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threshold and the power. The ratio between power and significance
indicates how much more likely one is to see data at or exceeding the
selected threshold if a tested factor is indeed associated as opposed to if it
is unassociated. A significance threshold of 5% (P¼0.05) is traditionally
used in biomedical research. If power is high (c100%) and the prior odds
are even, that is if the null and alternative hypotheses are equally likely
before testing, then the odds that a positive result is true (the posterior
odds) will be 20:1. In short, when these underlying assumptions are
valid, we can expect almost all results that are positive at the 5% level to
be true. However, confidence in the 5% threshold must be lowered if the
power and/or prior odds are reduced (see below).

Analyzing Eq. (1), it is important to remember that no matter how
large the sample size or how strong the effect sought, the power can
never be 41. In this ‘best case’ scenario (Eq. (2)), it is clear that the
Prior Odds are the primary determinant of what significance threshold
needs to be set if the Posterior Odds are to be meaningful. If one
wishes to be confident that a ‘positive’ result is more likely to be true
than false, then one has to set a significance threshold commensurate
with the Prior Odds. If the prior odds are low, as they are in the
genetic analysis of complex disease (see below), then it is essential to
set a correspondingly extreme significance threshold. At less extreme
significance thresholds, the Posterior Odds will remain oo1 and,
therefore, most of the ‘positive’ results will inevitably be false.

PosteriorOdds ¼ 1

Significance

� �
� PriorOdds ð2Þ

Although in any given situation we cannot know the prior odds with
certainty, in the genetics of complex disease it has been possible to

determine very realistic estimates for this critical parameter, at least as
it relates to common variants (genetic variants in which both alleles
have a frequency of more than a few percent). The Human Genome
Project has shown that there are some 10 million common variants in
the human population.2,3 In comparison, segregation analysis of
recurrence risks in complex diseases such as multiple sclerosis
(OMIM 126200) suggest that only a modest number of these variants
are likely to be relevant in any particular disease.4,5 Estimating this
number is difficult as segregation analysis has little ability to distin-
guishing between a restricted number of modest effects (odds ratio,
OR: 1.2–1.3) and a larger number of small effects (OR: o1.1).5

Furthermore, linkage disequilibrium (LD, the correlation between
closely linked variants) means that association may be detectable at
flanking variants as well as causal ones; indeed, current genome-wide
association screening strategies rely on this indirect testing. On the
other hand, as power is inversely related to effect size, the enhanced
prior odds applicable if smaller effects prevail would be offset by
correspondingly reduced power. The inflation in prior odds resulting
from LD is likewise limited by the corresponding reduction in power
at indirectly associated variants. Combining these data suggests that a
figure of 100 is a reasonable estimate for the effective number of
modest effect loci (OR: 1.2–1.3) that are likely to be relevant. These
data thus indicate that the prior odds (ie the odds that any randomly
selected common variant is relevant) are approximately 100 000 to 1
against.6 Others have used alternate logic to come to the same figure
+/� an order of magnitude.7 To secure the same level of confidence in
‘positive’ results that we traditionally associate with the 5% signifi-
cance threshold we must, therefore, set a significance threshold of
approximately 5�10�7. It is only at this extreme P-value that we can
adequately compensate for the very low prior probability that any
randomly selected variant is in fact genuinely associated.7 One way to
improve the prior odds is to use existing knowledge to guide the
selection of variants to study, the so-called candidate gene approach.
This ideology has been the cornerstone of the genetic analysis of
complex disease for several decades. However, even if all available
sources of additional information are used in an exercise called
genomic convergence,8 it is unlikely that prior odds can be improved
much beyond 1000 to 1 against.9 Assuming the logic used to judge a
variant as a candidate is sound, then for strong candidate variants, we
might be able to relax the significance threshold to 10�4. It is
important to draw a distinction between selecting a variant for
study on the basis of some preconceived logic regarding its candida-
ture and inventing an apparent explanation for why a variant
identified as part of a screening process might be thought of as a
candidate. It seems inescapable that the later will have less effect on the
prior odds and will, therefore, provide lower posterior odds.

The need to use an extreme significance threshold in the genetic
analysis of complex disease is a consequence of the size of the genome
and is uninfluenced by the strength of the effects sought. Working on
isolated populations or in clinically more refined sub-groups, in which
more favourable allele frequencies and/or effect sizes might be hoped
for, does not negate the need for an extreme significance threshold.
Even if the theorized advantages of these study designs are correct, and
the increase in power is able to offset any accompanying reduction in
sample size, the required significance threshold cannot be relaxed.
Indeed, as most of these strategies are only likely to improve the power
to find some of the relevant risk alleles, it could be argued that they
effectively reduce the prior odds and, therefore, require even more
extreme significance.

In the context of this absolute requirement for an extreme sig-
nificance threshold, two questions immediately spring to mind.

Figure 1 This figure shows the familiar two by two table, the null and

alternative hypotheses in the columns and the two alternate test outcomes in

the rows. If we consider a particular class of potentially relevant exposures
(for example, genetic variant that are common in the human population),

there might be N of these in total of which R are genuinely associated (the

‘True’ hypothesis holds) and S are not associated (the ‘null’ hypothesis

holds). For any given sample and selected significance threshold, if all N

factors were tested, then a certain number from each class would give

positive test results and the remainder would test negative. If we imagine

averaging these counts over all possible studies with the same design,

we can complete the expected numbers in each cell of the two by two table.

Among the genuinely associated factors, on average ‘a’ will exceed the

selected significance threshold and ‘c’ will not (a+c¼R). Likewise, among

the unassociated factors on average ‘b’ will exceed the selected significance

threshold and ‘d’ will not (b+d¼S). Respectively a, b, c and d are the

true positives, false positives, false negatives and true negatives. As

significance is defined as the probability of seeing data this extreme or more

extreme if an unassociated factor is tested, then by definition significance¼
b/S. Similarly, as power is defined as the probability of seeing data this

extreme or more extreme if an associated factors is tested (ie under the

alternative hypothesis), then again by definition power¼a/R.
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WHAT SAMPLE SIZE SHOULD BE USED?

The sample size needed to ensure that there is adequate power to
identify association at the required significance threshold depends on
the strength of the effects being sought. Again, although we cannot
know with any certainty what effect sizes will be relevant in a complex
disease, whole genome linkage analysis provides some important
information, which sets a crude upper limit on these effects (this
limit is less restrictive for rarer alleles). After more than a decade of
whole genome linkage screening, it is evident that very few common risk
alleles are detectable by linkage. In multiple sclerosis, for example, the
high-density single-nucleotide polymorphism (SNP)-based whole gen-
ome linkage screen performed by the International Multiple Sclerosis
Genetics Consortium only found one region of linkage, that due to the
well-established association with the *1501 allele of the DRB1 gene from
the major histocompatibility complex.10 No other significant linkage
was identified in this well-powered screen. The results from this screen
and similar studies in other complex diseases indicate that apart from
the few loci, such as those identified by linkage, common variants
influencing the risk of complex traits are extremely unlikely to increase
risk by more than a factor of 2.0, and most likely by o1.5. At this level,
at least 2000 cases and 2000 controls are required to provide power to
identify association with a common variant at a significance threshold of
5�10�7.7 See Supplementary data file for more information.6

HOW SHOULD WE INTERPRET INTERMEDIATE RESULTS?

Comparing and contrasting the results from association studies is not
always straightforward, as the strength of evidence for association is a
complex reflection of both the observed P-value and the power of the
study. This issue is especially relevant for results falling in the
intermediate range, that is in which the P-value has more extreme
significance than the familiar 5%, but does not quite reach the 5�10–7

level. Fortunately, Bayes factors (BFs) provide a single measure of the
strength of evidence for association, which appropriately integrates the
influences of the observed P-value and the power of the study,
enabling meaningful ranking of results within and across the studies.

BAYES FACTORS

For a given set of observed data, Eq. (3) shows the relationship
between the posterior odds and the prior odds

PosteriorOdds ¼ P1

P0

� �
� PriorOdds ð3Þ

where P1 is the probability of observing this particular set of data if the
tested variant is genuinely associated at the population level and P0 is the
probability of seeing the same data if the tested variant is not associated
(ie under the null hypothesis). This ratio is known as a Bayes Factor
(BF) and is akin to the ratio of power and significance in Eq. (1). The
difference here is that the probabilities P1 and P0 relate to the particular
set of data that has been observed rather than the probability of seeing
data at or more extreme than a selected threshold. In many respects,
Log10(BF) might be thought of as the association study equivalent of a
LOD score in a linkage analysis. Both Log10(BF) and LOD scores are
Log10 measures of how much more likely it is to see the observed data if
the tested variant is genuinely relevant as opposed to the null. Empirical
data from linkage analysis has confirmed the theoretical prediction that
LOD scores need to be 43.6 if they are to compensate for the low prior
odds of linkage and have a high posterior odds of being true.11 Likewise,
we can see that Log10(BF) must be c5 if a result is to adequately
compensate for the even lower prior odds of association.

The difficulty of course is calculating the values of P1 and P0,
especially the former. As we cannot know for certain what effect is

attributable to any given locus, we can only calculate the BF for a
given set of data by making assumptions about the underlying effects.
If we have tested a bi-allelic variant such as a common SNP with a
minor allele frequency of 10%, then if we assume a particular
heterozygote OR (eg 1.2) and genetic model, the calculated BF will
tell us something about the extent to which the observed data
supports this particular possibility. If the Log10(BF) value calculated
in this way is c5, then we can be confident that the observation is
likely to be true positive; the more extreme the BF value, the more
likely it is to be true. For less extreme Log10(BF) values (ie those r5),
although the posterior odds will be o1, the results can at least be
ranked against other tests in terms of strength of evidence. The
P-value alone does not always allow this clarity (see Box 1). Further
mathematical and practical detail concerning the calculation of BFs is
provided in Supplementary data file.

If we make the simplifying assumption that all the risk alleles in a
complex disease have the same OR and risk allele frequency, then we can
produce Figure 2, indicating the posterior odds that would be conferred
by any observed P-value in this simplified scenario. This figure illustrates
the futility of small (under powered) studies. The curves for small
studies are close to horizontal, indicating that whatever the result may
be, there is little change in the odds in favour of association. If the
P-value from such a study fails to reach nominal significance, then
nothing has been excluded. Likewise, even if the P-value exceeds the
nominal significance threshold, it is highly likely to be false positive.
If the P-value is very extreme (eg exceeds the 5�10–7 threshold), then
one should be highly suspicious of the study methodology. As there is
little power to see this level of significance in a study of this size, the
result is most likely to reflect some unappreciated bias. The alternative
view, that the study has by ‘good luck’ identified a common allele with a
very large effect, is inconsistent with available linkage data and should,
therefore, be viewed with considerable suspicion.

Very larger sample sizes, on the other hand, not only provide
substantial power to identify levels of significance associated with

Figure 2 The figure shows the relationship between the Posterior Odds that

a result is true (plotted on a Log10 scale on the y axis) and the observed

P-value (plotted on a Log10 scale on the x axis). Five sample sizes are listed

in the legend; in each, the number of cases and controls is equal; the 200

line thus indicates the posterior odds for a study involving 200 cases and

200 controls and so on. BFs were calculated using the SNPTEST program 7

assuming that the risk allele has a frequency of 10%, an odds ratio (OR) of

1.2 and follow multiplicative model. The Prior Odds are assumed to be 105

against. These curves are calculated assuming that studies are free from

imperfections such as genotyping error, population stratification and

differential missingness. In real studies, these issues may further confound

interpretation and bias results.6

Interpreting complex genetics
S Sawcer

748

European Journal of Human Genetics



high posterior odds, but also enable variants, which fail to reach
nominal significance to be excluded. For sample sizes in the 10 000
case range, variants that have P-values of 45% have Log10(BF) values
that are o �2, indicating that the odds that this variant exerts on the
tested effect, have been reduced by more than a factor of 100. The slope
and position of these curves are critically dependent on the underlying
model assumed in calculating the BFs (see Supplementary data). If we
consider smaller underlying effect sizes, then even the 10 000 case line
will start to lean over towards the horizontal, indicating that for a study
to be discriminating in identifying much smaller effects, even larger
samples sizes will be necessary. As we do not actually know the
underlying effect sizes, one way to deal with this uncertainty is to
calculate P0 and P1 for each possible effect size and then integrate these
values, weighting each by the probability of that effect size. This process
requires us to make some prior assumption about the probability of
each effect size. A normal distribution of effects sizes has been suggested
such that 30% of the effects have an OR of 41.2, but only 2% have an
OR of 41.5 etc.7 The problem with the BFs calculated in this manner is
that most of the underlying effect sizes considered are very small and,
therefore, for sample sizes such as those considered in Figure 2, there is
little power to identify most of the presumed underlying effects. As a
result, such BFs are little different between these studies.

The important influence of allele frequency on power, and, there-
fore, the BF associated with any given P-value, is illustrated in Figure 3.
As we would anticipate, there is very little difference in these curves for

Box 1

The hypothetical studies summarized in Table 1 illustrate the value of BFs. In each case, the observed P-value is 1% and, therefore, on its own provides no guidance as to

which of these studies is the more likely to be a true positive association. The BFs, on the other hand, are substantially different and enable the studies to be ranked in terms

of the strength of evidence each indicates.

We can understand why the BFs are different in these hypothetical studies by considering the power to identify the particular effect assumed in calculating these factors. In

study 1, the sample size is appropriate for identifying the effect considered, whereas in study 2, the sample size is inadequate and in study 3, the sample size is considerably

more than is necessary. These studies are thus, respectively, appropriately powered, underpowered and ‘over’ powered (at this level of significance and for an effect of this

size). When a study is underpowered, the probability of seeing the observed data, if the locus does exert the tested effect (P1), is little different from the probability of seeing

the data by chance alone (P0). Thus, for underpowered studies, the BF will be close to 1 and Log10(BF) close to 0. Interpreting the result from study 3 is somewhat less

intuitively obvious. In this study, the sample size is such that we would expect the P-value to be very much more extreme than 1% if this locus really did have an OR of 1.2.

For this particular effect, the probability of seeing data resulting in a P-value of only 1% (P1) is actually smaller than the probability of seeing these data by chance alone (P0).

With P1 oP0, the BF will be o1 and Log10(BF) will be negative. In other words, observing a P-value rather less extreme than we would expect, given the assumed effect,

actually provides evidence against the locus being truly associated. Study 4 illustrates the important influence that allele frequency has on power; for a variant with an allele

frequency of 1%, a study involving 2000 cases and 2000 controls provides very little power so again the Log10(BF) is close to 0.

A BF indicates the degree to which an observed set of data is consistent with an assumed underlying effect. An alternative question is to ask what underlying effect is most

consistent with the observed data. Finding the maximum likelihood solution to Eq. (3) to determine the underlying effect that is most consistent with the observed data (and its

confidence interval) is a familiar exercise and has the appeal that it requires fewer assumptions than are needed to calculate a BF. However, the results generated in this way will

only be meaningful if the posterior odds that result is true are c1. If the BF is insufficient to compensate for the low prior odds, then any apparent association is likely to be a

false positive and any calculated estimate of the ‘most likely’ effect size will be virtually meaningless. Considering the final column in the table illustrates this point. Inspection

of these calculated values shows a counterintuitive inverse relationship between power (sample size) and estimated effect size; the less powerful the study the greater the

estimated effect. In other words, studies that have the least chance to identify any real effect could be interpreted as having ‘identified’ the most interesting effects!

Unfortunately, the practice of reporting estimated effect sizes for results of intermediate significance (ie those with P-values of o5% but 45�10�7) rather than only calculating

these estimates for results with high posterior odds of being true further confounds the interpretation of association studies. It is unfortunate that journals and authors have a

tendency to report results such as those from study 2 as ‘a significant association identifying a risk allele exerting a large effect’, an interpretation that can be misleading.

Table 1 Hypothetical case-control studies showing association with the same significance but different BF

Study N cases N controls MAF/% P-value Log10(BF)
a OR (CI)

1 2000 2000 10 0.01 1.18 1.20 (1.05–1.39)

2 100 100 10 0.01 0.35 2.11 (1.18–3.78)

3 10 000 10 000 10 0.01 �0.78 1.09 (1.02–1.16)

4 2000 2000 1 0.01 0.58 1.69 (1.14–2.50)

MAF, minor allele frequency; OR, odds ratio; the ratio of the odds of having the disease if you are a heterozygote (ie carry one copy of the risk allele) as compared with the odds of having the
disease if you are a homozygote for the wild-type allele (ie carry no copies of the risk allele). For modest effects like these OREGRR. CI¼95% (confidence interval in the OR).
aThe BFs were calculated assuming that in each study the minor allele is the risk allele (RAF¼MAF), the OR¼1.2 and a multiplicative model applied.

Figure 3 The figure shows the relationship between the Posterior Odds that

a result is true (plotted on a Log10 scale on the y axis) and the observed

P-value (plotted on a Log10 scale on the x axis). The curves are based on a

study using 2000 cases and 2000 controls and assume differing risk allele

frequencies, as shown in the legend. BFs were calculated using the

SNPTEST program7 assuming an odds ratio (OR) of 1.2 and a multiplicative
model. The Prior Odds are assumed to be 105 against. These curves are

calculated assuming that studies are free from imperfections such as

genotyping error, population stratification and differential missingness. In

real studies, these issues may further confound interpretation and bias

results.6
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common alleles, but as the power drops off significantly for variants
with minor allele frequencies of less than a few percent, the curves for
these variants are substantially more horizontal.

CONCLUSION

For many years, researchers in complex genetics have naively relied on
the traditional interpretation of association studies and assumed that P-
values of o5% indicate true positive findings regardless of the sample
size considered. It has taken the field some time to realize that two
inescapable issues undermine this position and demand a more
stringent analysis. First, the extremely low prior odds that any given
common variant is relevant (c100 000:1 against) means that a corre-
spondingly more extreme significance threshold must be used before
the posterior odds can reliably be assumed to be 41. The fact that
complex genetics requires P-values of o5�10�7 to produce the same
confidence that we traditional associate with the 5% threshold has been
a bitter pill to swallow. The second and equally difficult issue is that of
effect size. The fact that with very few exceptions, whole genome linkage
analysis has failed to identify genes of relevance in complex disease
places an upper limit on the size of effects that can be attributable to
common variants. These modest effect sizes, especially when combined
with the requirement for extreme significance, mean that sample sizes
have to be large. For many years, we have based our association studies
on a few hundred cases and controls in the belief that the effects being
sort would more than double the risk. In reality, very few such loci exist
in any given complex trait, and it is now clear that most relevant
common variants have OR of o1.3. For effects of this size, studies must
involve thousands rather than hundreds of samples.

The fact that extreme levels of significance are necessary to
compensate for the low prior odds and that very large sample sizes
are needed to provide sufficient power to identify modest effect sizes
at these high levels of significance has set a new standard, but has also
left a gap in which interpretation of results is less clear. What should
we make of the studies that generate intermediate P-values (o5% but
45�10�7)? Interpretation requires consideration of both the P-value
and the power, which in turn is influenced by sample size and allele
frequency. Fortunately, BFs provide a single measure, which integrates
these various influences and provide a meaningful single measure
regarding the strength of evidence provided by any observed data.
Considering the BFs in relation to any particular signal strength allows
one to infer to what extent that particular effects has been supported
or even excluded by the observed data. The fact that BFs provide a
clearer measure for the weight of evidence in favour of association
means that they will also help interpretation of whether or not
candidate biological pathways are enriched for modest associations.
It should be noted that the account presented here relates to case–
control studies and that subtle, but potentially important, differences
might apply in calculating the BFs for studies with alternate designs.

The Bayesian framework described above is not the only way to
interpret the data emerging from complex genetics and is by no means
definitive. The method used to estimate the prior odds is crude and
the power calculations are based on mathematically convenient
models, which have no obvious biological counter part.12 The
frequentist framework provides an alternate way to interpret these
data in this approach the significance threshold is adjusted to correct
for multiple testing (using methods such as the Bonferroni correc-
tion13 or the false discovery rate14) and thereby control the family-wise
error rate. Although a frequentist interpretation has the advantage that

it avoids the need to estimate prior odds, it turns out to be no more
robust, as estimating multiplicity is predictably as crude as estimating
prior odds.15–17 Furthermore, it turns out that the recommended
significance thresholds emerging from frequentist analysis are virtually
identical to those provided by Bayesian analysis.18,19 The convergence
of these various interpretations is unsurprising as ultimately each is
simply trying to adequately compensate for the enormous size of the
human genome. Which ever framework of interpretation is preferred
it is clear from the available empirical evidence20 that the recom-
mended thresholds are valid and ignored at a researcher’s peril.
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