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Phenotypes and genotypes of insulin-like growth
factor 1, IGF-binding protein-3 and cancer risk:
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Insulin-like growth factor 1 (IGF1) and its main binding protein, IGF-binding protein 3 (IGFBP3), play an
important role in cancer development. Circulating levels and functional polymorphisms of IGF1 and
IGFBP3 may be biomarkers of cancer development. However, the results of published studies remain
conflicting rather than conclusive. We searched MEDLINE and EMBASE databases for all published studies
related to circulating levels and polymorphisms of IGF1 and IGFBP3 and cancer risk. In all, 96 studies and
over 110 000 subjects were available for this meta-analysis. Higher IGF1 circulating levels significantly
increased 15% of cancer risk (odds ratio (OR), 1.15, 95% confidence interval (CI), 1.03–1.29), especially
among prostate, pre-menopausal breast and colorectal cancer patients, whereas higher concentrations of
IGFBP3 significantly decreased the risk of advanced prostate cancer by 56% (OR, 0.44, 95% CI, 0.25–0.77).
Meanwhile, IGFBP3 �202CC genotype was associated with an increased risk of prostate cancer with
borderline significance (OR, 1.18, 95% CI, 0.99–1.41). Genotype–phenotype correlation analyses showed
that circulating levels of IGFBP3 could be modified by its promoter polymorphism A�202C (P o 0.001). In
conclusion, circulating levels of IGF1, IGFBP3 and IGFBP3 A�202C play a crucial role in carcinogenesis and
could serve as susceptibility biomarkers for cancer development.
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Introduction
Insulin-like growth factor-1 (IGF1) is an important regu-

lator of cellular proliferation, differentiation and apop-

tosis.1 More than 90% of the circulating IGF1 is bound to

insulin-like growth factor-binding protein-3 (IGFBP3),

which regulates the biological activity of IGF1. It was

reported that there was a great interindividual variation in

serum levels of IGF1 and IGFBP32 and several epidemiolo-

gical observations showed that circulating levels of IGF1,

IGFBP3 and their molar ratio were associated with risk of

common cancers.3 –5 Twin studies suggested a genetic basis

accounting for nearly 60% of the interindividual variability

of circulating levels of IGF1 and IGFBP3.6 Several genetic

polymorphisms were identified to influence the circulating

levels of IGF1 and IGFBP3. For example, the number of

(CA)n dinucleotide repeat at 1 kb upstream from the

transcription start site of IGF1 was found to be inversely

correlated with the transcription activity of IGF1.7,8

Meanwhile, two genetic variants were reported to link to

IGFBP3 levels.9 –11 One is a promoter single nucleotide
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polymorphism (SNP) located at position �202 (rs2854744,

A4C) from the transcription start site of IGFBP3,9 resulting

in a reduced promoter activity and decreased IGFBP3

levels.9,10 The other one is a non-synonymous substitution,

Gly32Ala (rs2854746, G4C), and the presence of the

variant 32Ala allele was inversely associated with

IGFBP3 levels.11

Recently, molecular epidemiological studies showed that

these SNPs, such as IGF1 (CA)n, IGFBP3 A�202C and

Gly32Ala, were associated with susceptibility of diverse

cancers, including breast12–14 prostate,15 colorectal16 and

gastric cancers.17 However, the results were controversial

rather than conclusive.18,19 To estimate the effect of

phenotypes (circulating levels) and genotypes (functional

SNPs) of IGF1 and IGFBP3 associated with the risk of

multiple cancer sites as well as individual cancers, we

conducted a systematic meta-analysis with 96 published

studies.

Subjects and methods
Identification and eligibility of studies

We included all the studies with epidemiological study

designs of case–control, cohort, or cross-sectional studies,

published to date on the associations of phenotypes

(circulating concentrations) and genotypes (SNPs) of IGF1

and IGFBP3 with cancer risk. Eligible studies were identi-

fied by searching the electronic literatures (MEDLINE and

EMBASE) for relevant reports (last search date on April 30,

2008, using the search terms ‘IGF* and cancer’ and ‘IGF*

polymorphisms and cancer’) by two independent investi-

gators (W Chen and S Wang). Additional studies were

identified by a hand search of references of original studies

or review articles on this topic.3,4,18 –22 All the available

studies should describe their data with ORs and 95% CIs,

and have at least three categories (for example, tertiles to

quintiles) of IGF1 and IGFBP3 levels. If studies had partly

overlapped subjects, only the one with a larger sample size

was selected. The two investigators (W Chen and S Wang)

reached coherence on all the selected studies included in

the final analyses.

As a result, 96 published studies were eligible for further

analyses. Sixty-five studies were available for phenotype

analysis (63 for IGF1, 60 for IGFBP3 and 21 for IGF1/

IGFBP3 molar ratio), including 15212 cases and 27913

controls. Pre- and post-menopausal breast cancers were

evaluated separately. For IGF1, two studies had only

stratified information by age or sex, so we divided them

into two substudies.23,24 Twenty-seven studies investigated

the potential functional polymorphisms (19 for IGF1

(CA)n, 16 for IGFBP3 A�202C and 6 for IGFBP3 Gly32Ala),

including 27852 cases and 40354 controls. One multi-

center study14 was included and two duplicated articles

were excluded for the association between genotypes and

cancer risk.25,26 Nine studies were available for genotype–

phenotype correlation analysis.

Data extraction

All the selected studies presented their main findings with

ORs and 95% CIs in terms of phenotypes (levels of IGF1,

IGFBP3 or IGF1/IGFBP3molar ratio) and cancer risk.

Genotype frequencies were collected to pool the poly-

morphism data. In the genotype–phenotype correlation

analysis, to avoid the influence of IGF1 or IGFBP3

levels from therapeutic effects, we only analyzed the

relevant information in healthy controls. Different ethni-

cities were categorized as Asian, African and Caucasian.

Subjects without exact ethnic information were classified

as the mixed ethnic subgroup (Supplementary Tables 1

and 2).

Statistical analysis
Phenotypes and cancer risk As different laboratories

adopted different methods or assays to test circulating

concentrations of IGF1 and IGFBP3, we could not directly

compare the reported values from these studies. Therefore,

we used quantified meta-regression analyses for the

associations of IGF1, IGFBP3 and/or IGF1/IGFBP3 molar

ratio with cancer risk using random-effect model, based on

DerSimonian and Laird method27 of maximally adjusted

ORs (comparing the highest with the lowest category,

Renehan et al.4) (Supplementary Table 3).

IGF1 and IGFBP3 polymorphisms and cancer risk IGF1

(CA)n, IGFBP3 A�202C and Gly32Ala polymorphisms were

tested for their associations with cancer susceptibility

based on different genetic models. For IGF1 (CA)n, the

number of (CA)n repeats being used in the analysis was

either n¼19 or other numbers for all the studies included

in the final analysis (for example, dominant model:

(IGF119/19þ IGF119/non19) vs IGF1non19/non19; recessive

model: IGF119/19 vs (IGF1non19/non19 þ IGF119/non19) and

homozygote comparison: IGF119/19 vs IGF1non19/non19).

Fixed-effect model, based on Mantel–Haenszel method,28

was used when no significant heterogeneity among the

studies was found (P40.05). Otherwise, a random-effect

model was chosen. Subgroup analyses, according to tumor

types (if one tumor type was studied by fewer than three

individual studies, it was classified as the ‘other tumors’

group), ethnicity, and study design (nested case–control,

population-based case–control and hospital-based case–

control) were also performed.

Genotype–phenotype correlation We also investigated

the correlation between the two promoter polymorphisms,

IGF1 (CA)n and IGFBP3 A�202C, and their phenotypes

(circulating concentrations). For these two loci, two

category mean levels were obtained to calculate the

weight mean difference between the two homozygotes
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(IGF1 (CA)n repeats: IGF119/19 vs IGF1non19/non19; IGFBP3

A�202C: AA vs CC). A random-effect model was used to

allow for heterogeneity among different studies.27

Test of heterogeneity and publication bias DerSimonian

and Laird Q test was used to assess the degree of

heterogeneity between studies and the heterogeneity was

considered significant when Po0.05.29 When the between-

study heterogeneity was found, a random-effect model

was conducted. Sources of heterogeneity were determined

by using random-effect meta-regression models with

restricted maximum likelihood estimation. The inter-study

variance (t2) was used to quantify the degree of hetero-

geneity between studies and the percentage of t2 was used

to describe the extent of explained heterogeneity.30 Pub-

lication bias was evaluated by the linear regression

asymmetry test by Egger et al31

All data were analyzed in Statistical Analysis System

software (v.9.1.3; SAS Institute, Cary, NC, USA), STATA7.0

(Stata-Corp, College Station, TX, USA) and Review

Manager (v.4.2; Oxford, England). All P-values were based

on two-sided tests and a P-value of less than 0.05 was

considered statistically significant.

Results
Phenotypes and cancer risk

Sixty-five studies were included to assess the associations of

IGF1 and IGFBP3 levels with cancer risk. Among them,

there were 21 studies for prostate cancer, 11 for pre-

menopausal breast cancer, 9 for post-menopausal breast

cancer, 10 for colorectal cancer, 5 for lung cancer, 5 for

endometrial cancer, 4 for ovarian cancer, 3 for pancreatic

cancer and 5 for other tumors (Supplementary Table 1).

As a result, higher concentrations of IGF1 significantly

increased 15% of overall cancer risk (OR, 1.15; 95% CI,

1.03–1.29), especially increased risk of colorectal cancer

(OR, 1.28; 95% CI, 1.02–1.61), pre-menopausal breast

cancer (OR, 1.52; 95% CI, 1.23–1.88) and prostate cancer

(OR, 1.24; 95% CI, 1.01–1.53) (Table 1). In addition, we

found that higher IGF1 significantly increased cancer

risk among Asians (OR, 1.34; 95% CI, 1.06–1.71) and

Caucasians (OR, 1.18; 95% CI, 1.02–1.35), in nested case–

control studies (OR, 1.17; 95% CI, 1.05–1.31) and popu-

lation-based case–control studies (OR, 1.60; 95% CI,

1.02–2.52) (Table 1).

For IGFBP3, 60 studies were eligible for phenotype-

cancer risk analysis. High levels of IGFBP3 significantly

increased risk of pre-menopausal breast cancer (OR, 1.41;

95% CI, 1.03–1.94), but they decreased risk of advanced

prostate cancer risk by 56% (OR, 0.44; 95% CI, 0.25–0.77)

(Table 2, Figure 1). Twenty-one studies (4603 cases and

9165 controls) detected circulating levels of both IGF1

and IGFBP3, and evaluated the associations between

their molar ratio and cancer risk. We found that higher

IGF1/IGFBP3 molar ratio could increase colorectal

cancer risk with borderline significance (OR, 1.70; 95%

CI, 0.98–2.96).

Table 1 Association between circulating concentrations of IGF1 (highest vs lowest) and cancer risk

Variants Category Participants Ca/Co No. No. of studies OR (95% CI) Pa Pb

Overall effect 14489/27061 63 1.15 (1.03–1.29) 0.014 o0.001
Cancer site Prostate cancer 5482/9415 21 1.24 (1.01–1.53) 0.049 0.001

Pre-menopausal breast cancerc 1525/2566 11 1.52 (1.23–1.88) o0.001 0.421
Post-menopausal breast cancerc 1142/1667 9 1.02 (0.78–1.34) 0.885 0.576
Colorectal cancer 1909/3783 9 1.28 (1.02–1.61) 0.031 0.328
Endometrial cancer 808/884 5 0.68 (0.43–1.06) 0.376 0.258
Lung cancer 886/1841 5 0.96 (0.55–1.69) 0.885 0.024
Ovarian cancer 627/1358 4 0.93 (0.51–1.67) 0.799 0.034
Pancreatic cancer 374/1242 3 0.87 (0.57–1.33) 0.507 0.547
Other cancers 1736/4305 5 0.92 (0.48–1.72) 0.783 o0.001

Ethnic groupsd Asian 2109/4099 10 1.34 (1.06–1.71) 0.016 0.238
Caucasian 7630/15076 35 1.18 (1.02–1.35) 0.021 0.001
African American 430/490 2 0.79 (0.40–1.54) 0.486 0.503
Mixed race 4320/7396 16 1.14 (0.76–1.35) 0.924 o0.001

Study designe Nested case–control 10094/21065 42 1.17 (1.05–1.31) 0.003 0.035
P-based case–control 1586/2138 6 1.60 (1.02–2.52) 0.035 0.012
H-based case–control 2809/3858 15 0.84 (0.60–1.20) 0.344 o0.001

aP-value for a significant test.
bP for the test of heterogeneity.
cPre-menopausal and post-menopausal breast cancer patients were separately investigated.
dA multiethnic study was divided according to ethnic group (eg, Asian, Caucasian and African).
eProspective study was nominated as ‘‘Nested case–control study’’; P-based case–control study: population-based case–control study; H-based case–
control study: hospital-based case–control study.
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Functional polymorphisms and cancer risk

Twenty-seven studies investigated the polymorphisms

and cancer risk (19 for IGF1 (CA)n, 16 for IGFBP3

A�202C and 6 for IGFBP3 Gly32Ala) (Supplementary Table

2). For IGF1 (CA)n, we did not find any significant main

effects on cancer risk in both dominant and recessive

models (OR, 1.06; 95% CI, 0.93–1.20 in a dominant

model; OR, 0.95; 95% CI, 0.90–1.01 in a recessive model).

In the stratified analysis by race, common allele IGF1

(CA)19 significantly increased cancer risk among Asians in

the dominant model and homozygote comparison (pooled

ORs (95% CIs): 1.29(1.13–1.47) in the dominant model;

1.26(1.02–1.57) in homozygote comparison, respectively),

but not among other ethnicities (data not shown).

For IGFBP3 A�202C, variant allele was not associated

with overall cancer risk either in dominant (OR, 1.03;

95% CI, 0.97–1.10) or recessive models (OR, 1.02; 95% CI,

0.97–1.06, Supplemental Figure 1). However, �202C

significantly contributed to breast cancer risk in the

dominant genetic model (OR, 1.07; 95% CI, 1.01–1.13).

Table 2 Circulating levels of IGF1, IGFBP3 relation to prostate cancer risk according to specific grade and stage

Variants Category Participants Ca/Co No. Selected studies OR (95% CI) Pa Pb

IGF1
Advanced prostate cancerc 1464/1794 4 2.40 (1.49–3.87) o0.001 0.445
Localized prostate cancerc 1674/2108 5 1.65 (1.08–2.56) 0.022 0.057
Pooled effecte 1674/2108 5 1.96 (1.36–2.83) o0.001 0.254

High-grade prostate cancerd 1798/1950 4 1.27 (0.83–1.93) 0.268 0.318
Low-grade prostate cancerd 1798/1950 4 1.51 (1.27–2.02) 0.006 0.491
Pooled effecte 1798/1950 4 1.45 (1.18–1.78) o0.001 0.481

IGFBP3
Advanced prostate cancerc 1464/1794 4 0.44 (0.25–0.77) 0.004 0.199
Localized prostate cancerc 1674/2108 5 0.97 (0.75–1.26) 0.844 0.459
Pooled effecte 1674/2108 5 0.68 (0.31–1.47) 0.328 0.012

High-grade prostate cancerd 1798/1950 4 1.05 (0.68–1.62) 0.815 0.265
Low-grade prostate cancerd 1798/1950 4 0.95 (0.70–1.27) 0.713 0.403
Pooled effecte 1798/1950 4 0.98 (0.77–1.25) 0.878 0.709

aP-value for a significant test.
bP for the test of heterogeneity.
cAdvanced prostate cancer: tumor stage: T3, T4 or N1, M1; localized prostate cancer: tumor stage: T1 or T2.
dHigh-grade prostate cancer: GleasonZ7; low-grade prostate cancer: Gleasono7.
eThree studies clearly stated the ORs and 95% CIs related to prostate cancer risk according to different tumor stage and tumor grade,47,51,54 and one
study was only available in tumor grade,52 other two studies reported their results in different tumor stages,48,49 so available data was analyzed in the
meta-analysis (including participants and selected ORs, 95% CIs).

IGFI  associated with advanced prostate cancer IGFBP3  associated with advanced prostate cancer 
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Figure 1 Circulating concentrations of IGF1 or IGFBP3 relation to prostate cancer risks.
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We also observed that �202C allele was associated with a

13% increased risk of prostate cancer in the recessive model

(OR, 1.13; 95% CI, 0.97–1.31). However, the effect was not

statistically significant (P¼0.110). For IGFBP3 Gly32Ala,

no significant associations were found (Table 3).

Genotype–phenotype correlation

The two promoter polymorphisms, IGF (CA)n and IGFBP3

A�202C, were suggested to be associated with transcription

activity of their target genes.32,33 To further evaluate the

genotype–phenotype correlations, we conducted the

analyses between these genetic variants and circulating

levels of IGF1 and IGFBP3 in healthy controls. Five studies

were available for the analysis between IGF1 (CA)n poly-

morphism and IGF1 levels,11,34–37 but no significant

correlation was found (Table 4). Notably, five studies were

available for the correlation analysis between IGFBP3

A�202C and circulating levels of IGFBP3,9,16,25,37,38 and

we found that the circulating IGFBP3 could be influenced by

A�202C (AA vs CC: weight mean difference, 545.97ng/ml;

95% CI, 412.38–679.56; Po0.001) (Table 4, Figure 2).

Test of heterogeneity and publication bias

We evaluated the sources of heterogeneity in relation to

cancer site, study design and ethnicity. We found that the

cancer site could explain substantial altered heterogeneity

among studies focusing on phenotypes and cancer risk

(55.1, 27.0 and 52.7% for IGF1, IGFBP3 and their molar

ratio, respectively). For example, higher levels of IGF1

significantly increased the risk of prostate cancer, pre-

menopausal breast cancer and colorectal cancer (OR, 1.24;

95% CI, 1.01–1.53, OR, 1.52; 95% CI, 1.23–1.88 and OR,

1.28; 95% CI, 1.02–1.61, respectively), but no significant

evidence was found in other cancer sites (Table 1). For IGF1

phenotype, increased risks were found in both nested and

population-based case–control studies, but disappeared in

hospital-based studies (OR, 1.17; 95%, 1.05–1.31; OR, 1.60;

95%, 1.02–2.52 and OR, 0.84; 95%, 0.60–1.20, respec-

tively). Higher levels of IGF1 increased cancer risk in Asians

and Caucasians, but not in Africans. Therefore, study

design and ethnicity contributed 28 and 11.6%, respec-

tively, of the heterogeneity. As for the association

between polymorphisms of IGF1 or IGFBP3 and cancer

risk, the three factors (ethnicity, cancer site, study design)

combined contributed more than 90% heterogeneity

of i2 totally.

Egger’s test was used to detect the potential publication

bias, which was more pronounced when the higher

intercept deviated from zero in linear regression analysis.

We did not find significant publication bias for circulating

levels of IGF1 and IGF1/IGFBP3 molar ratio (P-value,

0.522 and 0.531, respectively), polymorphisms of IGFBP3

A�202C and Gly32Ala (P-value, 0.106 and 0.805, respec-

tively). However, for circulating levels of IGFBP3 and IGF1

(CA)n polymorphism, publication bias was significant (P all

o0.001).

Discussion
In this meta-analysis, we systematically investigated the

relationship between IGF1 or IGFBP3 genotypes and

phenotypes and cancer risk. We found that higher

circulating concentrations of IGF1 were significantly

Table 3 Functional polymorphisms of IGFBP3 (A�202C and Gly32Ala) and cancer risks

Variants Comparison Category Study No.a Ca/Co No.a OR (95% CI) Pb Pc

IGFBP3 A�202C (AC+CC) vs AA Dominant model Breast cancerd 4 15767/21942 1.07 (1.01-1.13) 0.020 0.400
Colorectal cancer 3 2834/3520 0.97 (0.86-1.09) 0.610 0.810
Prostate cancer 7 2041/2318 1.04 (0.97-1.10) 0.450 0.070
Other cancers 2 785/856 0.77 (0.34-1.77) 0.540 o0.001
Overall effectse 16 21427/28636 1.03 (0.97-1.10) 0.280 0.010

CC vs (AC+AA) Recessive model Breast cancer 4 15767/21942 1.02 (0.98-1.07) 0.340 0.360
Colorectal cancer 3 2834/3520 0.93 (0.83-1.05) 0.260 0.360
Prostate cancer 6 1944/2226 1.13 (0.97-1.31) 0.110 0.820
Other cancers 2 785/856 0.74(0.48-1.14) 0.170 0.001
Overall effectse 15 21330/28544 1.02(0.97-1.06) 0.450 0.100

CC vs AA Breast cancer 4 8355/11674 1.04(0.94-1.15) 0.490 0.007
Colorectal cancer 3 1452/1851 1.65(0.74-3.67) 0.220 o0.001
Prostate cancer 5 801/765 1.18(0.99-1.41) 0.070 0.420
Other cancers 2 520/537 0.45(0.06-3.30) 0.430 o0.001
Overall effectse 15 11378/15232 1.08(0.96-1.21) 0.220 o0.001

IGFBP3 Gly32Ala (Gly/Ala+Ala/Ala) vs (Gly/Glya) Overall effects 6 4477/5443 1.15(0.82-1.43) 0.220 o0.001
(Ala/Ala) vs (Gly/Ala+Gly/Glya) Overall effects 6 4477/5443 1.12(0.85-1.49) 0.410 o0.001

aStudy no.: selected studies; Ca/Co No.: case–control number.
bP-value for a significant test.
cP for the test of heterogeneity.
dA multicenter study conducted by COX et al was divided to 10 substudies by a different plan.
eAvailable data was analyzed in the respective comparison category.
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associated with increased risk of all cancers combined,

especially in cancers of pre-menopausal breast, colorectal

and prostate. In addition, higher circulating levels of

IGFBP3 significantly decreased risk of advanced prostate

cancer. Meanwhile, IGFBP3 promoter polymorphism,

A�202C, was associated with an increased prostate cancer

risk and modified the circulating levels of IGFBP3.

IGF1 and IGFBP3 has an important role in tumor

development.3,4 From the present pooled analyses, we

found that higher concentrations of IGF1 were signifi-

cantly associated with an increased risk of pre-menopausal

breast cancer but not of post-menopausal breast

cancer, which was consistent with previously published

studies.4,39,40 It was reported that estrogen could interact

with IGF1 to increase cell proliferation, particularly in

breast cancer cells.41 In addition, both estrogen42 and IGF1

levels were higher in pre-menopausal breast cancer than

those in post-menopausal breast cancer, suggesting that

IGF1 might have a different role in pre- and post-

menopausal breast cancers. We also found that higher

circulating levels of IGFBP3 were significantly associated

with altered risk of pre-menopausal breast cancer, which

was consistent with Renehan’s conclusion.4 It was reported

that IGFBP3 could play an anti-apoptotic role in Hs578T

breast cancer cells.43 Besides, body size, vigorous physical

activity, and dietary factors could influence IGF1 and

IGFBP3 molar ratio in pre-menopausal breast cancer

women more than postmenopausal breast cancer wo-

men,44 and they might account for the different roles of

IGF1 and IGFBP3 in breast cancer according to menopausal

status.

IGF1 could also modulate androgen receptor (AR)

activity by PI3K/Akt or Ras/MAPK pathway, leading to AR

phosphorylation and sensitization to low concentrations

of androgens,45 suggesting that IGF1 might play a crucial

role in prostate cancer. It was reported that IGF1 could

induce ligand-independent activation of AR and enhance

the expression of matrix metalloproteinase-2.46 In this

meta-analysis, the effects of circulating levels of IGF1,

IGFBP3 and IGFBP3 A�202C polymorphism were moreT
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 Mean difference

-906.89 0 906.893

Study

Mean difference
(95% CI)

Deal, 2001

Schernhammer, 2003

Marchand, 2005 422.00 (264.19, 579.81)

Al-Zahrani, 2006

Hernandez, 2007 513.24 (136.03, 890.45)

Overall

% Weight
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545.97 (412.38, 679.56) 100.0

Figure 2 Weighted mean difference in circulating concentrations
of IGFBP3 genotypes (AA vs CC) among controls.
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pronounced in prostate cancer risk. Furthermore, 11 of 21

prostate cancer studies stated tumor stage or grade

information,47–57 although only six studies addressed the

impact of IGF or IGFBP3 on specific stage and grade with

the uniform criteria.47–49,51,52,54 We found that high

concentrations of IGF1 significantly increased risk of

advanced prostate cancer, whereas high levels of IGFBP3

significantly decreased risk of advanced prostate cancer,

suggesting that circulating concentrations of IGF1 and/or

IGFBP3 might play adverse roles in prostate carcinogenesis.

Although the number of CA repeats in the promoter

region of IGF1 was reported to be inversely associated with

transcription activity,7,8 in this analysis, this functional

polymorphism of IGF1 (CA)n was not significantly asso-

ciated with cancer risk, which was consistent with a

previously published meta-analysis (17 studies, 8799 cases

and 13901 controls).22 However, IGF1 (CA)19/19 was

significantly associated with cancer risk among Asians in

dominant genetic model and homozygote comparison,

which needs further evaluation. Although IGFBP3 A�202C

was non-significantly associated with overall cancer risk,

this functional locus was related to a significantly increased

risk of breast cancer in the dominant model, and prostate

cancer risk in the recessive model and homozygote

comparison with borderline significance. Furthermore, we

found that the �202CC genotype correlated to lower

concentrations of IGFBP3 among controls, whereas

decreased IGFBP3 levels were associated with an increased

risk of advanced prostate cancer.

Apart from cancer site, other factors might also account

for heterogeneity across studies, such as ethnicity and

study design. Study design and ethnicity contribute much

to the heterogeneity for the association between circulat-

ing levels of IGF1 and cancer risk. The results of popula-

tion-based case–control studies were comparable with

those of nested case–control studies, but were different

from those of hospital-based case–control studies. It is

possible that hospital-based case–control studies might

suffer from selection bias of study subjects. As for ethnicity,

however, only two studies and limited number of patients

were available for Africans, which limited us to detect

stable effects in this population, and more population-

based or prospective studies are needed.

As a meta-analysis of observational studies, our results

have some potential limitations. Firstly, this type of meta-

analysis is vulnerable to biases inherent in the original

studies.4 Secondly, further analysis for some important

confounding factors such as body mass index and physical

activity were neglected because of limited information

from original studies, although these two factors might

influence the concentrations of IGF1 or IGFBP3. Further

larger studies with both genotypes and phenotypes of

IGF1and IGFBP3 with functional evaluations, and gene–

environmental interactions on the risk of different cancers

are warranted.
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