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Although the rapid advancements in high throughput genotyping technology have made genome-wide
association studies possible, these studies remain an expensive undertaking, especially when considering
the large sample sizes necessary to find the small to moderate effect sizes that define complex diseases. It
is therefore prudent to utilize all possible information contained in a genome-wide scan. We propose a
straightforward analytical approach that tests often unused SNP data without sacrificing statistical validity.
We simulate genotype miscalls under a variety of models consistent with observed miscall rates and test
for departures from HWE using the standard Pearson’s v2-test. We find that true disease susceptibility loci
subjected to various patterns of genotype miscalls can be largely out of HWE and, thus, be candidates for
removal before association testing. These loci, we demonstrate, can maintain sufficient statistical power
even under extreme error models. We additionally show that randommiscalls of null SNPs, independent of
the phenotype, do not induce bias in case–control or cohort studies, and we suggest that a significant
HWE test should not prevent a SNP from being tested when conducting genome-wide association studies
in these scenarios. However, association findings for SNPs that are out of HWE must be treated more
carefully than ‘regular’ findings, for example, by re-genotyping the SNP in the same study using a different
genotyping technology.
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Introduction
Screening SNPs for Hardy–Weinberg equilibrium (HWE)

departure is a quality control measure used frequently

when performing genetic association studies. Gomes et al1

state, ‘quality control provided by a Hardy–Weinberg

test should be an essential part of any genome scan or

other application of DNA typing.’ The common conven-

tion is that when a marker is detected to depart from

HWE, the reasons for this departure should be investigated

(eg, see, Wittke-Thompson2) and then the marker is a

candidate for retyping due to genotyping error. It can be

prohibitively expensive to retype all of the markers from

genome-wide scans that are found to deviate from HWE.

Oftentimes, these markers are, thus, removed from the

analysis and the study proceeds accordingly. Genome-wide

studies using HWE as a screening tool can effectively

remove tens of thousands of SNPs from an analysis.3 –5
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We investigate the effects of genotyping error on

tests of HWE, study power (for true disease susceptibility

loci) and the rate of false positives (for null SNPs) under

different study designs. We perform extensive simulation

studies to explore how factors such as disease allele

frequency, mode of inheritance and the pattern of

genotyping error affect these quantities. Many models for

genotyping error have been proposed and investigated.6–9

Although some of these, such as the error model intro-

duced by Sobel, Papp and Lange9, offer enough flexibility

to accurately characterize common patterns of genotyping

error in multiple settings, care should be taken when

proposing values for the parameters that define each

model. These patterns are dependent on both the geno-

typing platform and the genotype-calling algorithm

employed. Research carried out before the creation

and widespread use of the high-throughput genotyping

platforms must be adapted to fit patterns consistent with

the genotyping error specific to the platform and calling

algorithm pair.

In the context of genome-wide association studies, the

number and type of genotyping platforms is restricted to

the few available commercial assays. Most of these

technologies are typically associated with a particular

preferred, or in-house, calling algorithm, but some alter-

nate genotype calling strategies are becoming popular-

ized.10 Rabbee and Speed,11 among others, have found

that these genome-wide platforms can be differentially

susceptible to heterozygote miscalls, for example, when

using the DM calling algorithm for Affymetrix genotyping

platforms. It is with the goal of realistically modeling the

error in a genome-wide study that we chose to use

empirical genotyping error rates from a recent genome-

wide study in our simulations. These simulations demon-

strate the negative impact of genotyping error on study

power, but they also confirm that testing SNPs out of HWE

does not affect the overall false-positive rate, and, more

importantly, can lead to the identification of ‘real/true’

associations.

Methods
The empirical genotyping error rates used as a model in the

simulations come from a recent genome-wide study in

which SNPs were initially genotyped using the Affymetrix

GeneChip Human Mapping 500K Array Set and then later

resequenced. The re-sequenced genotypes were treated as

the ‘true’ genotypes to determine the error rates from the

genome-wide assay. A total of 1502 subjects were geno-

typed and, of these, 1439 were successfully called from

both the large-scale assay and the resequencing. Table 1

shows the concordance between the original scan and the

resequencing for these 1439 subjects.

In addition to using the empirical error rates, or the

‘Empirical’ error model, we employed other models of

genotyping error for our simulations. We based an array of

error models to reflect the proposed differential rate at

which heterozygotes are miscalled. We call the model that

miscalls heterozygotes to the major homozygote with

probability one-half, ‘Reverse,’ as it behaves in an approxi-

mately opposite manner than the empirical data with

regards to heterozygote misclassification. Table 2 displays

the reverse model genotype-calling probabilities.

Case–control study
We calculated the power for a variety of case–control study

designs. Each scenario was specified by several parameters:

the number of cases, the number of controls, the

significance level for the association test, the mode of

inheritance, the disease prevalence and the odds ratio for

disease. Each study design was simulated 108 times and the

proportion of studies that generated a significant asso-

ciation determined the empirical power. In addition to

assessing the power of the study design, the probability

of rejecting the null hypothesis of Hardy–Weinberg

equilibrium (tested in controls) was also obtained. The

false-positive rate was calculated in the exact same fashion

as the empirical power. It is simply the simulated power

under the null hypothesis that OR¼ 1. When we calculated

the association test to determine the false-positive rate, the

nominal significance level was set to 5%.

Cohort study

The simulation process for cohort studies that recruit

total population samples and measure a continuous trait/

Table 1 SNPs cross-classified by genotype call from an
Affymetrix 500 K array (observed genotype) and the
genotype call from resequencing (‘true’ genotype)

Observed genotype

‘True’ genotype AA AB BB Total

AA 48 6 0 54
AB 175 198 1 374
BB 0 2 1009 1011
Total 223 206 1010 1439

Table 2 Reverse genotyping error model probabilities

Observed genotype

True genotype AA AB BB

AA 1 0 0
AB 0 0.5 0.5
BB 0 0 1

Probability of SNP cross-classification under the reverse genotyping
error model. The genotype call from a large-scale array is the observed
genotype and the actual genotype is the true genotype.
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outcome of interest follows similarly. The same genotyping

error models used in the case–control setting was also

investigated here. The alternative hypothesis, however,

was specified through the locus-specific heritability which

is defined as the proportion of phenotypic variance

attributed to the typed marker, or h2¼Var(aX)/Var(Y),

under the associated biometric regression model

E(Y|x)¼mþ ax.12 In this model, x is the coded genotype

consistent with the assumed mode of inheritance (eg,

assuming a recessive mode of inheritance with minor and

major alleles A and B, respectively, we have that x¼1 for

the genotype AA and x¼0 otherwise). Under the null

hypothesis in this scenario, the genetic effect of size a is 0

and so is the heritability, h2. These studies were replicated

106 times under each scenario.

Results
Power

We simulated the power for several study scenarios with

different error models. For the case–control studies, we

assumed a constant odds ratio of 1.5 and varied the

number of probands across the three modes of inheritance.

The disease prevalence was assumed to be 10% and the a-
level for the Pearson’s w2 association test in each scenario

was 10�9 (Figure 1a–c). For the cohort studies, we

examined different disease allele frequencies and modes

of inheritance while keeping the number of probands,

2000, and the locus-specific heritability, 2%, constant

throughout. We tested for a disease–SNP association using

a significance level of 10�9. A simple test for the

significance of a regression coefficient not being zero was
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Figure 1 Case–control simulation results. Power simulations: The significance level for the association tests was a¼10�9 and 108 simulations were
performed under each genotyping error model (no error, empirical error and reverse error). An odds ratio of 1.5 and disease prevalence of 10% was
assumed. (a) Simulated power under an additive mode of inheritance (2000 cases and 2000 controls). (b) Simulated power under a dominant mode of
inheritance (2500 cases and 2500 controls). (c) Simulated power under a recessive mode of inheritance (10 000 cases and 10000 controls). HWE
simulations: The significance level for the Hardy–Weinberg tests was a¼10�9 under the two error models and a¼0.05 under no genotyping error.
Simulations (108) were performed under each genotyping error model (no error, empirical error and reverse error). An odds ratio of 1.5 and disease
prevalence of 10% was assumed. (d) Simulated probability of rejecting Hardy–Weinberg equilibrium under an additive mode of inheritance (2000
cases and 2000 controls) (e) Simulated probability of rejecting Hardy–Weinberg equilibrium under a dominant mode of inheritance (2500 cases and
2500 controls). (f) Simulated probability of rejecting Hardy–Weinberg equilibrium under a recessive mode of inheritance (10 000 cases and 10000
controls). False-positive rate simulations: the significance level for the association test was a¼10�9 and 108 simulations were performed under each
genotyping error model (no error, empirical error and reverse error). (g) Simulated false-positive rate (5000 study subjects).
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used (Figure 2a–c). The same two models for genotyping

error were used under all scenarios.

The difficulty of detecting rare disease susceptibility loci

and the sensitivity of study power to the disease allele

frequency are readily apparent. Intuitively, statistical

power under the dominant mode of inheritance was less

affected by the empirical genotyping error model where

the most common error is calling a true heterozygote a

homozygote minor. Similarly, power under the recessive

mode of inheritance was less affected by the reverse

genotyping error model. Data generated under the additive

mode of inheritance, however, were fairly robust to both

patterns of genotyping error. For example, examining an

additive disease allele with a frequency of 35% and

recruiting 2000 cases and controls, the study power of

96.5% was only reduced to 80.1% under the empirical

genotyping error model and 56.3% under the reverse

genotyping error model. Power loss patterns akin to

these resulting from various genotyping error models

have been previously documented using both a 2� 3 w2-
test of independence13,14 and the Cochran–Armitage

trend test.15

Probability of departure from HWE

A standard w2-test for departure from Hardy–Weinberg

equilibrium was performed in each of the above power

simulations (results using exact tests for Hardy–Weinberg

were nearly identical). Although current studies employ

varying levels of significance for these tests, we tested using

an unusually stringent a-level of 10�9. Only control data

was used to test for HWE in the case–control study

simulations (Figure 1d–f) and all probands were used in

the cohort study simulations (Figure 2d). We determined

the empirical probability of rejecting HWE using the 108

replicates for each case–control scenario and the 106

replicates for each cohort scenario.

The probability of rejecting HWE was very high under

most scenarios and was virtually one for allele frequencies

greater than 20%. Only when the disease allele frequency

was low, and, thus, the power to detect an association was

low, did the probability of rejecting HWE fall. For the

empirical genotyping error model, every test rejected HWE.

Only using the theoretical reverse genotyping error model

did the probability of rejecting HWE fall below one.

Relating this to a study using conventional quality control

methods, we see that a disease-associated risk locus can be

removed from analysis without making it to the testing

phase even though the disease–SNP association test is still

powered.

False-positive rate

To determine how genotyping error affects the false-

positive rate, we simulated the same scenarios as above

under the null hypothesis of no genetic association

(ie, OR¼ 1 for the case–control studies and h2¼0 for the

cohort studies). Using a nominal a-level of 0.05, we simu-

lated each case–control scenario 108 times (Figure 1g) and

each cohort scenario 106 times (Figure 2e).

The nominal significance level of 5% is maintained in

every scenario. That is, the disease–SNP association testing

is still valid in the presence of either model for genotyping

error. This means that although the loci subjected to

genotyping errors will be less powered than their correctly

genotyped counterparts, they will not increase the pre-

viously determined acceptable rate of false-positive asso-

ciations. The difference between the nominal 5% and the

highest simulated false-positive rate, 5.07%, can be

attributed to random sampling variability. It is worth

mentioning that when the tested allele frequency is very

low, the test can be slightly conservative. This could be

because the distributional assumptions of the w2-test
statistic are more difficult to satisfy under the recessive

mode of inheritance and with smaller sample sizes (note

that the additive mode of inheritance scenarios use the

fewest cases and controls in the simulations and are the

most affected). This conservative nature is not severe but

would likely be amplified when considering smaller sample

sizes and/or rare variants.

Data application

To examine the effects of varying HWE test filtering criteria

in the quality control steps of a real study, we applied

different QC rules to a genome-wide association study for

Alzheimer’s disease. Because this study population is

comprised of related individuals, we randomly sampled a

single individual from each family to mimic a traditional

population-based, case–control study. This resulted in a

sample of 346 cases and 88 controls with genotypes

available for 484 422 SNPs.

Before any analysis was performed, two individuals

with more than 5% missingness were removed from

consideration. SNPs with more than 5% missingness were

also removed, but the specific number varied based on

other QC filtering rules, which were applied before this

missingness filter. The minimum minor allele frequency

varied between 1 and 5%, and HWE testing was either

omitted or performed using a w2-test at a significance level

of a¼10�6. In addition, only SNPs with each genotype

represented by at least 1 affected and 1 unaffected indivi-

dual were tested using a 2-d.f. genotype-by-affection status

w2-test.
The effects of the QC filtering are illustrated in Table 3.

For example, over 50000 SNPs have minor allele frequen-

cies between 1 and 5%, and the more stringent criterion for

MAF results in not testing these SNPs. An interesting note

is that none of these fairly low frequency SNPs result in a

statistically significant association with Alzheimer’s disease

as evidenced by the fact that the same numbers are found

significant at the a¼10�3 level for both QC rules. More

illuminating is that at significance levels of a¼ 10�4 and
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more stringent results employing HWE testing as a QC

screen are identical to those omitting it. Specifically, after

QC filtering, 30 SNPs are found to be significant at a¼ 10�4

regardless of how departure from Hardy–Weinberg equili-

brium is treated. In addition, the difference in the number

of SNPs that get to the testing stage is minimal. This means
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that any adjustments to the study-specific significance

level will be minimal.

Discussion
Before the advent of high-throughput genotyping technol-

ogies, removing SNPs out of HWE was an algorithmic step

in a genetic association study’s quality control process used

to detect genotyping error. Recently, some genome-wide

association studies have continued to follow this practice

and exclude SNPs out of HWE,3,16,17 but others have tested

SNPs found to deviate from HWE.18,19 We have shown that

in the presence of realistic genotyping error that is

independent of the phenotype, common tests for SNP–

disease association can remain powerful without increasing

the false-positive rate. SNPs out of HWE that are signifi-

cantly associated with disease should then be considered as

secondary findings behind those SNPs that are both

associated with the disease and that pass all quality control

criteria. These secondary SNPs must be confirmed through

an alternative genotyping technology or resequenced

altogether.

The degree of genotyping error in any study is a function

of both the genotyping platform and the algorithm used to

make genotype calls, and the number of SNPs that demon-

strate departure from HWE in recent studies has varied

widely. Generally, studies using Affymetrix chips3–5,13,20

have had a higher percentage of SNPs out of HWE

than studies employing Illumina arrays.16,18,19,21–23 It can

only be economically practical to resequence all secondary

SNPs when the number found significantly associated

with disease does not require a major portion of a study’s

budget.

Based on our results, we recommend against the use of

Hardy–Weinberg testing as an agnostic quality control

technique. We advise that SNPs be screened/tested as

outlined by the particular study design and that SNPs

deemed of interest/significant should only then be tested

for HWE departures to determine if any of the significant

SNPs need to be re-genotyped. Although the SNPs that

have been subjected to genotyping errors are less powerful

than their error-free counterparts, they do not increase the

rate of finding false-positive associations. This amendment

to the current practice will have the effect of increasing the

probability of finding a true disease risk-conferring allele in

genome-wide association studies without increasing the

number of false-positive findings.

It is common to share genotyping between centers/

studies, especially that of control data. In these settings,

subset-based data quality artifacts can arise due to

differential genotyping error, lab-specific error, etc. As

such, particular caution should be practiced concerning all

QC metrics, including HWE testing. That is, although we

advocate for testing SNPs that violate HWE, the potential

reasons for being out of HWE must be explored. If any

subject subset (eg, cases, controls, subjects genotyped in a

specific lab, etc) exhibits a disproportionate lack of

genotyping quality as compared with the entire subject

population, the subset must be examined more carefully

before any statistical testing can be reliable.

Table 3 Alzheimer’s disease case–control results

No. of SNPs No. of SNPs with �log10 (P-value) o
HWE-based QC? min MAF Passing QC Tested 1 2 3 4 5 6

No 1% 417531 313 554 29927 3056 320 30 4 2
Yes 1% 415531 312 747 29819 3037 319 30 4 2

Difference 2000 807 108 19 1 0 0 0
No 5% 362228 310 571 29798 3044 320 30 4 2
Yes 5% 361778 310 395 29734 3027 319 30 4 2

Difference 450 176 64 17 1 0 0 0

Count of SNPs passing varying QC criteria, and subsequently achieving various levels of statistical significance. HWE screening is either omitted or
performed using a w2-test at a¼10�6. The minimum minor allele frequency (min MAF) varies between 1 and 5%. Listed are the number of SNPs
passing QC and also satisfying the minimum cell count requirement of at least 1 affected and 1 unaffected subject in each genotype category. The
numbers of these tested SNPs satisfying varying levels of significance are displayed. The effects of HWE screening are presented as the SNP count
differences.

Figure 2 Cohort simulation results. Power simulations: the significance level for the association test was a¼10�9 and 106 simulations were
performed under each genotyping error model (no error, empirical error and reverse error). A sample size of 2000 and a locus-specific heritability of
2% was assumed. (a) Simulated power under an additive mode of inheritance. (b) Simulated power under a dominant mode of inheritance.
(c) Simulated power under a recessive mode of inheritance. HWE simulations: the significance level for the Hardy–Weinberg tests was a¼10�9 under
the two error models and a¼0.05 under no genotyping error. Simulations (108) were performed under each genotyping error model (no error,
empirical error and reverse error). A sample size of 2000 was assumed. (d) Simulated probability of rejecting Hardy–Weinberg equilibrium. False-
positive rate simulations: The significance level for the association test was a¼10�9 and 106 simulations were performed under each genotyping error
model (no error, empirical error and reverse error). A sample size of 2000 was assumed. (e) Simulated false-positive rate.
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The relationship between genotyping error and

Hardy–Weinberg equilibrium has been investigated pre-

viously.24–28 Some recent papers have addressed this issue

in genome-wide association scans from other angles. Li and

Li29 similarly point out that study ascertainment can lead

to an inflated type I error rate for HWE testing. They

develop a likelihood-based methodology that incorporates

SNP–disease association into the testing for HWE depar-

ture. Our approach differs fundamentally from theirs

as we do not attempt to differentiate the reason for HWE

departure nor do we require estimation of any model

parameters. Rather, we simply classify disease-associated

SNPs into two classes: those that are in HWE and should be

followed up as priority ‘hits’ and those out of HWE which

are treated as second-tier ‘hits.’

An important reminder is that the results presented in this

article apply only to population-based studies. The discern-

ing characteristic of the considered genotyping error not

introducing bias into association testing does not hold true

in family-based designs. Although we recommend that a

SNP’s departure from HWE not warrant its removal from the

pool of variants to be tested for association in a population-

based study, the same is not true of a family-based study; that

is, genotyping error causes bias is a family-based association

testing, and, thus, SNPs that depart from HWE should not be

tested for association in a family-based genome-wide

association study.
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