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The interaction index, a novel information-theoretic
metric for prioritizing interacting genetic variations
and environmental factors
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We developed an information-theoretic metric called the Interaction Index for prioritizing genetic
variations and environmental variables for follow-up in detailed sequencing studies. The Interaction Index
was found to be effective for prioritizing the genetic and environmental variables involved in GEI for a
diverse range of simulated data sets. The metric was also evaluated for a 103-SNP Crohn’s disease dataset
and a simulated data set containing 9187 SNPs and multiple covariates that was modeled on a rheumatoid
arthritis data set. Our results demonstrate that the Interaction Index algorithm is effective and efficient for
prioritizing interacting variables for a diverse range of epidemiologic data sets containing complex
combinations of direct effects, multiple GGI and GEI.
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Introduction
With the development, validation and implementation of

survey instruments, geographical information systems and

approaches to identify genetic variations, such as single-

nucleotide polymorphisms (SNPs), deletions, duplications

and inversions across the genome, we now have powerful

methods in hand to evaluate the role of genes and

environment exposures in disease etiology.1–4 However,

the association hits from these genotyping studies may

require large follow-on studies to comprehensively

sequence the disease-associated regions to enable the

discovery of less common genetic variations that may be

contributing to disease. Comprehensive follow up studies

for characterizing sequence variation in disease-associated

regions of the human genome; however, are resource

intensive and require large sample sizes. It is therefore

essential to leverage the available information from

existing genotyping studies to identify the most promising

disease-associated regions, the possible environmental

factors, the best study design and the appropriate study

populations.

In this context, effective analysis tools for detecting

gene–gene (GGI) and gene–environmental interactions

(GEI) are critical for enabling efficient, well designed follow

up sequencing studies. The GGI analysis can highlight

important interactions among genetic variations in differ-

ent regions of the genome and can be used to identify and

prioritize regions for sequencing whereas GEI analysis can

be employed in study design to ensure that the relevant

informative environmental variables are collected.

Prioritizing genetic regions involved in GGI or GEI for

sequencing studies can be difficult because the number of

interactions, the order of interactions and their magni-

tudes can vary considerably making it difficult to

make decisions regarding the relative importance of, for
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example, a few large magnitude interactions vis-à-vis

numerous interactions of moderate magnitude.

We have developed methods for detecting disease-

associated genetic variants, environmental variables, GGI

and GEI using information theoretic metrics. We demon-

strated the utility of the k-way interaction information

(KWII), which is a multivariate extension of the KLD, for

GEI analysis of discrete phenotypes.5 Subsequently, we

enhanced our initial approach by defining a novel metric,

Phenotype-Associated Information (PAI) that accounts for

the confounding effects dependencies among genetic and

environmental variables caused by factors such as linkage

disequilibrium.6 The computational properties of the PAI

metric were used as the basis for an efficient search

algorithm, AMBIENCE, which identifies variable combina-

tions involved in the strongest interactions.6 Our methods

were found to be remarkably effective for analyzing a

diverse range of epidemiologic data sets containing com-

plex combinations of direct effects, multiple GGI and GEI.

In this report, our goal is to extend our information-

theoretic method to identify the most promising genetic

and environmental variables for detailed inspection. We

identified an information theoretic metric, the Interaction

Index, to effectively visualize and rank the genetic and

environmental variables involved in interactions.

Materials and methods
Terminology and representation

Definition of interaction KWII is a parsimonious, multi-

variate measure of information gain.7,8 In our information

theoretic framework, we use the KWII as the measure of

interaction information for each variable combination. In

accordance with our earlier report,6 we operationally

define ‘A positive KWII value for a variable combination

indicates the presence of an interaction, negative values of KWII

indicates the presence of redundancy and a KWII value of zero

denotes the absence of K-way interactions’.

k-way interaction information For the 3-variable case,

the KWII is defined in terms of entropies of the individual

variables, H(A), H(B) and H(C) and the entropies, H(AB), H(AC),

H(BC) and H(ABC), of the combinations of the variables:

KWIIðA;B;CÞ ¼ �HðAÞ �HðBÞ �HðCÞ þHðABÞ
þHðACÞ þHðBCÞ �HðABCÞ

For the k-variable case on the set n¼ {X1, X2, y, Xk}, the

KWII can be written succinctly as an alternating sum over

all possible subsets T of n using the difference operator

notation of Han:9

KWIIðnÞ � �
X
T�n

ð�1Þjnj�jTjHðTÞ

The KWII represents the gain or loss of information due to

the inclusion of additional variables in the model.

It quantitates interactions by representing the information

that cannot be obtained without observing all k variables at

the same time.7,8,10,11 In the bivariate case, the KWII is

always positive but in the multivariate case, KWII can be

positive or negative. The interpretation of KWII values is

intuitive because positive values indicate synergy between

variables, negative values indicate redundancy between

variables and a value of zero indicates the absence of k-way

interactions.

Total correlation information For the 3-variable case,

the TCI12 is defined in terms of entropies of the individual

variables H(A), H(B) and H(C) and the entropy of the joint

distribution H(ABC):

TCIðA;B;CÞ ¼ HðAÞ þHðBÞ þHðCÞ �HðABCÞ

For the k-variable case on the set n¼ {X1, X2, y, Xk}, the

TCI, can be expressed as the difference between the

entropies of the individual variables H(Xi) and the entropy

of the joint distribution H(X1X2 y Xk).

TCIðX1;X2; . . . ;XkÞ ¼
Xk

i¼1

HðXiÞ�HðX1X2; . . .XkÞ

The TCI is the amount of information shared among the

variables in the set; equivalently, it can be viewed as a

general measure of dependency. A TCI value that is zero

indicates that the variables are independent. The maximal

value of TCI occurs when one variable is completely

redundant with the others; that is, knowing one variable

provides complete knowledge regarding all the others.

Phenotype-associated interaction information

PAI is obtained from the TCI, which represents the overall

dependency among the genetic and environmental vari-

ables and the phenotype variable by removing the TCI

contributions representing the interdependencies among

the genetic and environmental variables. The interdepen-

dencies among variables can be caused by factors such as

LD or by a common source for multiple pollutant

exposures. Accordingly, PAI is defined by:

PAIðX1;X2; . . . ;Xk; PÞ ¼TCIðX1;X2; . . . ;Xk; PÞ
�TCIðX1;X2; . . . ;XkÞ

In the above equation, the genetic and environmental

variables are denoted by the X1, X2, y, XK, and the

phenotype variable is denoted by P. In the PAI definition,

the TCI(X1, X2, y, XK, P) term represents the overall

dependency among the genetic and environmental vari-

ables and the phenotype whereas the TCI(X1, X2, y, XK)

term represents the interdependencies among the genetic

and environmental variables in the absence of the

phenotype variable.
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The interaction index

The Interaction Index definition is derived from the

interaction contributions (ICs) of each interaction

wherein a variable Xi is present. The interaction contribu-

tion of a kth-order combination n involving Xi is

denoted by ICn
(k)(Xi). The order of a combination is the

number of genetic or environmental variables in the

combination.

Let n denote any subset of the genetic and environmental

variables Q¼ {X1, X2, y, Xn}. Let P denote the phenotype

variable; all combinations in the following definitions

include P. Let Sk(Xi,n) denote the set of kth-order combi-

nations such that each member contains Xi and is a

subset of n.
The only first-order combination containing one genetic

or environmental variable in which Xi participates is

n¼ {Xi, P}. Therefore, the first-order interaction contribu-

tion of Xi, denoted by IC
ð1Þ
fXi;PgðXiÞ, is:

IC
ð1Þ
fXi;PgðXiÞ ¼ PAIðXi; PÞ

The interaction contribution of any given combination of

two genetic or environmental variables n¼ {Xi, Xj, P}

involving Xi, denoted by IC
ð2Þ
fXi;Xj ;PgðXiÞ, is:

IC
ð2Þ
fXi;Xj ;PgðXiÞ ¼PAIðXi;Xj;PÞ � PAIðXj;PÞ

�IC
ð1Þ
fXi ;PgðXiÞ

Note that the first-order interaction contribution IC
ð1Þ
fXi;Pg �

ðXiÞ is removed in the definition of IC
ð2Þ
fXi ;Xj ;PgðXiÞ.

Likewise, the interaction contribution of any given

combination of three genetic or environmental variables

n¼ {Xi, Xj, Xk, P} involving Xi is:

IC
ð3Þ
fXi ;Xj ;Xk;PgðXiÞ ¼PAIðXi;Xj;Xk;PÞ � PAIðXj;Xk;PÞ�

X
o2Sð2ÞðXi ;fXi;Xj ;Xk ;PgÞ

ICð2Þ
o ðXiÞ � IC

ð1Þ
fXi;PgðXiÞ

Generalizing, the interaction contribution of any given

combination of n genetic or environmental variables

n¼ {Xi, Xj, Xk, y, Xn, P} involving Xi is defined by:

ICn
fXi ;Xj ;Xk;...;Xn;PgðXiÞ ¼PAIðXi;Xj;Xk . . .Xn;PÞ � PAIðXj;Xk . . .Xn;PÞ�X

o2Sðn�1ÞðXi ;fXi ;Xj;Xk ;...;Xn;PgÞ
ICðn�1Þ

o ðXiÞ�

X
o2Sðn�2ÞðXi ;fXi ;Xj;Xk ;...;Xn�1;PgÞ

ICðn�2Þ
o ðXiÞ �. . .� IC

ð1Þ
fXi ;PgðXiÞ

The definitions subtract all lower order interaction con-

tributions for Xi from the difference between PAI with Xi

and PAI without Xi because this difference summarizes all

the first order, second order, y., (n�1)th order interaction

contributions for Xi.

The Interaction Index, IID(Xi), for each variable Xi is

defined as the sum of the average interaction contribution

(IC) of each evaluated K-variable interaction wherein the

variable is involved:

IIDðXiÞ ¼ IC
ð1Þ
fXi;Pg þ IC

ð2Þ
fXi;Xj;Pg

���
���

D E
þ . . .þ IC

ðnÞ
fXi;Xj ;Xk ;...;Xn ;Pg

���
���

D E

The braces denote averages of the interaction contributions

over all the combinations containing Xi of a particular size;

the bars represent the absolute values. In the implementa-

tion, the average is taken over all sampled combinations.

Based on our KWII-based definition of interactions, a

variable was considered to be informative if its Interaction

Index value was greater than zero. In simulated data sets,

we used replicates to obtain confidence intervals and with

real data sets, we used permutations to obtain P-values to

assess the significance.

Visualization of interaction index

The Interaction Index values of the gene and environ-

mental variables were visualized as stacked bar graphs

comprised of the 1-variable containing combinations,

2-variable containing combinations and 3-variable con-

taining combinations.

Simulations for case studies

Simulated data sets were used to critically assess the

effectiveness of Interaction Index metric to correctly

identify and prioritize the interacting variables. We

selected the interaction models for Case Studies 1 and 2

from our earlier paper5 because it had necessary levels of

complexity and also contained nuanced GEI patterns that

could provide a challenging test for evaluating the

Interaction Index. The model for Case Study 3 was

constructed to be more complex and was motivated by

genetic, environmental and biomarker variables implicated

in congestive heart disease.

A population of 50 000 individuals with randomly

varying genotypes and environmental exposures consis-

tent with the underlying GEI models was generated for

each of the case studies. The case–control study design was

assumed. From the population of 50000 individual

genotypes, a sample of 500 cases and 500 controls was

randomly selected. The value 1 was used to represent cases

and 0 was used for controls. The SD due to sampling were

calculated from 100 independent repetitions of this

procedure.

The relative risk was defined as incidence of the disease

phenotype in the group exposed to the disease-associated

gene–environmental variable combination relative to the

incidence in the group without the exposure.13 We

investigated relative risk values of 1.2–2.7 in intervals

of 0.3.

Case studies 1A and 1B The underlying GEI model for

case studies 1A and 1B is summarized in Figure 1a.
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The simulated data for case studies 1A and 1B consisted

of four environmental variables, E1 through E4.5 The

environmental variables, E1 and E2, were assumed asso-

ciated with the disease phenotype whereas E3 and E4 were

assumed to be uninformative. The environmental variables

E1 and E3 were assumed to have two states, low exposure

(assigned value¼L) and high exposure (assigned value¼H)

that were treated as categorical variables. The environ-

mental variable E2 and E4 were assumed to have 3 states,

low exposure (assigned value¼L), medium exposure

(assigned value¼M) and high exposure (assigned

value¼H) that were also treated as categorical variables.

The percentage of subjects in low and high exposure

groups of E1 and E3 were each 50%; the percentage of

subjects in low, intermediate and high exposure groups of

E2 and E4 were 33.33% each, respectively. The disease was

modeled to occur for various combinations of exposure to

the environmental variables E1 and E2 through interac-

tions with alleles for two SNPs, SNP 1 and SNP 2. The more

common and less common (disease) alleles of SNP 1 and

SNP 2 were assigned allele frequencies of 0.9 and 0.1,

respectively. The other SNP variables were SNP 3 through

SNP 6 were uninformative and had allele frequencies of 0.5.

All SNPs were assumed to be diallelic with the three

possible genotypes in Hardy–Weinberg equilibrium.

A binary phenotype variable, C, representing case (assigned

value¼1) or control (assigned value¼0) was used.

In both case studies 1A and 1B, the E1 and E2 variables

were assumed to act independently of each other and the

case phenotype value was assigned when combinations of
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Figure 1 (a) Shows the interaction model used to generate the data for case study 1A and case study 1B. (b and c) Shows the interaction model
used to generate the data for case study 2 and case study 3, respectively. In (a and b), the environmental variables E1 (with states H, L) and E2 (with
states H, M and L) independently interact with two SNP variables, SNP 1 (with alleles A1 and A2) and SNP 2 (with alleles B1 and B2) to determine the
disease status (controls are indicated by 0 and cases are indicated by 1). The asterisk in a genotype represents a ‘wild card’ indicating that either allele is
allowable.
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the SNP genotypes and either environmental variable

resulted in a case.

The difference between case study 1A and B was that in

case study 1B, the SNP variables SNP 3 and SNP 4 are

assumed to be in linkage disequilibrium with R2¼0.9. The

SNP variables SNP 3 and SNP 4 were assumed to be

independent in case study 1A.

Case study 2 This case study differs from case study 1A in

that an interaction between environmental variables E1

and E2 is incorporated (Figure 1b).5

Case study 3 This case study is summarized in Figure 1c

and contains a complex combination of environmental,

SNP variables and biomarker variables that determine the

disease phenotype.

The model for case study 3 consisted of four environ-

mental variables, E1 through E4, four SNP variables, SNP 1

through SNP 4 and two biomarker variables B1 and B2.

The overall risk of developing the disease phenotype was

determined by contributions from three components

termed: (i) environmental risk component (Risk E), (ii)

the genetic risk component (Risk G) and (iii) the biomarker

risk component (Risk B). The Risk E component

was assumed to have three states (High H, Medium M,

and Low L) whereas the Risk G and Risk B were assumed to

have two states (High H and Low L). The E1 and E2

environmental variables interacted with SNP 1 to deter-

mine the environmental risk component (Risk E) of disease

risk in Figure 2c. The gene–gene interactions between

SNP 2 and SNP 3 variables determined the genetic risk

component (Risk G) of disease risk whereas interactions

between the two biomarkers B1 and B2 variables deter-

mined Risk B.

The environmental variables, E1 and E2, were disease-

associated whereas E3 and E4 were assumed to be

uninformative. The environmental variables E1 and E3

were each assumed to have two states, low exposure

(assigned value¼ L) and high exposure (assigned

value¼H); the remaining environmental variables E2 and

E4 each had an additional state of intermediate exposure

(assigned value¼ I). The percentage of subjects in low

and high exposure groups of E1 and E3 were each 50%;

the percentage of subjects in low, intermediate and high

exposure groups of E2 and E4 were each 33.33%,

respectively.

Figure 2 (a–d) Shows the Interaction Index for case studies 1A, 1B, 2 and 3, respectively, for a relative risk value of 1.8. The stacked bars show the
overall interaction index for each SNP or environmental variable; the black regions correspond to the 1-variable contribution, the gray and white
regions of the bars correspond to the contributions of combinations of 2-variable and 3-variables, respectively.
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Both biomarker variables, B1 and B2 were assumed to be

associated with the disease phenotype and were each

assumed to have three states, low exposure (assigned

value¼L), medium exposure (assigned value¼M) and

high exposure (assigned value¼H). The percentage of

subjects in the low, medium and high exposure groups of

B1 and B2 were 33.33% each, respectively.

All four SNP variables were assumed to be diallelic with

the three possible genotypes in Hardy–Weinberg equili-

brium. The more common and less common (‘disease’)

alleles of SNP 1, SNP 2 and SNP 3 were assigned allele

frequencies of 0.9 and 0.1, respectively. The remaining SNP

variable SNP 4 was uninformative and had allele frequen-

cies of 0.5.

A binary phenotype variable, C, representing case

(assigned value¼1) or control (assigned value¼0) was

used. The disease was modeled to occur for various

combinations of exposure to the environmental variables

E1 and E2 through interactions with the biomarker

variables B1 and B2 and alleles for three SNPs, SNP 1, SNP

2 and SNP 3. Variables E1, E2 and SNP 1 interact to affect

the intermediate risk R1 of the disease.

Prototypical examples of typical environmental variables

in congestive heart disease are inflammation and smoking.

Biomarkers that are predictive of the risk, congestive heart

disease, include factors such as C-reactive peptide and

blood cholesterol levels in serum.

Power calculations Power was obtained from 1000

independent repetitions of the simulation procedure for

each case study. The calculations were based on a sample

size of 500 per group for relative risk values of 1.2 through

2.7 in intervals of 0.3. The distribution of the Interaction

Index for a relative risk value of 1 was obtained and its 95th

percentile value was computed. Positive values of Interac-

tion Index indicate the presence of significant interactions

for the variable and accordingly, power at the relative risk

values greater than 1 was defined as the fraction of the

simulations whose Interaction Index values exceeded the

95th percentile value of the Interaction Index distribution

for the relative risk of 1.

Analysis of public domain data sets
GEI analysis of genetic analysis workshop 15 data The

data corresponding to Problem 3 of Genetic Analysis

Workshop 15 (GAW15) were obtained from the GAW site

(http://www.gaworkshop.org/gaw15data.htm) and used

with permission.

These data consist of 100 replicates of simulated data

that are modeled after the rheumatoid arthritis (RA) data.

Miller et al14 generated the data and the following

data description was obtained from the web site:

http://genetsim.org/gaw15/answers/. Each replicate in-

cludes 1500 nuclear families each with two parents and

an affected sib pair and 2000 unrelated controls. The data

contains three types of autosomal markers: (i) 730 micro-

satellite markers with an average spacing of 5 cM; (ii) 9187

SNPs distributed on the genome to mimic a 10K SNP chip

set, and (iii) 17 820 SNPs on chromosome 6. The data

include map information, with lists of markers and their

locations, and simulated family, marker, and phenotype

data. The HLA DR genotype was also available and the

phenotype/covariate data included rheumatoid arthritis

affection status, age at ascertainment, lifetime smoking,

anti-CCP, immunoglobulin M (IgM), severity, age at onset

and age at death.

This simulated data set mimics the epidemiology and

familial pattern of RA, a complex genetic disease with

several loci contributing to disease susceptibility. As

summarized in Table 1, the data set models interaction

of nine loci: C, DR and D on chromosome 6, A on

chromosome 16, B on chromosome 8, E on chromosome

18, F on chromosome 11, G and H on chromosome 9. In

addition, sex, age, smoking status, Anti-CCP measure, IgM

measure, severity, DR allele from father, DR allele from

mother, age at onset, age at death are included as

covariates. The biomarkers, anti-cyclic citrullinated peptide

antibody (Anti-CCP) and IgM measures are defined for the

Table 1 Effects of major trait loci and covariates in the GAW15 data set

Locus Chr SNP no. Phenotype Effects

DR 6 152–155 RA Affects risk of RA
A 16 30–31 RA Controls effect of DR on RA risk
B 8 442 RA Controls effect of smoking on RA risk
C 6 152–155 RA Increases RA risk only in women
D 6 161–162 RA Rare allele increases RA risk 5-fold
E 18 268–269 RA, Anti-CCP Affects of DR on anti-CCP and increases RA risk
F 11 387–389 IgM QTL for IgM
G 9 185–186 Severity 25% QTL for severity
H 9 192–193 Severity 25% QTL for severity
Age F RA Affects RA risk through smoking and sex ratio
Sex F RA Affects RA risk locus C
Smoking F RA, IgM Affects RA risk with locus B and through IgM.
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cases only. All SNP loci are diallelic and alleles are coded as

1 and 2.

For our analysis, which aimed to evaluate the effective-

ness of the Interaction Index, we have used the set of 9187

SNPs along with sex, age and smoking status as covariates.

We used the first of the 100 replicates in our analysis. We

refer to this data set as the ‘10K GAW15 Dataset.’ The Age,

Anti-CCP and IgM variables, which are continuous mea-

sures, were discretized by binning into five intervals of

equal width. Although haplotype-phase information was

provided, we chose to not include it and treat the data as

genotype data. We conducted separate analyses with RA

affection status, Anti-CCP and IgM as phenotypes of

interest. The IgM variable was included as a covariate in

the analysis of Anti-CCP as phenotype and vice versa. All

the GAW analyses were performed by computing the PAI

values for combinations containing up to two variables

(excluding the phenotype variable) using AMBIENCE.6

GGI analysis of interactions in chromosome 5 We

assessed the effectiveness of the Interaction Index metric

for identifying key interactions in a genotype data set from

Daly et al15 containing 103 SNPs spanning a 616 kb region

of chromosome 5q31 that has been linked to Crohn’s

disease.16,17 The data set contains genotypes for 129

parent–child trios comprised of 144 cases and 243

controls.15 For our analysis, subjects and SNPs with missing

genotypes were eliminated resulting in 40 SNPs and 150

subjects.

Results
Evaluation of the Interaction Index

We propose the Interaction Index as a PAI-derived measure

capable of prioritizing genetic variations for detailed follow

up sequencing studies. The Interaction Index is a criterion

that summarizes the relative contributions of the variables

to the disease associations and we evaluated its ability to

rank disease-associated SNPs for case studies 1A, 1B, 2

and 3. Furthermore, we compared the results from: (i) our

analysis of the Daly data set15 to those obtained by Rioux

et al17 and (ii) our analysis of the ‘10K GAW15 Dataset’ and

compared to the answers provided by Miller et al.14

Case studies The results from an Interaction Index

analysis of case studies 1, 2 and 3 are summarized in

Figure 2a–c for a relative risk value of 1.8. Figure 2

summarizes the Interaction Index and its components as

a stacked bar graph: the black, gray and white regions

indicate the relative contributions of 1-, 2- and 3-variable

contributions, respectively. The Interaction Index value of

the variables in each case study correctly identifies the

disease-associated role of the variable in the underlying

interaction model for that case study. Variables E1, E2, SNP

1 and SNP 2 have higher values of Interaction Index than

the remaining variables in case study 1A (Figure 2a), case

study 1B (Figure 2b) and case study 2 (Figure 2c). For case

study 3 (Figure 2d), the variables E1, E2, B1, B2, SNP 1, SNP

2 and SNP 3 have high Interaction Index peaks.

Figure 3 shows the dependence of Interaction Index

values of the key causative variables on relative risk for

case studies 1A, 2 and 3. The results show that the

interaction index increases monotonically with increasing

relative risk. At larger values of relative risk, the Inter-

action Index exhibits a plateau. Likewise, Figure 4 shows

the dependence of power of the Interaction Index

values on relative risk for case studies 1A, 2 and 3.

As expected, the power increases with increasing relative

risk. In case study 1A, for a relative risk of 1.5, the power

for variables E1, E2, SNP 1 and SNP 2 were 0.77, 0.52, 0.98

and 0.96, respectively. For case study 2, for a relative

risk of 1.5, the power for variables E1, E2, SNP 1 and

SNP 2 were 0.69, 0.87, 0.88 and 0.81, respectively. For case

study 3 for all values of relative risk, SNP 1 had lower

values power than SNP 2 or SNP 3; the biomarker B1 had

lower value of power than B2. These differences in power

may be because SNP 1 and B1 are more distal to the

phenotype.

GGI analysis of interactions in chromosome 5 Rioux

et al17 found 11 SNPs (IGR2055a_1, IGR2060a_1,

IGR2063b_1, IGR2078a_1, IGR2096a_1, IGR2198a_1,I-

GR2230a_1, IGR2277a_1, IGR3081a_1, IGR3096a_1, and

IGR3236a_1) with alleles that were associated with the risk

of Crohn’s disease. Nine of 11 significant SNPs were present

in the data set we analyzed; SNPs IGR2078a_1 and

IGR2277a_1 were missing. From the Interaction Index

analysis of the Daly et al15 data set (Figure 5a), all of the

nine SNPs identified by Rioux et al17 as significantly

associated with Crohn’s disease and present in the data

set are found to be significant at a significance level of 0.05

(Table 2). Figure 5a demonstrates that SNPs identified by

Rioux et al17 (eg, SNPs 34, 20, 30, 32 and so on.) as

significant contained strong 1- and 2-variable containing

interaction contributions and are identified by our Inter-

action Index approach. However, there are two SNPs, for

example, 28 and 33, involved in interactions that are

identified by the Interaction Index method but were not

identified by Rioux et al17 These SNPs are more easily

prioritized with the Interaction Index because it accounts

for higher-order interactions but their relatively low

1-variable associations with phenotype caused these to be

missed in the Rioux et al17 analyses.

GEI analysis of genetic analysis workshop 15 data

Figure 5b–d present the Interaction Index value for the

variables involved in the analysis of ‘10K GAW15 Dataset’

with RA affection status, Anti-CCP and IgM as phenotypes

of interest, respectively. The GAW15 data set contained 100

replicates from repetitions of the simulation procedure that
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enabled us to compute the 95% confidence interval for the

Interaction Index of each variable.

In the RA affection status analysis, the top 10 expected

Interaction Index peaks included loci C, DR, F, D, and the

covariates, smoking, age, sex (Figure 5b). Loci D and DR

affect and increase risk of RA, respectively. Locus F, a

quantitative trait locus (QTL) for IgM, is responsible for

30% of the phenotypic variance of IgM. IgM was included

in the hazard model used to generate RA affection status.

Locus C increases the female risk of RA. The Interaction

Index appropriately identifies locus C as showing evidence

of a higher-order interaction (the gray portion of the total

length of bar) whereas loci D, DR and F show almost

entirely 1-variable association with the phenotype.

Although most of the sex effect is through locus C, the

male-to-female sex ratio in the general population affects

RA directly as do age and smoking.

With Anti-CCP as the phenotype, the important roles of

loci DR and E were clearly evident as these were the first

and second highest Interaction Index values, respectively.

Locus E controls the effect of the DR locus on the Anti-CCP

phenotype and increases the risk of RA. Again the

Interaction Index correctly designates that both loci are

involved in higher-order interactions (Figure 5c).

With IgM as the phenotype, the first variable identified

by the index was the IgM QTL, Locus F (Figure 5d). Both

the RA disease-associated loci and covariates as well as their

respective roles (single variable or higher-order interaction)

were consistently and accurately elucidated using the

Interaction Index.

Computational complexity We assessed computational

complexity of Interaction Index calculation using termi-

nology from Corman et al.18 The computation of Interac-

tion Index of a variable of interest involves interaction

contributions of combinations containing the variable. Let

m be the sample size of the data and n be the number of

variables (excluding the phenotype variable) and K be the

maximum interaction order of interest. Each PAI consumes

of the order O(m2) computations and each interaction

contribution of order k contains O(2k) PAI terms. For K¼4,

the computational complexity of the Interaction Index is

O(m2)þ (n�1) O(m2 2)þ nC2 O(m
2 22)þ nC3 O(m

2 23), which

is equivalent to O(m2 n3).

Taken together, these results indicate that the Interac-

tion Index is a useful approach for prioritizing genetic

regions for detailed sequencing and for identifying the

critical environmental variables and covariates for follow

Figure 3 (a and b) Shows dependence of Interaction Index on relative risk for E1 (open circles), E2 (filled circles), SNP 1 (open squares) and SNP 2
(filled squares) in case studies 1A and 2, respectively. For case study 3, the E1 (open circles), SNP 1 (filled circles), SNP 2 (open squares) and B1 (filled
squares) are shown in (c).
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up study design. The Interaction Index is a criterion that

summarizes the relative contributions of the variables to

the disease associations. Our approach may facilitate

decisions regarding the relative importance of interactions.

Discussion
In this report, we developed and evaluated the Interaction

Index, a PAI-based information theoretic metric that

accounts for the role of genetic variants and environmental

variables in GGI and GEI. The Interaction Index can be

used to assess the role and contribution of individual SNPs

to the disease phenotype.

We developed the Interaction Index as a metric for

prioritizing genetic regions for follow up sequencing

studies and to target critical environmental variables for

acquisition in subsequent study designs. In contrast to the

Interaction Index, which is designed to identify SNPs

significantly associated with a phenotype, the methods

employed by PRIORITIZER software aid in the selection of

chromosomal areas for further sequencing. The candidate

genes are prioritized using a Bayesian approach by

combining information from sources such as Gene

Ontology, KEGG, BIND, HPRD, Reactome.19 However, the

approach is more suitable with a candidate gene approach

and is not as powerful for genome-wide data because

the availability of functional information capable of dis-

criminating individual SNPs may be limited. In such

approaches, sequence conservation across species and

other functional information can be considered. In the

Interaction Index approach, the method utilizes high

dimensional information derived from the individual SNP

data and exposure profiles within the epidemiological data

set to assess GGI and GEI.

To our knowledge, there are no othermethods that address

the prioritization problem for genetic and environmental

Figure 4 (a–c) Show the power of the interaction index on relative risk for E1 (open circles), E2 (filled circles), SNP 1 (open triangles) and SNP 2
(filled triangles) in case studies 1A, 2 and 3 respectively. For case study 3, the B1 (open squares) and B2 (filled squares) are additionally shown in (c).

Table 2 The P-values of the Interaction Index for the
SNPs found to be significant from Daly et al’s15 data

SNP name P-value

IGR2096a_1 0.040
IGR2060a_1 0.024
IGR_2055a_1 0.024
IGR_2063b_1 0.020
IGR3029a_2 0.030
IGR3163a_1 0.005
IGR2230a_1 0.008
IGR3096a_1 0.005
IGR3081a_1 0.005
IGR2198a_1 0.002
IGR3236a_1 o0.001

SNPs identified by Rioux et al17 are in bold.
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variables based on the participation in GEI. One potential

criticism of our approach is the apparent complexity

of the underlying equations. Although the mathematical

expressions for IC appear complex, their underlying

framework is intuitive and utilizes inductive logic. The

PAI represents the total phenotype-associated information

for a set of variables and represents a general measure

of phenotype association wherein the dependencies

among variables has been subtracted out. We select only

those PAI components of a specific order that contain

the variable of interest. The information already obtained

from the lower order interactions is removed. The Inter-

action Index is based on sound information theoretic

foundation as it can be shown that the IC of a combination

of variables converges to the KWII of the variables when

all interactions of a given order or less that contain only

the variables of the combination are considered (see

Appendix).

However, we have formulated the underlying expres-

sions in terms of the PAI rather than the KWII for reasons

of computational efficiency: the PAI is more easily

computed because it requires only the individual and joint

entropies that are needed for the TCI calculations. KWII

computations require the entropies of all subsets and

impose computational burden. The PAI also has the

additional advantage that the TCI for interdependencies

among multiple variables such as those caused by LD are

removed. Our previously published results have demon-

strated that these PAI methods are effective at accounting

for LD and can be used to analyze a diverse range of

epidemiologic data sets containing complex combinations

of direct effects, multiple GGI and GEI.5,6

Figure 5 (a) Shows the interaction index for the Daly et al data set.15 The nine SNPs present in the data and found to be significantly associated
with disease phenotype by Rioux et al are highlighted in bold with IGR numbers from Rioux et al.17 The stacked bars show the overall interaction index
for each SNP; the black regions correspond to the 1-variable contribution, the gray and white regions of the bars correspond to the contributions of
combinations of 2-variable and 3-variables, respectively. (b–d) Show the interaction index for the ‘10K GAW15 data set’ with RA affection status, Anti-
CCP and IgM as phenotypes, respectively. The stacked bars show the overall interaction index for each SNP or covariate; the black regions correspond
to the 1-variable contribution, whereas the gray regions of the bars correspond to the contributions of combinations of 2-variable combinations. The
error bars in (b–d) represent the 95th percentile and 5th percentile values obtained from 100 replicates of the data set.
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The variable identification and prioritization problem that

the Interaction Index addresses does not provide the best

context for comparing information theoretic approaches

with other alternatives for identifying genetic interactions.

The effectiveness and power of the KWII, however, can be

compared to other interaction analysis methods such as

those based on probabilistic genetic models, dimensionality

reduction or regression. Recall from Methods that positive

KWII values indicate synergy between the variables, negative

values indicate redundancy between variables and a value of

zero indicates the absence of K-way interactions.5,6 This

makes the interpretation of the KWII values intuitive because

of the qualitative similarity to the interpretation of the

coefficient of product terms in logistic, polytomous or

continuous regression modeling, wherein a positive product

coefficient value identifies interaction terms and implies that

synergistic responses are more frequent than antagonist and

competitive responses; a negative coefficient value implies

that antagonist and competitive responses are more frequent

than a synergistic response.20 We have compared the KWII5,6

to logistic regression,21 logic regression,22 pedigree disequili-

brium test,23 multi-factor dimensionality reduction,24 re-

stricted partitioning method25 and others. The power of the

KWII for detecting GEI in these experiments was comparable

to or better than the competing methods examined.

GEI analysis involves multiple testing, which is asso-

ciated with increased Type I error and false-discovery rates.

Furthermore, the tests in GEI analysis involves high level

dependence because of LD among SNPs and because

different combinations of genetic and environmental

variables can share subsets of variables; for example,

combinations {W, X, Y} and {X, Y, Z} both contain the

variables X, and Y. The availability of P-values from

permutation testing allows users to easily eliminate vari-

ables whose Interaction Index values do not meet un-

corrected, nominal P-value thresholds of for example,

Pr0.05. However, for the remaining variable combinations

with lower P-values, corrections for multiple testing are

also warranted. For multiple testing approaches, such as

the method of Obreiter et al26 as implemented in the

program SDminP (http://www.dkfz.de/SDMinP/software.html)

can be employed. SDminP calculates empirical and adjusted

P-values for correlated and uncorrelated hypotheses using a

Free Step-Down Resampling Method27 for controlling the

familywise error rate (FWER). It utilizes computationally

efficient algorithms28,29 that reduce the re-sampling effort.

Other multiple testing options ranging from the conservative

Bonferroni correction to the false-discovery rate based Benja-

mini–Hochberg method30 can also be used.

At present the Interaction Index metric definition

equally weights constituent interaction contributions.

Although a weighting function could be implemented at

this step and used to assign order or importance to

genotypes and/or environmental variables, there are

challenges to incorporating external information with

the Interaction Index and with other potential methods

for GEI analysis. To be useful, the weighting schemes

should: (i) minimize extensive need for user input; these

can be onerous given the large number of variables in

typical GEI-studies. (ii) be generalizable to combinations. It

is likely that majority of the external biological data will

relate to individual SNPs and environmental variables and

information on combinations will be limited. Automated

extraction of data from genome databases may be neces-

sary and Boolean rules for extending the information from

individual SNP to combinations will need to be devised.

(iii) provide interpretable results. To date, the mathema-

tical and statistical properties of weighted entropy

measures has not been studied in depth.

While other powerful information theory methods have

been proposed for genome-wide data analysis, these

metrics were not designed to capture the first and

second-order interactions characteristic of complex

diseases, but rather test for allelic association with a

phenotype.31–33 Dong et al34 have proposed a method

called ESNP2 based on information gain for analyzing two-

SNP epistasis in case–control studies and for identifying

appropriate two-SNP interaction models. The information-

theoretic approach of this report addresses a different

problem and is also more generalizable because higher-

order interactions are encompassed. Furthermore, we use

the PAI to account for LD. The approach is flexible and can

be used when the genetic and environmental variables

have different numbers of classes or when the phenotype

has more than two classes. This means that SNP and

microsatellite markers can be analyzed together if

necessary. Another critical advantage with our approach

is that it provides options for user interactions and

visualization. The ability to interact with data enriches

the user’s experience and can enable detection of features

that are otherwise difficult to find.

Our approach characterizes the relative roles of the

informative genetic and environmental variables, identi-

fies the subsets of genetic variations and environmental

factors involved in the interactions that together could

provide a framework for developing explanatory models

for the observed patterns of disease associations.
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Appendix

Relationship of interaction contribution to the PAI
and KWII

The interaction information involving two variables A, B

and phenotype variable P can be written as

KWIIðA;B;PÞ ¼ �fHðAÞ þHðBÞ þHðPÞg þ fHðABÞ
þHðAPÞ þHðBPÞg �HðABPÞ ¼ fHðABÞ
þHðPÞ �HðABPÞg � fHðAÞ þHðPÞ
�HðAPÞg � fHðBÞ þHðPÞ �HðBPÞg

¼ PAIðA;B; PÞ � KWIIðA;PÞ � KWIIðB; PÞ
Thus:

PAIðA;B;PÞ ¼ KWIIðA;B;PÞ þ KWIIðA;PÞ þ KWIIðB;PÞ

Similarly PAI for three variables A, B, C and phenotype

variable P can be expressed as:

PAIðA;B;C;PÞ ¼KWIIðA;B;C; PÞ þ KWIIðA;B;PÞ
þ KWIIðA;C;PÞ þ KWIIðB;C;PÞ
þ KWIIðA; PÞKWIIðB;PÞ þ KWIIðC;PÞ

Generalizing to PAI for K variables X1, X2, y, XK:

PAIðX1;X2; . . . ;Xk;PÞ ¼
X

x�fX1 ;X2 ;...;XKg; xj j�1

KWIIðx; PÞ

Now, we show that the IC of a combination of

variables converges to the KWII of the variables when all
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interactions of a given order or less that contain only the

variables of the combination are considered. For variable A,

when the observed phenotype-associated interactions are

{A, P}, {B, P} and {A, B, P}, the interaction contribution

IC({A, B, P}) is given by:

ICðfA;B;PgÞ ¼PAIðA;B;PÞ � PAIðB; PÞ � ICðfA;PgÞ
¼ððKWIIðA;B;PÞ þ KWIIðA;PÞ
þ KWIIðB; PÞÞ � KWIIðB;PÞ � KWIIðA;PÞ

¼KWIIðA;B; PÞ

Similarly, when the observed phenotype-associated

interactions are {A, P}, {B, P}, {C, P}, {A, B, P}, {B, C, P},

{A, C, P} and {A, B, C, P}, the interaction contribution

IC({A, B, C P}) is given by:

ICðfA;B;C;PgÞ ¼PAIðA;B;C;PÞ � PAIðB;C;PÞ
� ðICðfA;B;PgÞ þ ICðfA;C;PgÞ
þ ICðfA;PgÞÞ ¼ KWIIðA;B;C;PÞ
þ KWIIðA;C;PÞ þ KWIIðB;C;PÞ
þ KWIIðA;B;PÞ þ KWIIðA;PÞ
þ KWIIðB;PÞ þ KWIIðC;PÞ � KWIIðB;C;PÞ
� KWIIðB;PÞ � KWIIðC;PÞ � KWIIðA;B;PÞ
� KWIIðA;C;PÞ � KWIIðA;PÞ ¼ KWIIðA;B;C;PÞ

Our results follow as a result of the generalization of this

approach.

Information theoretic interaction index
P Chanda et al

1286

European Journal of Human Genetics


	The interaction index, a novel information-theoretic metric for prioritizing interacting genetic variations and environmental factors
	Introduction
	Materials and methods
	Terminology and representation
	Definition of interaction
	k-way interaction information
	Total correlation information

	Phenotype-associated interaction information
	The interaction index
	Visualization of interaction index
	Simulations for case studies
	Case studies 1A and 1B
	Case study 2
	Case study 3
	Power calculations

	Analysis of public domain data sets
	GEI analysis of genetic analysis workshop 15 data
	GGI analysis of interactions in chromosome 5


	Results
	Evaluation of the Interaction Index
	Case studies
	GGI analysis of interactions in chromosome 5
	GEI analysis of genetic analysis workshop 15 data
	Computational complexity


	Discussion
	Conflict of Interest
	Acknowledgements
	References
	Appendix
	Relationship of interaction contribution to the PAI and KWII





