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Cox proportional hazards models have more
statistical power than logistic regression models in
cross-sectional genetic association studies
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Cross-sectional genetic association studies can be analyzed using Cox proportional hazards models with
age as time scale, if age at onset of disease is known for the cases and age at data collection is known for
the controls. We assessed to what degree and under what conditions Cox proportional hazards models
have more statistical power than logistic regression models in cross-sectional genetic association analyses.
Analyses were conducted in an empirical study on the association of 65 polymorphisms and risk of
coronary heart disease among 2400 familial hypercholesterolemia patients, and in a simulation study that
considered various combinations of sample size, genotype frequency, and strength of association between
the genotype and coronary heart disease. We applied Cox proportional hazards models and logistic
regression models, and compared effect estimates (hazard ratios and odds ratios) and statistical power. In
the empirical study, Cox proportional hazards models generally showed lower P-values for polymorphisms
than logistic regression models. In the simulation study, Cox proportional hazards models had higher
statistical power in all scenarios. Absolute differences in power did depend on the effect estimate,
genotype frequency and sample size, and were most prominent for genotypes with minor effects. For
example, when the genotype frequency was 30% in a sample with size n¼2000 individuals, the absolute
differences were the largest for effect estimates between 1.1 and 1.5. In conclusion, Cox proportional
hazards models can increase statistical power in cross-sectional genetic association studies, especially in
the range of effect estimates that are expected for genetic associations in common diseases.
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Introduction
Epidemiologic association studies are often analyzed using

logistic regression models or Cox proportional hazards

models. The choice between the two models is primarily

based on the design of the study. Logistic regression models

are used in cross-sectional and case–control studies,

whereas Cox proportional hazards models are usually

applied to prospective studies that have a follow-up period
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during which the occurrence of events is observed.1 If

follow-up data are available, Cox proportional hazards

models are the recommended models as they have more

statistical power than logistic regression models.2,3 This is

due to the fact that the Cox proportional hazards models

take account of the time until events occur.4 However,

these models have not been compared in cross-sectional

genetic association studies.

Genetic association studies that do not have follow-up

time are generally analyzed using logistic regression

models. However, since genotype status does not change

over time and also represents genotype status at birth, age

at event can be considered as follow-up time. If the age at

event is known, genetic association studies could be

analyzed with Cox proportional hazards models, even in

the absence of prospectively studying follow-up. In the

literature, there are various examples of studies in which

logistic regression models were used, where Cox propor-

tional hazards models could have been applied.5–7

We aimed to compare the statistical power of Cox

proportional hazards models with that of logistic regres-

sion models in cross-sectional genetic association studies.

We hereto performed an empirical study on the risk of

coronary heart disease (CHD) in patients with familial

hypercholesterolemia (FH), and a simulation study in

which we examined the conditions under which addi-

tional statistical power can be achieved.

Methods
Study population
Empirical study We analyzed a retrospective, multi-

centre cohort study of patients with heterozygous FH

who were recruited from 27 lipid clinics in the Netherlands

between 1989 and 2002. Details of the study design and the

study population have been published previously.8,9 In

brief, lipid clinics in the Netherlands routinely submit DNA

of suspected FH individuals to a central laboratory for low-

density lipoprotein (LDL) receptor mutation analysis. A

total of 2400 unrelated patients who fulfilled the inter-

nationally established FH diagnostic criteria8 were ran-

domly selected from this database. Data on CHD were

collected from the medical records by using a standardized

protocol.9 CHD was defined as the presence of at least one

of the following: (i) myocardial infarction, (ii) percuta-

neous coronary intervention or other invasive procedures,

(iii) coronary artery bypass grafting, or (iv) angina pectoris.

Forty-nine percent of the FH patients were men, and mean

age at the last visit to the lipid clinic was 50 years (SD 13

years). In total, 693 (29%) FH patients had proven CHD:

466 (19%) patients had a verified CHD event before study

entry, and 227 (10%) incident CHD cases were observed

during follow-up (median follow-up time without CHD

was 3.1 years).

A previous association study considered 65 polymor-

phisms located in candidate genes for cardiovascular

disease in our FH population.10 Three polymorphisms

had only wild-type alleles in our population and were

therefore excluded from the present analyses. All patients

gave informed consent and the ethics institutional review

board of each participating hospital approved the protocol.

Simulation study We constructed a population of FH

patients with sex, age at the first visit, and age at the last

visit randomly sampled from the empirical data set. We

simulated genotype status (for a single hypothetical

polymorphism), age at event, and CHD status .

Genotype status was randomly assigned according to

specified genotype frequencies. Although we recognize

that individuals have one of three genotypes, we simulated

only an at-risk genotype (‘carrier’) and another with the

referent or baseline risk (‘non-carrier’) in our primary

analysis. These two genotypes can be interpreted as

dominant and/or recessive models of inheritance. In a

secondary analysis, we repeated the simulations in the

more complex setting of three genotypes. This yielded

virtually identical results (data not shown).

Age at event was randomly drawn from distributions of

age-, sex-, and genotype-specific CHD incidence rates for

patients with FH. These distributions were obtained in

three steps. First, we fitted Weibull distributions on age-

specific CHD incidence rates in the general Dutch popula-

tion, for men and women separately. The incidence rates

were obtained from the National Institute for Public Health

and the Environment (RIVM) [http://www.rivm.nl/vtv/

object_document/o1320n17964.html]. Second, these dis-

tributions were adjusted to fit the age-specific CHD

incidence in the FH patients of the empirical study,

resulting in a cumulative CHD incidence of 29%. Finally,

separate distributions were constructed for carriers and

non-carriers by changing the average hazard according to

the strength of association of the risk genotype, and

assuming proportional hazards. CHD status was considered

present when the simulated age at event was lower than

the age at the last visit, and considered absent when the

simulated age at event was higher.

Statistical analysis

Cox proportional hazards models and logistic regression

models were fitted in the empirical and simulated data sets.

With the term ‘effect estimate’, we refer to hazard ratios in

the Cox proportional hazards models and odds ratios in

the logistic regression models. All analyses were adjusted

for sex and the logistic regression models were additionally

adjusted for age (as a linear term), which was age at event

or age at the last visit to the lipid clinic in the case of ‘no

event’. For the Cox proportional hazards models, we used

age as time variable, thereby assuming that follow-up time

started at birth and ended at the date of the first occurrence
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of established CHD, or at the last visit to the lipid clinic. In

the empirical data set, we assumed that each polymorphic

allele had an additive contribution to the log-hazard/log-

odds scale (additive genetic mode of inheritance). We

compared the effect estimates and the P-values of the two

models and calculated Spearman’s rank correlation coeffi-

cient for the P-values of the two models.

In the simulation study, we varied the size of the

population (n¼500; n¼ 2000; n¼ 5000), the frequency of

the risk genotype (10; 30; 50; 70%), and the strength of

association between the polymorphism and risk of CHD

(hazard ratio 1.0–2.0 with increments of 0.1) in separate

scenarios. The hazard ratio of 1.0 was also simulated to

check if type 1 error rates of the two approaches were as

simulated, namely 0.05, and this was confirmed for all

scenarios. The simulated and observed hazard ratios were

slightly lower than the observed age-adjusted odds ratios in

all scenarios (data not shown). Prospective data collection

is assumed when Cox proportional hazards models are

used. In retrospective data collection, early cases could be

missed. To investigate whether missing data might influ-

ence our results, we simulated scenarios in which all

prevalent cases (with an event before the date of the first

visit to the lipid clinic) were missed, thereby excluding the

prevalent cases from the analysis and considering only

incident cases. Each scenario was repeated 5000 times. The

statistical power of the two models was defined as the

percentage of statistically significant (Po0.05) associations

between the polymorphism and CHD status found for that

regression model in the 5000 repeated scenarios. The gain

in statistical power with the Cox proportional hazards

models was expressed as the absolute difference in power

and as the potential reduction in required sample size that

can be obtained when the most powerful model would

have the same power as the least powerful model.11

Percentage reduction in required sample size was calcu-

lated as 100�100 (Z2/Z1)
2, where Z1 and Z2 are the Wald

statistics of the most and least powerful model, respec-

tively. These measures are independent of the effect

estimate, the a-value and sample size.11 Therefore, we

calculated the mean percentage reduction in required

sample size for each genotype frequency. All statistical

analyses and simulations were performed using the R

statistical package (version 2.5.1).12

Results
Empirical study

Figure 1 shows the effect estimates and P-values for the

association between 62 polymorphisms and the risk of

CHD obtained by Cox proportional hazards and logistic

regression analyses. The effect estimates tended to be more

extreme for the logistic regression models than for the Cox

proportional hazards models (Figure 1a). The rank correla-

tion coefficient for P-values was 0.54. Logistic regression

analyses showed statistical significance for two polymor-

phisms, whereas four polymorphisms were statistically

significant using the Cox proportional hazards models.

Simulation study

Figure 2 shows that Cox proportional hazards models had

more statistical power than logistic regression models in all

scenarios. The absolute difference in power was deter-

mined by the effect estimate, genotype frequency and

sample size (Figure 3). The absolute difference in power was

larger when sample size was low, the risk genotype was

infrequent or the risk associated with the genotype was

low. For example, when the genotype frequency was 30%

and sample size was 2000, the absolute differences in

power were most prominent for effect estimates between

1.1 and 1.5. The differences in power equaled to a

reduction in required sample size ranging from 33% when

the genotype frequency was 10%, to 18% when the

genotype frequency was 70%. Risk sizes and reduction in

sample sizes were similar when analyses were restricted to

incident cases. However, the statistical power was lower in

both models because of a lower number of events (data not

shown).

Discussion
This study shows that Cox proportional hazards models

may yield more statistical power than logistic regression

models in cross-sectional genetic association studies.

Differences in statistical power were most prominent for

genotypes with minor effects in a range in which most

genetic associations are expected.

The observation that Cox proportional hazards models

have more statistical power than logistic regression models

in association studies has been described previously.2,3 For

P-values
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Figure 1 Effect estimates and P-values for 62 polymorphisms
obtained by the Cox proportional hazards models and logistic
regression models in the empirical study. Effect estimates are hazard
ratios for the Cox proportional hazards models and odds ratios for the
logistic regression models. Two outliers with effect estimates above 2.0
are not shown in these figures. (a) Dashed line represents the reference
line for which the hazard ratio is equal to the odds ratio, solid line
represents the linear regression line through the data points. (b)
Dotted lines represent the significance threshold (P¼0.05).

Cox proportional hazards models in genetic studies
JB van der Net et al

1113

European Journal of Human Genetics



example, the effect estimates will diverge when follow-up

time is longer,3,4 and effect estimates of logistic regression

models are less precise, especially when the event is more

common or when there is a strong relative risk.13 This is in

line with our findings in the empirical study, which

showed that odds ratios tended to be more extreme than

the hazard ratios. It has been previously shown that the

Cox proportional hazards models give more conservative

effect estimates than the logistic regression models,

especially when the incidence of the disease is high,2 as

is the case in FH.

An explanation for the higher power of Cox proportional

hazards models is that these models take into account the

time until events occur, thereby changing the unit of
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Figure 2 Statistical power of the Cox proportional hazards models and logistic regression models as a function of genotype frequency, effect
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analysis from persons to person-years. Therefore, the

interpretation of the results of the Cox proportional

hazards models differs from those of the logistic regression

model. While the logistic regression model tests whether a

risk factor affects the odds of disease, the Cox proportional

hazards model tests whether a risk factor affects the age of

onset of the disease. Logistic regression models do not take

into account the time until events occur, but give ‘early’

events and ‘late’ events the same weight in the analysis.1,4

Young individuals who have had no event (yet) are

classified as ‘no event’, while some would have experienced

the event at an older age. This is a form of misclassification

in terms of outcome. The superiority of the Cox propor-

tional hazards models over the logistic regression models

in analyzing longitudinal data has been mathematically

proven for models, which consider one dichotomous

covariate2 and models with multiple covariates.3

A number of considerations regarding the generalizabi-

lity of our results merit discussion. First, we simulated

populations with a high risk of CHD, which implies that

the absolute estimates of the statistical power of the

different scenarios apply only to populations with similar

disease risks. Statistical power and differences in statistical

power were lower when the disease risks were lower, but

still in favor of the Cox proportional hazards models (data

not shown); a relative measure such as the potential

percentage reduction in required sample size did not

depend on the incidence of the disease. Second, analysis

of a cross-sectional genetic association study with Cox

proportional hazards models assumes that follow-up time

starts with birth. In a retrospective design, Cox propor-

tional hazards models only yield valid estimates compared

to prospective studies, if there is no selective loss of follow-

up. Our study only included patients who at least survived

until a first visit to the lipid clinic, and early CHD cases

could have been missed. Although these early cases might

have been rare as demonstrated in a previous study,14 we

cannot exclude this possibility. We investigated the

extreme scenario in which all prevalent cases were missed.

This did not influence the effect estimates, because the

analysis included all characteristics related to missingness

of these cases (age, genotype status). Third, in our

simulations, we did not adjust for covariables other than

age. In cross-sectional genetic association studies, the use

of Cox proportional hazards models is formally valid only

when no adjustment is needed, or when adjustment is

needed only for covariables that can be reliably assessed in

retrospect, such as sex and education.

When there is no reason to expect selective loss of

follow-up and no other variables than age and sex need to

be adjusted for, Cox proportional hazards models are the

preferred strategy for the analysis of genetic association

studies. As the increase in power is independent of the type

1 error rate, Cox proportional hazards models may not

only be preferred in association studies of candidate genes,

but also in the statistical analysis of genome-wide associa-

tion (GWA) studies, which generally consider lower type 1

error rates. Current GWA studies most often make simple

and less powerful comparisons of genotype counts between

cases and controls. Application of Cox proportional

hazards models may lead to the additional identification

of susceptibility genes with weaker effects that will remain

undetected otherwise. In the case of cross-sectional genetic

association studies in which adjustment for other variables

than age and sex is needed, it is not immediately clear

which is the model of choice. Additional variables, such as

blood pressure and cholesterol levels, are more difficult to

assess in retrospect. Ideally, these additional variables

should be treated as time-dependent variables.15 As the

levels of these variables at the time of the event are often

unknown in cross-sectional studies, the levels at the time

of study conduction are frequently used as surrogates.

Whether this will introduce a different size of bias in the

two models is not clear. Yet, this potential bias is of lesser

importance in gene-finding studies (as described in this

study) than in risk prediction studies in which it is more

important to accurately estimate the effect.16

We conclude that the advantage in terms of statistical

power of the Cox proportional hazards models in compari-

son with the logistic regression models was most promi-

nent for the range of effect estimates that are expected for

most genetic associations. We recommend to consider the

use of the Cox proportional hazards model in both cross-

sectional genetic association studies and GWA studies.
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